
9

Marketing programming to
nonprogrammers

Peter Juliff
School of Management Information Systems
Faculty of Business and Law, Deakin University, Burwood VIC
3I25 Australia, e-mail: pjuliff@deakin.edu.au

Abstract
Based on a case study this paper looks at the problems associated with stimulating
the involvement of noninformatics students in academic units related to software
development. It provides advice, drawn from experience, on the means by which
such students can be attracted to programming, can achieve a professional level of
competence and can be encouraged to pursue further information technology
studies.

Keywords
Programming languages, information bases, interaction and presentation,
economics and business administration, noninformatics majors, curriculum (start),
curriculum (core)

1 CASE STUDY AS BACKGROUND

Context
This paper draws on the lessons learned in the running of the Bachelor of
Commerce (Business Computing) programme at Deakin University. Deakin is
situated in the state of Victoria in Australia and has an undergraduate enrolment of
some 26.000 sttJdents, half of whom are studying in distance education mode. The
Bachelor of Commerce is the generic degree offered by the Faculty of Business and
Law and has an enrolment of approximately 6000 students distributed over three
campuses. Five years ago Deakin amalgamated with Victoria College. This was one

Informatics in Higher Education F. Mulder & T. van Weerts (Eds.)
© 1998 IFIP. Published by Chapman & Hall

74 Part Two Full Papers

in a series of such amalgamations in which Colleges/Institutes of Advanced
Education (polytechnics) were combined with existing universities to form larger
institutions and eliminate the so-called 'binary' education system which had existed
up to that time.

Deakin IT studies and subjects
At Deakin, prior to this amalgamation, business (and any other noncomputing)
students who wished to take information technology (IT) studies were obliged to do
so by enrolling in subjects offered by the Department of Computing and
Mathematics. The Commerce degree had a compulsory 'Introduction to computing'
subject which was, of course, taught by the computer scientists. The Computing
department offeresJ a small number of IT subjects, including programming, which it
hoped would attract commerce students beyond their compulsory first year subject.
The enrolment in these units was negligible. When asked about the reasons for the
reluctance to progress to further IT studies, the commerce students gave answers
such as:
• 'it all sounds like rocket science';
• 'they put us in with the computer science students and then only lecture to

them';
• 'we can't see any reason to have to study programming when we are going into

a business career'.

Victoria College IT stream
At Victoria College, prior to the amalgamation, there was a viable computing
stream in the Bachelor of Business degree which had a reputation for producing
excellent commercial IT graduates in the traditional areas of systems analysis and
design, software development and database management. These studies ran through
the three years of the degree and attracted a large number of noncomputing students
into the mainstream computing subjects as well as specialist units designed with
such students in mind.

Contrasting scenarios
The amalgamation of the two institutions brought these two contrasting scenarios
into conflict. The first act of the computer scientists was to contend that all
computing studies of any kind within the amalgamated institution should be taught
by their department. In this they failed and two separate IT academic departments
were established: the School of Computing and Mathematics in the Faculty of
Science and Technology and the School of Management Information Systems in
the Faculty of Management - later renamed the Faculty of Business and Law.
Having lost the first round the computer scientists then claimed that the teaching of
programming was the exclusive province of computer scientists. This they won. By
executive fiat the university decided that the School of Management Information
Systems was to discontinue its Software Development major programme and that,
henceforth, any commerce student wishing to study software must be taught within

Marketing programming to nonprogrammers 75

computer science subjects. This meant a reversion to the prior Deakin model which
had demonstrably been a dismal failure over the years prior to amalgamation.

This paper is the story of how, two years later, the School of Management
Information Systems has more students enrolled in software development units than
the School of Computing and Mathematics and attracts a large number of computer
science students who follow the same units. The School of MIS does this without
having a single 'programming' unit in its curriculum.

2 WHY TEACH PROGRAMMING TO NONINFORMATICS
STUDENTS?

There are several reasons why students who do not necessarily see themselves as
being computer scientists or as someone in a similar technical role, should seriously
consider pursuing some IT studies. Not the least reason is that graduates often
gravitate to positions which they never even contemplated during the tenure of their
studies. Business graduates may well find themselves more involved in the
technology of their occupation than in its commerce. Redmond-Pyle (1996) draws
attention to changes in skill requirements of system developers and to the growing
distinction between component builders, likely to remain computer science
graduates, and solution providers who must understand the application domain. In
this context of producing solution providers some of the major reasons for the
teaching of software development skills are listed below.

To understand the nature of the operations of IT systems
By necessity the development of programs brings students into contact with all of
the components of a computer system. It forces them to appreciate the tasks
performed by operating systems and other of the more arcane components of a
typical production system, such as utility programs, configuration control
procedures, the functioning of internal memory and the nature of different data
types and structures. All of these can be covered at a conceptual level in other
subject areas, but the process of actually implementing a software system requires
them to be dealt with at an operational level and, therefore, makes them harder to
ignore.

To inject reality into other areas of the IT curriculum
One of the main problems with teaching the modus operandi of IT systems in
subjects which are of the nature of analysis and design, is its presentation as a body
of theoretical knowledge and skills which produces a blueprint from which an IT
system will subsequently be implemented. Many of the problems in the design of
any IT system, in the classroom or in the profession, only emerge in the process of
the system's implementation. If students are required to take a design document and
to actually bring the design to fruition as an operational system, they have the

76 Part Two Full Papers

opportunity to appreciate many of the problems which are unforeseen at design
time.

The inherent nature of the task itself
I would direct readers to Fred Brooks' (1972) seminal work 'The Mythical Man­
Month' in which he extols 'The Joys of the Craft' as being:
• 'the sheer joy of making things';
• 'the pleasure of making things which are useful to other people';
• 'the fascination of fashioning complex objects ... and watching them work';
• 'the joy of always learning';
• 'the delight in working in such a tractable medium'.

Brooks' statement that 'programming is fun because it gratifies creative longings
built deep within us and delights sensibilities we have in common with all men' is
as valid today as it was twenty-five years ago when the book was written.

To acquire skills in project management
Another of the most significant long-term problems in the implementation of IT
systems is that of project management: the consequent difficulties in estimating the
time for a software project and then monitoring the progress of that project. As
always, these topics can be covered at a conceptual and descriptive level, but are
much more readily appreciated and understood after the students have themselves
been required to produce a software system in a specified time and with limited
resources. This aspect of software development is best learned by having the
students working in teams and reporting to a supervisor in an environment as close
as possible to a working situation.

Even if the students do not themselves go on to be software developers, this
aspect of their studies will equip them with an insight into the processes involved
and better enable them to operate in a supervisory capacity if required.

The inherent training in problem solving
One of the most pervasive themes running through all IT studies is that of problem
solving. Nowhere is this more essential that in the design and implementation of
software. There are few other areas of human endeavour which are more insistent in
their emphasis on the skills of problem analysis, the subsequent decomposition of
large problems into their constituent smaller components and the rigorous
specification of the interaction between those components. The skills acquired in
the activity of algorithm design are transferable to almost all other facets of
graduates' subsequent employment.

The computer is also a harsh mistress. There is a correct answer to a problem
and the software either arrives at that solution or it does not. The program is
therefore demonstrably right or wrong. In a descriptive discipline a student may be
required to produce an 'acceptable' solution. In programming the student must
produce a 'correct' solution.

Marketing programming to nonprogrammers 77

The importance of integrating IT studies with non-IT disciplines
Given the all-pervasive nature of information technology in today's society it is
difficult to imagine a career pursued by a graduate which does not involve a daily
interaction with some aspect of IT within the working environment. The corollary
to this is that the more comfortable graduates are with IT systems as a result of their
undergraduate studies, the more opportunities will be open to them in their working
life. If the study of software development can be made attractive to noncomputing
as well as computing students, it provides an excellent vehicle to give all
undergraduates a feeling for all of the design and implementation aspects of the
type of software systems with which they will interact.

An appreciation of the complexities of human-computer interaction
An old proverb runs: 'I hear and I forget; I see and I remember; I do and I
understand'. Given the availability of system development products such as Visual
Basic and Delphi, it is not a difficult matter to have students put together a (simple)
software system and to experiment with a variety of methods of presenting
information on a screen and a variety of methods of soliciting interaction with a
user. Despite lengthy lectures on the principles of graphical user interface (GUI)
design, nothing brings home the problems of a clumsy human-computer interaction
model like having to use it and demonstrate its operation to peers and supervisors.

3 WHAT IS THE BEST WAY TO TEACH PROGRAMMING?

There is an advertisement on Australian television for a breakfast cereal which has
as one of its thematic lines: 'If you don't tell them that it's good for them, they'll
eat it by the boxfull'. I have come to believe that this is the essential theme for
marketing programming to noninformatics students. The surest way to alienate
students who are not primarily enrolled for computer science curricula (and even
some of those who are), from software subjects is to devise and describe a subject
in the following style:

Computer Programming 101
A detailed study of algorithm design; multi-level decomposition; data typing
and scope rules; logic constructs enabling structured programming and
information hiding; abstract data structures and recursive processing
techniques.

All but the committed student read these words and immediately think 'this is
rocket science'.

Thirty years ago most of us who were teaching programming, were starting at
the level of machine code or assembler language. When the students had mastered
the intricacies of instruction addressing modes, indirect addresses, the binary
representation of mantissas and exponents, the fetch-decode-execute cycle and the

78 Part Two Full Papers

conversion of relative to absolute addresses, we would allow them to move to a
compiler language such as Algol, FORTRAN, COBOL or PUI. While we may
harbour a ~lief that this is still the way it should be done, the students do not
believe us and they will not enrol for the subjects. The major factors in attracting
noninformatics students to software development subjects are listed below.

Make the syllabus sound relevant, interesting and, above all, achievable
Compare the following unit description with the one above:

Systems Implementation 101
The aim of this subject is to develop computer based information systems
which run in a Windows environment and have the same professional look and
feel as other contemporary applications. You will become familiar with the
techniques needed to design screens which interact with their users, including
the use of the mouse, drop-down menus, message boxes and command buttons.
At the end of this subject you will have a fully executing commercial computer
application which will run on any PC and which may be demonstrated to a
potential user (or employer).

Note that the subject is not called 'programming', although students will be
learning to write programs. It makes no mention of logic constructs or data typing
and scope rules, yet students will learn all of these. It emphasizes the point that the
outcome is the production of software products similar to those in daily use in the
business environment.

Provide students with instant gratification
The scenario of thirty years ago which was mentioned above, also included
compilation turnaround times measured in hours, if not days. It was not uncommon
to have a week elapse between tests of an executable program. With the current PC
environment students can develop a system producing a procedure at a time with
instantaneous compilation or interpretation, and testing. At the end of a two-hour
tutorial a student can emerge with a small yet complete software application which
may then be expanded and enhanced into an impressive product. At the end of a
day at kindergarten, youngsters like to have a painting to take home to show the
family and to have it displayed on the door of the refrigerator. What makes us think
that undergraduates are any different?

Do not destroy the students' spontaneity
We are all aware that there are rules to follow in writing quality software. There are
two ends of a continuum in the methods used in teaching programming to students.
At one end there is the approach which, allowing students to write sloppy code,
instils bad habits that may never be eradicated. This approach dictates that every
program, no matter how trivial, must be written with the same attention to the
precepts of good software design as a major safety-critical application. Time has
led me to believe that this is a mistake. Students are so terrified of incurring the

Marketing programming to nonprogrammers 79

lecturer's wrath over poor style that all of the enjoyment of just solving the problem
is destroyed.

The other end of the continuum is a 'laissez faire' approach to the writing of
small programs. A 'Nike methodology': just do it! Concentrate on the problem and
the excitement of arriving at a working solution. When the students then realize that
this is achievable, they can be convinced that a lack of discipline which was not
overly important in a 20 line program would be a disaster in a 200 or 2000 line
program. When they realize that programming is something with which they can
cope and which they can enjoy, they will be prepared to learn how to do it properly.

Produce software with user interaction and a professional look and feel
How many software assignments have we generated for students which involved
the construction and manipulation of complex internal data structures and involved
little or no user interaction? While we may be convinced of the inherent value of
being able to update a number of complex master files with a transaction string
which needs conversion from variable to fixed field format using a state transition
table to direct the logic, or the implementation of a depth-first search of a tree
structure, the problem is that the students write a lot of code and see almost nothing
happening for their efforts. We expect them to achieve their gratification from the
knowledge that the job was done correctly.

This is not the type of motivation likely to appeal to noninformatics students.
Such students need to feel that they are constructing software which is like the
application software which they will encounter in their chosen discipline. They are
not interested in the internals so much as the interaction with the professional user.
The internal operations must be communicated subliminally. If we can attract them
with the promise of relevance, we have the chance of extending their horizons to
further, perhaps less inherently interesting areas once they realize that they can
achieve in this field of endeavour.

4 WHAT TO USE AS A VEHICLE FOR SOFTWARE
DEVELOPMENT?

First programming language
An issue which is guaranteed to generate a debate among teachers of programming,
is that of the first programming language. Over the past thirty years I have used as
an introductory language: machine code, Ecole, assembler languages, FORTRAN,
BASIC, Pascal, COBOL, Scheme and, most recently, Visual Basic. I can name
other institutions which are using Turing, Modula 2, Miranda, C or Delphi for this
introduction. The majority of academic institutions in recent years have used Pascal
orCas reported by Redmond-Pyle (1996), Jones and Pearson (1993), Morton and
Norgaard (1993) and Furber (1992).

80 Part Two Full Papers

Does it matter?
Is it any more important than which car you first learn to drive? I believe that the
answer is that it does matter, particularly to noninformatics students. Regardless of
the merits of various models of cars I do not believe that any of us would advocate
using a semi-trailer or a formula-one racing car to teach a youngster to drive. These
vehicles - like some of the introductory programming languages used - require too
much expertise even for the simplest of operations and are not representative of
what 90% of the exercise is about. For those advocating the use of object-oriented
languages as initial learning tools, Lee and Pennington (1994) point out the
difficulty normally experienced by novices in coming to grips with 0-0 techniques
and the likely resultant clouding of the experience of learning to program.

Visual Basic and beyond
Cox and Clark (1992) argue convincingly for Visual Basic as a first language due
to its ability to be application oriented rather than syntax-driven. The choice to use
Visual Basic as the introductory programming language in Deakin's business
computing degree has resulted in an increase of software development enrolments
from a total of around 100 two years ago to approximately 500 in 1997. And
equally important, this increase is resulting in a commensurate flow-on of students
into other information systems units. It is also attracting a large number of
computer science students who are looking to increase their skills and exposure to
GUI/Windows programming.

Having introduced students to software development via Visual Basic, they are
led on to database design by writing applications which require them to interact
with and update Access databases, and to further programming using COBOL for
the batch processing of files which the students have created using their Visual
Basic applications as the medium for data input.

At the end of this two semester unit software sequence, the students have
developed and implemented applications which:
• use Windows GUI-applications and require an understanding of the

methodology of designing event-driven software;
• use logic/procedure-driven software requiring a structured design

methodology;
• manipulate relational databases;
• update commercially oriented files of indexed and random organizations;
• create a hybrid system using mutually acceptable file and data structures to

communicate between programs originally written in different languages;
• are developed in teams using professional documentation standards and project

management practices;
• have a professional look-and-feel similar to marketplace software likely to be

encountered in the students' working environment.

It must also be remembered that most of the students would not consider
themselves primarily as 'computing' students.

Marketing programming to nonprogrammers 81

The attraction of Visual Basic is that:
• much of the activity in an application can be achieved by writing very few lines

of code;
• the syntax is simple and intuitive while still enabling the teaching of rigorous

software style;
• the programming environment is easy to use and enables the rapid

development of applications which contain all the features of contemporary
applications;

• it provides a bridge to other Microsoft products, providing students with a
transportable skill;

• not the least importantly: it is a recognized skill in the employment market.

5 CONCLUSION

The essential aspects of marketing programming to nonprograrnmers lie in making
the task enjoyable, obviously achievable and professionally relevant. To this end
those of us who are pursuing this goal must choose a delivery vehicle and
applications which achieve a balance. On the one hand encouraging a sufficiently
rigorous approach to software development so as to satisfy our own professional
standards. And on the other hand allowing students some spontaneity in the
exercise and their recognition that what they are acquiring are useful knowledge
and skills which will be relevant to their chosen, noncomputing career.

6 REFERENCES

Brooks, F.P. Jr (1972) The Mythical Man-Month. Addison-Wesley, Reading,
Massachusetts.

Cox, K. and Clark, D. (1994) Computing modules that empower students.
Computers and Education, 23 (4), 277-284.

Furber, D. (1992) A survey of teaching programming to computing undergraduates
in UK universities and polytechnics. Computer Journal, 35, 550-553.

Jones, J. and Pearson, E. (1993) An informal survey of initial teaching languages in
UK university departments of computer science. University Computing, 15,
54-57.

Lee, A. and Pennington, N. (1994) The effects of paradigm on cognitive activities
in design. International Journal of Human-Computer Studies, 40, 577-601.

Morton, L. and Norgaard, N. (1993) A survey of programming languages in CS
programs. S/GCSE Bulletin, 25 (2), 9-11.

Redmond-Pyle, D. (1996) Software development methods and tools: some trends
and issues. Software Engineering Journal, March 1996, 99-103.

82 Part Two Full Papers

7 BIOGRAPHY

Peter Juliff is professor of management information systems at Deakin University,
Australia. Immediately prior to this, he was head of the Department of Software
Development at Monash University and has held several other senior academic
appointments. He has spent over 30 years as an IT academic and practitioner, is the
author of several books on computer science and software design and has
conducted IT programs in Singapore, Malaysia and China. He is a Fellow of the
Australian Computer Society and its chief examiner. He is the chair of IFIP
Working Group 3.4 on vocational and professional IT education.

