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Abstract 
High assurance security is difficult to achieve in distributed computer systems and databases 
because of their complexity, non-determinism and inherent heterogeneity. The practical applica­
tion of formal methods is the key to high assurance security in open, distributed environments. 
This paper proposes the use of formal methods and a special layered architecture to achieve se­
cure interoperation of heterogeneous distributed objects. The foundation is provided by ROC, 
a process calculus tailored for concurrent objects. Lying above ROC in the layered architecture 
is a meta-object model for creating object models with various programming constructs, mega­
programming facilities and security mechanisms. Successive layers of the architecture represent 
more sophisticated toolkits for modeling distributed objects. Since each layer inherits ROC's 
formal foundation, it automatically has an unambiguous semantics and supports verification. 
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1 INTRODUCTION 

The rapid growth of the Internet and the emergence of the World Wide Web as a computing 
paradigm have brought distributed systems into the mainstream of personal computing. The mas­
sive interconnectivity and interoperability of distributed computing resources offers tremendous 
benefits, but renders them more vulnerable to security threats. Unfortunately, the complexity, 
non-determinism and inherent heterogeneity of distributed systems makes them extremely diffi­
cult to secure. Even now, security in most large computer networks is a confusing patchwork of 
diverse models and ad hoc mechanisms and policies. One solution is to deliver applications with 
high assurance that they can operate securely in open, distributed environments. 

The practical application of formal methods is the key to high assurance computing. Formal 
methods have been applied to centralized computer systems and traditional programming lan­
guages with some success (Diller, 1990; Wing, 1990; Hinchey and Bowen, 1995). Unambiguous 
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formal semantics for these systems created by applying formal methods provides the basis for 
system/ application verification. The view of a security policy as a logical proposition leads to 
the consideration of verifiably secure computer systems. Formal models of computer security can 
provide precise semantics for security models, mechanisms and policies. These semantics and their 
accompanying verification properties are indispensible to realizing the goal of verifiably secure 
heterogeneous distributed systems. 

While many research efforts have applied formal methods to high assurance computing (Diller, 
1990; Wing, 1990; Hinchey and Bowen, 1995), a practical application offormal methods to het­
erogeneous distributed system verification remains elusive. The Meta Object Operating System 
Environment (MOOSE) described in this paper employs a special layered architecture to achieve 
high assurance secure interoperation of distributed objects. Objects provide a clean, realistic 
model of persistent entities with complex behavior found in most heterogeneous distributed sys­
tems. Several architectures, most notably CORBA (Object Management Group, 1991; Mowbray 
and Zahavi, 1995) and DCE (Open Systems Foundation, 1992; Rosenberry, Kenney and Fisher, 
1993), have been proposed as standards for distributed object management systems. However, 
unlike MOOSE, they lack the formal foundation necessary to verify system security and other 
critical properties of high assurance systems. 

The foundation for MOOSE is provided by the Robust Object Calculus (ROC), a process 
calculus tailored to modeling distributed object systems. Upon ROC rests the Meta-Object Model 
(MOM), an ACTORS-like architecture (Agha, 1986) for building concurrent/distributed systems. 
Any object language or model constructed with MOM inherits ROC's formal semantics which 
provides a basis for system verification. Existing languages such as Common Lisp Object System, 
C++ or Java can be given ROC semantics, while object code can be accompanied by abstract 
ROC models to maximize interoperability. Object architectures constructed using MOM can 
contain powerful programming constructs, mega-programming facilities and security mechanisms. 
Successive layers of the architecture represent more sophisticated toolkits for modeling distributed 
objects. Since these layers also inherit ROC's formal foundation, they have unambiguous semantics 
and support verification. 

Layered architectures have been used by several researchers to construct verification systems 
for programming languages and distributed systems (Bevier, eta/., 1989; Alves-Foss and Levitt, 
1991; Zhang, et al., 1994, 1995). The Silo Project at the University of California-Davis has applied 
a layered architecture to the formal verification of secure distributed systems and applications 
(Zhang, et at., 1994, 1995). This work advances Silo by employing a primitive process calculus 
{ROC) for concurrent objects as a foundation for the semantics hierarchy. Using ROC as the exe­
cution model for distributed systems has several advantages. ROC's formal operational semantics 
facilitates a mechanization {deep embedding) into a more expressive mathematical system, e.g., 
the higher order logic (HOL) (Gordon and Melham, 1993). ROC can be used as a semantic alge­
bra for creating denotational semantics for concurrent object-oriented programming languages. 
Applications written in these languages inherit the formal operational semantics of ROC, allowing 
reuse of ROC's HOL theorems. These features make high assurance security attainable in open, 
distributed systems. 
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Figure 1 The layered semantics of MOOSE. 

2 MOOSE OPERATIONAL FRAMEWORK 
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High assurance security requires a pervasive and practical application of formal methods to system 
execution models. The inherent heterogeneity of distributed systems makes this a daunting task. 
However, a unified view of distributed systems can simplify the task of achieving high assurance 
secure interoperation of distributed objects. 

The operational framework of the Meta Object Operating System Environment (MOOSE) 
provides the needed unified view by blending formal operational semantics and denotational 
semantics in a hierarchical (layered) system architecture. The base of the architecture contains 
a primitive concurrency model with formal operational semantics. Each successive layer in the 
architecture is constructed with denotational semantics using the previous layer as a semantic 
algebra. This approach provides each layer of the framework - from the concurrency formalism 
up to the application level - with a formal operational semantics. Figure 1 illustrates the layered 
operational semantics of MOOSE. 

The special requirements for the concurrency formalism underlying the MOOSE operational 
framework motivated the development of the Robust Object Calculus (ROC), a process calculus 
for objects. ROC is based on Nierstrasz's Object Calculus (OC) (Nierstrasz, 1991), and extends 
it by permitting robust encapsulation of agents, an essential feature of objects. 

The ease with which ROC models complex message-passing distinguishes it from traditional 
process calculi (e.g., Milner's 11'-calculus (Milner, et al., 1989). ROC's primary role is to pro-
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vide primitive but formal semantics to concurrent object systems at all levels in the MOOSE 
operational framework. 

Concurrent object models are endowed with ROC semantics through their denotational defini­
tions. It is possible to directly give ROC semantics to any concurrent object-oriented program­
ming language, but this may be too large a leap. Therefore, instead of applying ROC directly as 
a denotational semantics for concurrent programming languages, it is used to define a primitive 
ACTORS-like (Agha, 1986) meta-object model (MOM). MOM can be used to efficiently capture 
the semantics of existing concurrent object-oriented programming languages. In MOOSE, MOM 
functions as an abstract common substrate for the interoperation of heterogeneous distributed 
objects. It actually serves as the semantic algebra for the denotational semantics of each abstract 
object model resident in the MOOSE environment. 

The next layer in the operational framework (currently under construction) contains the syn­
tax and semantics for a sophisticated concurrent object-oriented programming language. The 
denotational definition of this language uses MOM as its semantic algebra. The language will 
comprise data and control primitives common to object-oriented programming languages as well 
as synchronization primitives for concurrent programming. It will also serve as a secure "mega­
programming" language, containing constructs for the seamless interoperation of components 
with ROC or MOM semantics and housing a core set of security services and mechanisms. The 
richness of the language will make it suitable for the development of MOOSE distributed OS 
agents residing in the top level of the layered architecture. These agents will have even more 
complex behavior to ensure seamless and secure interoperation of heterogeneous applications in 
an open, distributed environment. The agents will be deployed as middleware resting between 
the operating system and software components. 

3 ROBUST OBJECT CALCULUS 

The Robust Object Calculus (ROC) is designed to supply a formal operational semantics to 
each layer in the operational framework. ROC advances existing process calculi, e.g., Milner's 
1r-calculus (Milner, et al., 1989) and Nierstrasz's Object Calculus (OC) (Nierstrasz, 1991), by 
supporting complex message-passing and a robust form of encapsulation for concurrently execut­
ing objects. 

Robust agent encapsulation is critical to object-oriented systems. It is achieved by mandating 
that private services and values in objects be inaccessible to external objects, thereby ensuring 
that objects have well-defined interfaces. From the point of view of a process calculus, this requires 
a higher level of communication control between agents. The 1r-calculus achieves such communica­
tion control using restriction (unique-naming) to create globally unique labels for communication 
ports. However, since wildcard matching is not allowed, i.e., only identical ports may match, the 
capacity for complex message-passing in the 1r-calculus is severely limited. 

ROC uses unbindable values to achieve robust agent encapsulation without sacrificing the 
ability to model complex message-passing. This feature advances OC's pattern-matching-based 
communication system. A ROC agent is encapsulated using restriction to create an unbindable 
globally unique identifier for the agent. Exposed values containing the unbindable identifier are 
guaranteed only to match patterns containing the globally unique identifier. Such a pattern can 
only exist outside the encapsulated agent if the agent has transmitted its identifier to an external 
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agent by making it bindable to an exposed name. Multiple identifiers can be used to achieve 
nested encapsulation which is essential to most object systems. 

The following subsections describe ROC agent communication, syntax and inference rules for 
communication and reduction. 

3.1 Agent Communication 

Communication in ROC is based on pattern-matching. Complex message-passing is achieved by 
matching values to patterns. 

Two agents may communicate when a value exposed by one matches a pattern exposed by the 
other. Values are nested tuples of names. Patterns are nested tuples of names and wildcards. The 
following notation is used: a, b, c E A (agents); m, n,p EN (names); u, v E V (values); x, y, z EX 
(patterns). 

Definition A value is a name, an agent, a tuple of values, or a bindable value. A value does not 
contain wildcards at any level. The BNF definition of a value is: 

v ::= n I a I [v1, v2 , ... , vj]l v#. 

Definition A pattern is a value, wildcard, or tuple of patterns. The BNF definition of a pattern 
IS: 

x ::=vI n? I [x!,xz, ... ,x;]. 

A wildcard, i.e., a placeholder for a value, is denoted by n? (n EN). A bindable value, which 
can be bound to a placeholder, is denoted by v# (v E V). Bindable values are transmittable to 
agents with matching wildcard patterns. Values not tagged with "#" are called unbindable values 
because they cannot be matched by wildcards. 

Matching of patterns and values is accomplished by the "~" operator. The semantics of the 
bindable symbol "#" are clarified in the matching rules below. Unbindable values can match 
bindable values, but cannot match wildcards. 

Definition The match operator is denoted by "~". The matching rules are: 

v# v# v ~ v 

v# ~ v v ~ v# 
v# n? v(#) i {::}Vi, V; ~ x;. 

The last matching rule applies to a tuple of values where the tuple is either bindable or un­
bindable. This condition is denoted by "( # )". 

Pattern-matching is achieved by applying the rules given above. For example, [m, [n]] ~ [m, [n]]. 
On the other hand, [m, n] f [m, [n]]. 

Wildcards can match bindable values. For example, [m, [n]] ~ [m, [n]#] and [m, p?] ~ [m, [n]#]. 
On the other hand, [m,p?] f [m, [n]]. 

Free occurrences of the wildcard are replaced with the value inside the accepting agent. When 
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v ~ x, the notation a{ v / x} is used to denote that all wildcards in x are replaced by the cor­
responding subvalues of v in the agent a. For example, when v# binds to n? in a, each free 
occurrence of n in a is replaced by v. 

3.2 Syntax 

The ROC syntax is derived from Nierstrasz's Object Calculus (OC) (Nierstrasz, 1991). The 
symbol "#" distinguishes bindable values from unbindable values. The non-deterministic choice 
operator "+" from 1!"-calculus is added. The BNF syntax is shown below. 

a::= a & a 
\ n :=a 
\ a+a 
\ala 
\x--+a 
\ v'a 
\a@v 
\ n\a 
\n 
\nil 

(concurrent composition) 
(recursion) 

(non-deterministic choice) 
(left preferential choice) 

(input) 
(output) 

(application) 
(new name n in a) 

(name) 
(empty agent) 

The following notation is used in the syntax definition: a, b, c E A (agents); n, mEN (names); 
v E V (values); x, y, z EX (patterns). Note that the set of values is a proper subset of the set of 
patterns, i.e., V C X. The operators "&", ":=", "\", "+", "--+", """ and "\" are right-associative. 
This order indicates the binding precedence from loosest to tightest. The application operator, 
"@", is left-associative. Its binding precedence is tighter than """ and looser than "\". Agent 
communication may occur when an input pattern matches an output value. 

The structural congruence rules shown below are used for manipulating expressions. They do 
not represent system activity, but are used to transform stable expressions into reducible states. 
Note that fn denotes a free name. 

1. a & b = b & a, a & (b & c)= (a & b) & c 
2. a+ b = b +a, a+ (b +c)= (a+ b)+ c 
3. n :=a= a{(n := a)/n?} 
4. n\a =a, n ¢ fn(a) 
5. n\m\a = m\n\a 
6. n\ub = n\(a *b), n ¢ fn(b), a\ n\b = n\(a \b), n ¢ fn(a) 

where* E {&, \, +, @} 
7. a & nil= a, nil@v =nil 
8. n :=a= n' := a{n'/n},n' ¢ fn(a) 
9. n\a:=n'\a{n'/n},n'¢fn(a) 
10. x--+ a= x{n' /n}--+ a{n' /n}, n' ¢ fn(x, a) 

Rules 1 and 2 address the commutativity and associativity of parallel composition and choice, 
respectively. Rule 3 is for expanding recursive agents. Rule 4 stipulates when a restriction can 
be discarded (fn(a) denotes the set of free names in a). Rule 5 formalizes the commutativity of 
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restriction. Rule 6 describes scope extrusion. Scope extrusion expands the scope of a restriction 
to proximal agents. Rule 7 shows the effect of nil and any value applied to nil. Rules 8-10 define 
a-conversion for agents which substitutes globally unique names for local names. They are useful 
when scope extrusion is necessary. 

3.3 Inference Rules 

Inference rules for communication and reduction supply the semantics for agent expressions. 
Actions in the ROC universe are comprised of communication, reduction and binding. The rules 
are similar to those in OC except for an additional rule to handle non-deterministic choice. 

Definition Communication offers are written as ~, where a is either v (for input) or v (for 
output). Reduction is written as --+. Communication offers and reduction are defined by the 
following rules: 

V"-'X 
In: v 

x-+ a-+ a{vjx} 

a~a' 
Cone: ar 

a & b-+ a' & b 

ar I 

If: a--:a 
a I b-+ a' 

a-4a' b~b' 
Comm : a & b ~ a' & b' 

I 

Left ·. a -+ a {& I + @} 
a * b -+ a' * b ' * E ' ' ' 

a = b, b -+ b', b' = a' 
Struct: 1 a-t a 

Out:----
• v v a-+ a 

a~a' 
Choice: ar 

a+b-+ a' 

Else: a f--+, a -f...+, b ~ b' 
alb~b' 

a~a1 
Apply:-::::----, 

a@v-+ a' 

b-+ b' 
Right: b b', * E {&,I,+,\} 

a* -+a* 

Cone provides concurrency by allowing "composed" agents to reduce independently. Choice 
allows only one of several possible activities. The If and Else rules prefer the reduction of the 
left side over the right side whenever possible. This is important for handling "default" actions 
(which is lacking in the 1r-calculus). Comm (global communication) matches complementary 
communication offers and reduces the system by realizing the communication. Comm works in 
concert with the In and Out rules. Apply (local communication) requires agent a to eventually 
accept value v. It cannot communicate externally using Comm until value v is consumed. If vis 
never consumed, then agent a@v is effectively dead. The Left and Right rules allow for activity 
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within (or under) the various operators. The Struct rule allows an expression to be manipulated 
using the structural congruence rules so that further activity can occur when a "stable" agent is 
structurally congruent to a reducible one. The Struct rule manifests symmetrical inference rules 
for Cone and Choice where a & b = b & a and a + b = b + a. 

4 META-OBJECT MODEL 

This section describes the Meta-Object Model (MOM), an ACTORS-like system (Agha, 1986) 
developed for the MOOSE operational framework. The model is defined as a system of ROC 
agents and, therefore, also serves to illustrate the construction of abstract models with ROC. The 
underlying principles of ROC, e.g., encapsulation and tuple-based communication, have facilitated 
the formal design of MOM. Using another process calculus to design MOM is much more difficult, 
if not impossible. 

MOM is designed to serve as a primitive object architecture for constructing more sophisticated 
object models and programming languages. MOM is similar to the ACTORS system (Agha, 1986) 
and Chien's Concurrent Aggregates (Chien, 1993). It supports core object functionality, including 
persistence, method invocation, asynchronous message-passing, delegation and aggregation. Vir­
tually any object system can be modeled with this core functionality. Thus, MOM is particularly 
suited to addressing interoperability issues. 

4.1 Syntax and Notational Conventions 

The ROC definitions of MOM agents use a special syntax for parameterized agents.Agents are 
parameterized with a standard functional interface. 

agent(n1, n2, ... , nm) :=agent' ~f agent := n1?--+ n2?--+ ... --+ nm?--+ agent' 

The access of a parameterized agent is defined as: 

agent(v1, v2, ... , Vm) ~f (( ••. ((agent@vl)@v2)@ ... )@vm) 

Note that keywords are in bold type and VARIABLES are capitalized. 

4.2 MOM Objects 

MOM objects are viewed as a collection of tightly encapsulated agents. Each MOM object has 
a set of identifiers that defines how it can be addressed. Identifiers in MOM are navigational 
tuples of names (this bears the influence of tuple-based communication in ROC). The syntax of 
navigational identifiers (nids) in MOM is defined by the following BNF rule: 

nid ::= [ [out, root#], nil#JI [ [out, def_par), nid#JI [ [out, lid#), nid#) 
I [ [in, lid#), nid#JI nil# 

Every MOM object, except for the root object, resides inside some other object. Each object is 
given a local identifier (lid) unique to its domain. This forms the basis for a system of domains. 
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Figure 2 MOM object components. 

The domain of an object is characterized by its parental identifier. The keyword deLpar is used 
by the definitions as a pronoun for an object's parent and the keyword root is used as a pronoun 
for the root object. 

A MOM object is given an atomic name to serve as its local identifier (lid), e.g., Obj1 . This 
name is prepended to its parental identifier, e.g. [ [out, Obit# ],[ [out, root# ], nil# ]# J to 
create a unique global identifier for the object. All MOM systems have only one root object. 
Along with identifiers, an object must contain method bodies, method arbiters, method interfaces 
and message handlers. Messages also reside in objects, but their existence is more transitory. The 
core MOM components are shown in Figure 2. 

4.3 MOM Messages 

A MOM message is a persistent entity in the system. All messages exist until they are con­
sumed by a message handler, i.e., all communication is asynchronous. Messages are categorized 
as requests, replies or acknowledgements. They are defined using a composition of subagents and 
patterns following modular design principles. The ROC definition of MOM messages is given 
below. The message content definition, i.e. the definition for M sg_Body, is omitted to simplify 
the presentation. 

M sg(lidMsg, pid, src, dest, c.body) [ [lidMsg#,pid], [msg, msg_h], 

[src#, dest#, M sg.Body#J#rnil 
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Figure 3 Messaging in MOM. 

4.4 Message Handlers 

A message handler processes incoming messages and marshalls object requests. It forms the basis 
for an object's identity as it controls the distribution of requests and replies for a tightly bound 
set of agents. The creation and acceptance of messages by a message handler (M_HndlrA) is 
illustrated in Figure 3. 

An incoming message can be turned into a method invocation or delegated to another object. 
By delegating a message, a message handler consumes the old message and creates a new one in 
an adjacent domain. For example, the root domain's message handler M _H ndlrroot consumes a 
reply message M sg';!..root and creates a new message M sg;::t .... A in object A's domain. 

Error handling is incorporated in MOM object message handlers: If the destination of the 
message does not exist, the originating message handler must accept the message. A MOM object's 
methods can issue a request to a message handler which must then be turned into a message for 
delivery. The message handler is designed as a complex ROC agent, comprising many subagents 
performing specific tasks. The definition of the MOM message handler is given below. 

M sg_handler(pid) 

-+ 

-+ 

( [ [ LIDMs9?,pid),[msg,msg_b],[SRC?,nil,BODY?]] 
(Rcv_M sg@BO DY # & M sg_handler(pid))) 

( [ [ LIDMs9?,pid),[msg,msg_b],CONTENT?] 
(Dlg..Msg@CONTENT# & Msg_handler(pid))) 



A framework for high assurance security of distributed objects Ill 

OBJECT 

Figure 4 MOM method scheme 

In the definition above, the ROC agent Dlg_Msg sends a copy of the message to the next domain 
in the message's path in the event that it has not reached its final destination. The agent Rcv_Msg 
handles the situation where a method invocation is requested by exposing a method invocation 
request pattern. The definitions of Dlg_Msg and Rcv_Msg are omitted for brevity. 

4.5 Method Agents 

A method invocation request created by a message handler is received by a method interface 
(see Figure 4). The method interface can be used to synchronize method access. It creates a 
method arbiter when a method invocation occurs. The method arbiter handles reply, request and 
acknowledgement communications for individual method invocations. 

A MOM method performs operations on primitive data types (e.g., integers, strings, arrays, 
etc.) and/or issues other method invocation requests. The method interface is responsible for 
accepting invocation communications from the message handler which spawn method arbiters, 
one for each invocation. The method arbiter then spawns a method body. The method interface 
is used for controlling access to individual methods. A unique method interface exists for each 
method in an object. 

Each method invocation spawns a new method body and arbiter. However, the method inter­
face is a singular persistent entity. The completion of an invocation results in a reply from the 
method to the method arbiter. This reply can be propagated back to the initiating object to im­
plement function calls. Agents Method_Arbiter and Method_lnterface are defined below. Subagent 
definitions are omitted to simplify the presentation. 
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Figure 5 Method invocation. 

Method_Arbiter (lidMA,pid) := 

[LI DMH, PI?, P2?, ... , REPLYTO?, ACKTO?]-t 
( S end_Ack@[ AC KTO#] 

& lidMB\ Method_Body(lidMB,pid)@[ lidMA#, PI#, P2#, ... ] 

& (M A-Return+ M A_Call) 

Method_/nter face(lidMJ,pid, Method..Body, Method_N ame, Type_I, Type.2, ... ) := 

( ( [LIDMH?,pid], (msg..h, MI], 
[method_name, [ [type_I, PI?], [type.2, P2?], ... ] REPLYTO?, ACKTO?]]-+ 

(Method_/nter face(lidMJ,pid, Method..Body, Method_N ame, Type_I, Type.2, ... ) 

& lidMA \M ethod_Arbiter(lidMA, pid)@[ Ll DMH#, PI#, P2#, ... , 

REPLYTO#, ACKTO#] 

Method bodies can also be modeled by ROC. The only restriction is that they must strictly 
conform with the communication interface specified by the method interface, i.e., they must be 
properly encapsulated. A method body can request a service from a foreign object, i.e., it can 
invoke a method in a foreign object. Method invocation is illustrated in Figure 5. 

To return from an invocation, a method must return a value, which it does by means of 
return_value. A method body can invoke another method with calLmethod. The method body 
must create a communication channel for a method call by offering channel\calLmethod( channel, 
gid,method_name,params). The method body then awaits a reply, exposing a pattern of the form 
(channel, RETURN_ VAL?] for input into the method body. 
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5 DISTRIBUTED OBJECT SECURITY 

This section clarifies how the layered MOOSE architecture is used to achieve high assurance se­
curity in heterogeneous distributed systems. The focus is on secure interoperability of distributed 
objects. The following subsections summarize the main issues pertaining to secure interoperability 
and describe the MOOSE verification framework for creating high assurance secure interoperation 
of distributed objects. 

5.1 Secure Interoperability 

Seamless and secure interoperation will be the underlying theme of future computer systems. 
Many Internetworked systems have some degree of transparent interoperation, but few, if any, 
can seamlessly and securely interoperate with each other. For two systems (or components) to 
interoperate, each must be capable of sending messages that the other can understand and process. 
Secure interoperation is the cornerstone of distributed object security. It mandates that systems 
send and understand messages without the potential for violating other systems' security policies. 
These security policies may be specified using natural language or, better yet, formal semantics. 

New problems arise when components are distributed amongst heterogeneous systems. Each 
system might have a different security policy and/or model. When this happens, secure interoper­
ation requires policy negotiation. The negotiation process establishes a consensus security policy 
for interoperation from the competing policies. Obviously, the negotiated policy must satisfy the 
general security requirements of each of the involved parties. 

Policy negotiation can be quite complicated when models are non-comparable. The difficulty 
lies in achieving a common semantic basis for subjects and objects. Consider, for example, the 
problem of reconciling two arbitrary sensitive information labeling schemes. Even if a common 
labeling scheme exists, no guarantees can be made that what is secret in one system should also 
be secret in the other system. This example only addresses access control. To achieve secure 
interoperation, each security service offered by interoperable components must be negotiated to 
obtain a consensus. 

The concern for distributed object interoperability has produced various management schemes, 
including OMG's CORBA (Object Management Group, 1991; Mowbray and Zahavi, 1995) and 
OSF's DCE (Open Systems Foundation, 1992; Rosenberry, Kenney and Fisher, 1993). These 
schemes allow architecture-compliant objects and systems to interoperate seamlessly. However, the 
impetus to provide practical solutions has caused security to take a back seat to interoperability. 
Furthermore, security models and mechanisms for these architectures are hindered by a lack 
of formal semantics. This often results in vague, ambiguous specifications that only limit high 
assurance performance. Our plan to provide CORBA, DCE and other emerging architectures 
with a common formal foundation in MOOSE is an important first step to achieving seamless 
and secure interoperation in heterogeneous distributed object systems. 

5.2 Verification Framework 

The operational framework of MOOSE, consisting of execution model layers with formal oper­
ational semantics, has a companion verification framework used for reasoning about the system 
(Figure 6). The foundation of the operational framework is the ROC process calculus for concur-



114 Part Four Object-Oriented Security 

Figure 6 HOL semantic hierarchy and operational framework. 

rent objects. Each successive layer is given a denotational semantics using the immediately lower 
layer as a semantic algebra. This scheme gives formal operational semantics to systems in each 
layer. 

Using a formal operational semantics alone limits the potential for system specification and 
verification. Certain system properties, most notably simulation and bisimulation properties, can 
be proved with formal operational semantics. Still, operational semantics are constrained because 
they must be executable. Axiomatic semantics (logics) do not suffer from this limitation. They 
are more expressive and better suited to specification and verification. 

ROC semantics is easily axiomatized to permit reasoning by an interactive HOL theorem prover 
(Melham, 1992). The HOL system provides a suitable environment for reasoning about computa­
tional systems (Gordon and Melham, 1993). It uses a higher order logic based on Church's logic 
of types (Church, 1940) which extends predicate logic by adding types and letting variables range 
over functions. 

The axiomatization of ROC semantics into higher order logic is achieved by a mechanization 
processs. A purely definitional approach ("deep embedding") is adopted in which the ROC agent 
system is expressed as a defined type within the logic. The principal benefit of this approach is 
that no new axioms need to be introduced into the logic. Only axioms that come directly from 
ROC are used. 

HOL semantics for ROC brings us one step closer to distributed application reasoning. Rea­
soning about these complex systems at the ROC level, however, is not practical. Therefore, a 
hierarchical system of HOL semantics is used for reasoning about distributed applications. This 
system mirrors the layered operational framework. 

As with the operational framework, the layers in the verification framework begin with the 
foundational ROC process calculus. The bottom layer contains the HOL semantics created by 
the mechanization of ROC. It also contains derived semantics about ROC and systems built from 
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it. The next layer associated with the Meta-Object Model (MOM) contains theorems about MOM 
and MOM systems. These theorems are constructed using the denotational semantics of MOM 
and the HOL theorems in the previous layer. 

Obviously, the kinds of theorems contained in each layer will affect the ability to derive more 
theorems at higher levels. As more abstract object models tend to emerge from compositions of 
objects, it will be necessary to focus on theorems that respect object composition. 

The relationship of the HOL semantic hierarchy with the operational framework is illustrated in 
Figure 6. Practical application verification can be accomplished only by reasoning at higher levels. 
The HOL semantic hierarchy used in MOOSE is a bootstrapping approach that is particularly 
suited to application-level reasoning. 

5.3 High Assurance Security 

High assurance security must consider security in all its forms: security mechanisms, functions, 
services, models and policies. A security mechanism implements security functionality that might 
be offered as part of some security service, e.g., encryption as part of a secure communication 
service. A configuration of security services implements a security model which adheres to a 
security policy. A security policy specifies rules pertaining to the use and availability of sensitive 
information. Security flaws could exist anywhere in this infrastructure. 

The key to achieving high assurance security for distributed objects is the pervasive application 
of formal methods. The main problem facing secure interoperation is the lack of a common seman­
tic foundation for heterogeneous systems. Formal methods provide a foundation that facilitates 
transparent and reliably secure interoperation. The verification framework described above is a 
viable methodology for the pervasive application of formal methods to system verification. 

The two parts to high assurance security are "design verification," i.e., proving that a system's 
formal specification satisfies its security policy's formal specification, and "implementation veri­
fication," i.e., proving that a system's implementation satisfies its formal specification. Defining 
security mechanisms within the operational framework makes implementation verification possi­
ble. Services constructed from security mechanisms may be endowed with formal semantics, also 
permitting implementation verification. 

At higher levels, security models may be given abstract ROC semantics while security policies 
may be expressed using HOL. This permits design verification of security models. With this 
combination of design and implementation verification, a distributed system can be shown to 
satisfy a formal security policy. 

Figure 7 illustrates the security verification methodology. Note that the security services offered 
by DCE and CORBA object request brokers (ORBs) occupy a semantic layer above the Meta­
Object Model (MOM). Theorems can be derived about these security services and the object 
models that use them. The new theorems allow the derivation of additional security-related the­
orems for distributed applications which can be used to verify key properties of system security 
policies. 

Two components that are in systems employing different security policies, but that adopt the 
rigorous verification methodology above, are candidates for computer-assisted policy negotiation. 
The framework assists this process by providing a common semantics in which disparate models 
can reconcile clearance and sensitivity equivalences. Furthermore, there is now a formal basis 
for comparing security services, so that a negotiating system can specify all the services that a 
sensitive object will require. 
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Figure 7. Security verification methodology. 

6 COMPARISON WITH OTHER APPROACHES 

lnteroperability is not a new concept, although the advent of object technology has drastically 
changed the computer system landscape. The clean interfaces provided by objects have raised 
expectations, and rightfully so, that heterogeneous software components should interoperate se­
curely. Distributed object architectures address secure interoperability, but in an informal way 
that can pose hazards when dealing with other architectures. 

Work in verifiably secure distributed systems has provided powerful methodologies for highly 
integrated system verification, but these methodologies have yet to be applied to the secure 
interoperation of distributed objects. This section summarizes the major efforts in the areas of 
distributed object interoperation and verifiably secure distributed systems, and relates them to 
on-going work in the MOOSE project. 

6.1 Distributed Object Architectures 

The need for secure interoperation has produced various "standard" architectures, the most 
prominent being OMG's CORBA (Open Systems Foundation, 1992; Rosenberry, Kenney and 
Fisher, 1993) and OSF's DCE (Open Systems Foundation, 1992; Rosenberry, Kenney and Fisher, 
1993). These schemes allow compliant objects and systems to interoperate. Security is considered 
in CORBA and DCE, but is applied in a somewhat ad hoc manner. 

CORBA provides a standard architecture for distributed object interaction (Open Systems 
Foundation, 1992; Rosenberry, Kenney and Fisher, 1993). However, it is not a panacea for secure 
distributed object interoperation. While it offers a security policy specification, CORBA lacks a 
formal semantics. The Distributed Computing Environment (DCE) addresses interoperability 
using middleware that provides a common environment for heterogeneous computer systems 
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(Open Systems Foundation, 1992; Rosenberry, Kenney and Fisher, 1993). DCE provides security 
mechanisms, but an inadequate formal foundation. 

Newer object architectures which are continuing to emerge only make object interoperation 
more complicated. In fact, they create the new problem of securely interoperable standards. 
These schemes offer security mechanisms, models, and policies, most of them without any formal 
foundation and certainly no common foundation. There can be no guarantee that heterogeneous 
distributed object management schemes will interoperate securely (if at all) without a common 
formal foundation. 

CORBA and DCE will continue to evolve (and co-exist), and new distributed object man­
agement schemes will proliferate. Only a handful of these schemes will likely dominate, but the 
heterogeneity and ad hoc nature of the underlying models and standards will make seamless and 
secure interoperability virtually impossible. The common formal foundation provided by MOOSE 
sets the stage for a more general notion of secure interoperability in heterogeneous distributed 
object systems. 

6.2 Verifiably Secure Distributed Systems 

Work in verifiably secure distributed systems applies formal methods to abstract models of dis­
tributed systems. This is usually done by modeling security services and execution models of 
distributed systems with formal semantics and providing formal security policy specifications. If 
the formal semantics of the service satisfies the policy specification, then the system is proven to 
be secure. 

The Silo project (Zhang, eta/., 1994, 1995) presents a useful hierarchical verification methodol­
ogy for distributed systems based on formal methods (Bevier, eta/., 1989; Alves-Foss and Levitt, 
1991). The methodology prescribes a semantic layer for each computational substrate, from the 
hardware level up to the application level. Each layer can be formally specified as an abstract 
machine defined from the layer beneath it. MOOSE advances the Silo effort by using a pro­
cess calculus tailored to distributed and concurrent objects as the foundation for its operational 
framework. 

Theoretical work on verifiably secure distributed systems explores formalisms for computer 
security and new methods for reasoning about distributed systems. Researchers at NRL's Center 
for High Assurance Computer Systems (Maclean and Meadows, 1989; Maclean, 1990) have pro­
posed practical methods for formal security model specification based on the formal foundations 
of computer security. In particular, they promote compositional reasoning as a critical technology 
for efficient distributed system verification. Related research by Gong and Qian at SRI (Gong and 
Qian, 1996) has focused on the theoretical implications of secure interoperability between hetero­
geneous systems. This work also espouses the principle of compositional reasoning for distributed 
systems and examines the complexity of various reasoning techniques applied to heterogeneous 
distributed systems. 

These research efforts and others in the area of verifiably secure distributed systems have 
developed important techniques for achieving high assurance distributed system security. The 
MOOSE project applies them to the domain of distributed objects. 
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7 CONCLUSIONS 

The operational and verification frameworks of MOOSE provide a powerful methodology for de­
veloping heterogeneous distributed object systems with high assurance secure interoperability. 
The main features of this work are its use of a hierarchical proof system and ROC, a process cal­
culus tailored to concurrent objects which gives each semantic layer in the operational framework 
a formal foundation. The verification framework contains higher order logic (HOL) semantics for 
each operational semantic layer. Axiomatic semantics for ROC are derived through a mechaniza­
tion of ROC into HOL. 

The frameworks are readily applied to high assurance secure interoperability by modeling var­
ious security mechanisms, services, models and policies within the framework. Security policies 
are given HOL semantics, while HOL semantics for security model implementations are derived 
from the frameworks. This approach facilitates the verification of security policy implementations 
and policy negotiations. 

Current work on the MOOSE project involves constructing the upper layers of the frameworks. 
For the operational framework, this entails modeling various programming languages, security 
mechanisms and services and popular distributed object architectures, e.g., CORBA and DCE. 
An implementation for the operational framework to run on heterogeneous UNIX platforms is 
planned. This will rely on a virtual machine (ROCVM) that efficiently executes ROC expressions. 

Secure interoperation between heterogeneous distributed objects is critical to current and future 
computer systems, mandating high assurance performance. Formal methods provide the technol­
ogy for high assurance computing. The MOOSE framework allows the practical application of 
formal methods to high assurance computing in heterogeneous distributed systems. 
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