
5

A quality-intensive approach to
software development

Tervonen I.*, Kokkoniemi J. * and Smith G.**
* Department of Information Processing Science, University of Oulu,
P. 0. Box 333, FIN-90571 Oulu, Finland,
phone: +358 8 553 1908, fax: +358 8 553 1890, e-mail: tervo@rieska.oulu.fi
**Department of Computer Science, University of Manchester, P.O. Box 88,
Manchester, M60 1 QD, UK

Abstract
This paper addresses the problem of quality-intensive software development, which invites a
software engineer to evaluate the software from the quality viewpoint. Our approach is based
on the GRCM (goal-rule-checklist-metric) model and on the use of three supporting tools, a
graphical editor, the QuestMap tool and the Quality Training tool. We also illustrate our
approach and the use of supporting tools in an example of a beer pump system.

Keywords
Quality model, quality goals, software development, organizational memory, CASE tool

1 INTRODUCTION

It is largely accepted that quality is the most important objective in software development. A
software product of poor quality does not provide any benefit for its producer, but requires
continuous correction, which entails a wasteful use of resources. The problem is that although
we have quality models (e.g. the SQM model (McCall et al., 1977)) and standards (e.g. ISO
9126 (ISO, 1990)) which help us to set goals for a software product in terms of quality factors,
we do not have an accepted procedure for reaching these goals in practice, i.e. for building high
quality software.

This paper presents an approach to quality-intensive software development which invites
and "forces" a software engineer to evaluate his artifacts (descriptions at different levels of
abstraction and prototypes) from the quality viewpoint. We thus follow the statement of Crosby
(1996) "Quality has to be caused not controlled", although our approach also provides an
opportunity to inspect the artifacts. The present approach is based on our earlier experience and
research regarding the QDA approach (Tervonen, 1994) and software design and inspection

D. Gritzalis (ed.), Reliability, Quality and Safety of Software-Intensive Systems
© Springer Science+Business Media Dordrecht 1997

A quality-intensive approach to software development 55

(Tervonen, 1996), where we have used a "GRCM (goal-rule-checklist-metric)" model to
provide the structure for organizing quality information.

We first define our approach based on the GRCM model and then introduce the three tools
used in it. Finally we illustrate our approach and the use of supporting tools in an example of a
beer pump system.

2 THE QUALITY-INTENSIVE APPROACH

The GRCM model presented here provides a limited but appropriate common background for
participants in software development and inspection. As depicted in Figure 1, the general
quality goals are prioritized for a specific project and ultimate objectives for software
development are set. The origin of the GRCM model lies in its hierarchy of quality models (cf.
McCall et al., 1977). Although it is based on the SQM synthesis model (due to the numerous
changes made to the Software Quality Metrics model (McCall et al., 1977), we call it a SQM
synthesis), we also recognize its relation to the ISO 9126 standard (ISO, 1990).

Quality goals
fora given

project

Figure 1 The quality-intensive approach based on the GRCM model.

GRCM
model
hand­
book

56 Part Two Software Quality

The GRCM model has three links with the SQM synthesis, the goals correspond to factors
(e.g. usability) and the rules to criteria (e.g. ease of use), and the metrics support quality
measurement in both models. The goals are broken down into rules and further into checklists.
The aim of the rules is to guide software engineers in software design, while checklists are
generated from specific rules and used as guidelines by inspectors, to help of them check that
these rules have been followed.

3 A TRIAD OF TOOLS

The triad of supporting tools consists of a type of graphical editor, QuestMap™ as a problem
solving tool and the Quality Training tool as a supporting tool for the organizational memory.
The interaction between the tools is shown in Figure 2. The Quality Training tool acts as a
central tool and provides an introduction to quality concepts. It also supports the organizational
memory by recording design solutions and their justifications for further reuse. As depicted in
Figure 2, we record snapshots from the graphical editor and snapshots and discussions from
the QuestMap tool. The organizational memory consists of collected records, and thus contains
the design principles and practices of a specific company. The definitions, snapshots and
QuestMap records are stored in the database and are accessed from the Quality Training tool
and used for argumentation and learning purposes, etc.

Quality Definitions

I
Argumentation -- Training Database
Discussions Tool Examples

c
"' .g 0 5 ~ Zl c ..c p. " "' "' E !;-c
Ill ::l

" ~ "' <
1

I
I. Problem 1

QuestMap I Graphical
Editor

Solution

Figure 2 Interaction between the three tools and a database.

The snapshots made using the graphical editor show examples of design methodologies,
while the other snapshots show QuestMap discussions on quality concepts. The graphical
editor may be used to produce a design diagram, which may be influenced by the quality
definitions and design practices recorded via the Quality Training tool. Difficult issues arising
from the design may be discussed and solved using QuestMap. Important discussions can be
saved and stored in the database for future reference.

We explain next the major characteristics of the Quality Training tool and the QuestMap tool.
We do not consider the graphical editor, because its use is somewhat trivial.

TM QuestMap is a trademark of Corporate Memory Systems, Inc

A quality-intensive approach to software development 57

3.1 Quality Training tool

The major ideas of the Quality Training tool can be traced to the "QDA tool" prototype
(Tervonen, 1994), aimed at supporting quality-driven assessment (placing emphasis on the
designer's justification by means of quality terms). The "QDA tool", implemented in a
Smalltalk/V & Macintosh environment, illustrates new characteristics which advanced graphical
editors, as parts of CASE tools, should support in the future. The Quality Training tool uses a
series of definitions and examples for teaching the concepts inherent in high quality software. It
can display the definitions of eleven concepts (goals) which contribute to software quality and
the interrelationships between them. Figure 3 shows the main screen of the Quality Training
tool, from which many of its features are accessed. The tool is implemented in Visual Basic and
consists of a number of windows for displaying the information. Selections are made using
menu items, option buttons or command buttons.

• Ouatdy Tr..wmng Tool R~EJ

QUALITY TRAINING TOOL
Seled A Quo~o, Foc:IO< For V...,;.,g

r Conectneu

rReti~

r ~u;lurad

c .. oentboV...,;.,g Obioct·Onrotod Dolinmom

Selocl Option

r ua.ebi&tp r V"IOW OuetiNap Roc.o1d

r Edit Dolinilions (" View RTF Filet
r Vetiftobiii~Jo

r Edit lntonolotionships r Goophicol Edit0<

(" Input Quntlhp R d ("Quit

r Rouaobolillo ('" Odele Qunl)tap ABCOid rHolp

Figure 3 The main screen of the Quality Training tool.

The Quality Training tool provides further information in the form of rules which have to be
followed to implement each goal and checklists giving instructions on how to check
implementation of each rule. The GRCM model is used to organize the definitions and provide
for their consistent use. The eleven concepts (goals) for which definitions, rules and checklists
are given are: correctness, efficiency, expandability, integrity, interoperability, maintainability,
portability, reliability, reusability, usability and verifiability. The interrelationships show how

58 Part Two Software Quality

concepts can be related, providing a more realistic view of software quality. An
interrelationship may be advantageous to software quality, e.g. that between reliability and
usability, or disadvantageous or conflicting, e.g. that between interoperability and reliability, in
that emphasising interoperability can cause problems with reliability. All of the descriptions
may be edited.

A screenshot from the Quality Training tool showing object-oriented definitions (which the
tool is predominately concerned with) for the portability goal is shown in Figure 4. The tool's
definition of portability is displayed in the top text box, and the rules for successful
implementation of the concept are listed below it. A definition for a rule can be obtained by
clicking the option button next to the name of the rule, which causes it to be displayed in the
middle text box. Similarly, the checklists for the currently selected rule are listed and each one
can be selected and displayed by clicking its option button.

• factor. Rule and Checkhsl Dchnthons l!llil Ei

Qually Facl01 · Pattabay

Porlobity

A set olauribU.•s thai !><Oat on lhe obiily ol sollwore to be tronsleued lrorn one enviOI'IIII!I'IIto onoU>ef.

Portobity ~ • common •equiement so i ,..,,1 b<O P<mi>le lo move software l•om one COfq)O.f(01 lo onolhel without
deg1o00g is pefiorrMnee If soltwore ol hordwate is upgt~ to a noweo rnod<OI 01 vetsion leovilg lhe ove1al
conligualion lhe some lhe system shoUd retain is hn:lionaMy. e.g. l a con.,;Jer is 1eplaced by onolhel c~er let .:.J

Qu~yFaciOIR~~------~~~--~--~~~~~--~~~~~-------,

r. ~ati!ll r ConrOIIIIOnC<O

R\.le D•seiC'Iion And Derived Rule

llilules ol soltwore that bear on the opportuntly let its adaptation lo diffe1ent enviom>ents wihoul applying olhe! •
actions 01 meam then those provided let 1M P<Jpose fet the soltwore considefed. Rule: Amng at ~olton Mhool
e1<tr,a reSOllces.

[Checkats
r. Chocl\i$t 1 r Chocl<.iri 2 r CheckDI3

Checkbl D~cttplion

Cleek lhellhe nt.mbel ol methods in a elan isless lhen 20 [UI elos:esleulhen 40l Metn::s: N"'*• ol instance
methods (N IMJ

Figure 4 The definitions, rules and checklists for the portability goal.

A quality-intensive approach to software development 59

The creation of an organisational memory involves capturing and organising information so
that it can be easily located and retrieved in an understandable form for reference or reuse. This
process extends and amplifies knowledge assets, as information will be retrievable and time
will not be needlessly wasted discussing or researching a problem that has already been solved
(Conklin, 1996). The ability of the tool to store, delete and display QuestMap discussions
meets these requirements. The Quality Training tool provides a groupware aspect by allowing
users to select the discussions they wish to store, delete or display.

3.2 QuestMap™

The technology recommended by Conklin (1996) for capturing information for an
organisational memory includes the use of hypertext, groupware and a rhetorical method.
QuestMap is a hypertext group discussion tool based on the IDIS (Issue Based Information
Systems) approach, which is a well known branch of the design rationale tradition and
implements the rhetorical method of Conklin. In QuestMap we have a particular issue which
may have various positions justified by certain arguments. Issues, positions and arguments are
saved in nodes in a network. QuestMap permits interaction between users, who simultaneously
conduct discussions by placing icons, each of which represents a particular conversational
component in a common window. An example of the discussion on reusability, in which some
of the icons and links are used, is shown in Figure 5.

~ · QuesiMdp tM upl Smqlc U ser's Harne W'1ndow - 0 X

~ Reuoabi~l delinilion \i + Cunttnl •Yil1B1111 U!IUIII ./ood Deoign ~iveate~abilil• /

/ ~ //Good foo '""'"

? .,_--'N11U lliUC:Iut&d code~ ? Q +
-UtoOOI....,..•u••"'"'-

Enuning Aoua""-- ~ \llh<ll Longuogo "--.. GU;••

~-h tooling Bolt., lh<ln ohuctwed Longuogoo

? - ~ -Rouoo~ooti.e
Oe•~n and code

'What COft be ICUICd '

+
\II(Singlo Uoet 111/22193 MJ

Figure 5 A discussion on reusability.

TM QuestMap is a trademark of Corporate Memory Systems, Inc

60 Part Two Software Quality

The 10 icons representing the conversational components used in QuestMap are: Question,
Idea, Pro, Con, Argument, Decision, Reference, Note, List View and Map View. The links
between the icons are: Supports, Objects To, Responds To, Related To, Specialises, About,
Resolves and Challenges. Each icon possesses a content window which allows a name and
additional information to be entered for the icon. Searches can be made for icons, e.g. all those
containing a certain keyword, and hyperlinks created by copying an icon from one view to
another. Although the snapshot can only show the title of each icon, the reason for its existence
is made clear. QuestMap allows a textual record of a discussion to be made, and each snapshot
is accompanied by such a description, shown in a separate window, which lists all of the icons,
their descriptions, types and relationships to other icons in an ordered manner.

Textual records of QuestMap discussions may be recorded in the Quality Training tool
database for future reference, which creates an organizational memory capability for the tool.
An organisational memory requires the capture and organization of information in a manner in
which it can be easily located and retrieved in an understandable form. The tool achieves this by
allowing important discussions concerning quality issues to be recorded, displayed and deleted
if required. Since the information is easily retrievable, time is not needlessly wasted discussing
or researching a problem that has already been solved.

4 AN EXAMPLE

Our example illustrates the use of quality concepts to choose between alternative design
solutions by presenting some situations arising in the design of a user interface for a beer pump
system. Electronically operated beer pumps used in restaurants consist of a pressure tank
(operating with carbon dioxide), a beer tank, a cooler, an electrically operated valve, a stream
indicator and a tap. A button is used to open the valve, which causes the carbon dioxide to
force the beer through the cooler towards the tap. There are usually two buttons for dispensing
either a half pint or full pint of beer from the tank, which usually has a capacity of 30 liter (60
pints). When the tank is almost empty a warning is given that it will shortly have to be
replaced. There is a possibility that surplus carbon dioxide in the pipeline could cause large
amounts of foam, and a means of forcing the foam out of the system is necessary.

The software calculates the number of pints dispensed from the tank. When the level falls
below a pre-defined limit a warning is given, and once 60 pints have been dispensed the system
automatically Jocks until the tank is replaced.

Our solution considers the idea of using a proximity card to control the dispensing process.
A similar system involving a proximity card and card reader is being used by a local bus
company. A card gives credit for a specific number of bus journeys, and when it is passed in
front of the reader the number of journeys remaining on the card is reduced by one. The reader
can read a card without any contact up to a distance of 20 centimetres. The storage capacity of a
card can be up to 30 bytes, which includes a serial number. The reader contains a display
which can show 2 lines of text of up to 20 characters, three indicator lamps and a sound signal.
When all of the journeys on a card have been used up the card can be recharged. This can be

done using the card reader.
In this example we focus on the user interface. Its requirements are shown in Table 1.

A quality-intensive approach to software development 61

Table 1 Requirements of the user interface

All activities are controlled using proximity cards and instructions are presented via a display
screen. All inputs must be made via an input button. Use of the control computer's display and
keyboard is not permitted.
The beer pump must be easy to use and understand since users may be under the influence of
alcohol.
The reliability of the system must be high. Card units must not be deducted erroneously without
beer being dispensed, nor can the system allow free pints. Each time a pint is given a deduction
must be made from the proximity card.
The following types of card should be available:
A Normal card which can be recharged to give credit for pints.
A No Limit card which can be used indefinitely without recharging.
A ServiceCard for dispensing pints, recharging other cards and controlling service operations.
The system must automatically monitor the quantity of beer which remains in the tank and
prevent further use when the tank is empty. Use of the pump must be barred until the tank is
replaced.

Initial tests of the user interface found that the instructions provided were insufficient and the
messages too short. The designers had also overestimated people's skill in using the beer
pump. For example, beer was wasted as people did not manage to put their glass under the
pump before the flow of beer commenced. This caused some corrections to be made to the
control software. We now describe the support given by the QuestMap tool for defining the
quality goals and for choosing between two alternative versions.

4.1 Defining the quality goals

We first prioritize the most important of the 11 alternative goals (presented in the GRCM
model) for the user interface of the beer pump. We may choose to place our focus on usability
aspects, e.g. striving for understandable instructions, or we can emphasize reliability, e.g.
ensuring that the beer flows into the glass, for example. In addition we choose the portability
goal, because this kind of system could have potential clients worldwide. The QuestMap
presentation in Figure 6 summarizes the reasons for our prioritization, and the textual
description in Table 2 explains them in more detail.

CJ + ? --Usabilil1~e~l u•en

What are lhe moat 1mpDflant qualit.? goals? -..... ~
'...___ \J -s::::="Drunken" u•era +

""'ReftabifitJ Uae of a pump requi:lea pu~clice

c:; - +
Portabilily large market 01ea

Figure 6 Reasons for the choice of quality goals.

62 Part Two Software Quality

Table 2 Textual description of the QuestMap discussion on quality goals

Quality goals

Question : What are the most important quality goals?
We have chosen certain quality goals and will discuss these. The definitions of the goals are based on the ISO
9126 standard and the ones chosen in this case are usability, reliability and portability.
(QuestMap Administrator)

1.1 Idea (Responds To Question 1): Usability
A set of attributes that bear on the effort needed for using the software and on the individual assessment
of such use by a stated or implied set of users, e.g. the value of a user interface to a set of users.
(QuestMap Administrator)
1.1.1 Pro (Supports Idea 1.1): Different users

There may be regular users who need no guidance and casual users who need much more
guidance. There are also many different ways in which to use the system. User activity may be
simply dispensing a pint of beer or a more tricky job such as changing the beer tank. These
activities require different instructions.
(QuestMap Administrator)

1.1.2 Pro (Supports Idea 1.1): "Drunken" users
Because users may be under influence of the alcohol, the beer pump mechanism must be easy to
use and must operate reliably and safely.
(QuestMap Administrator)

1.1.3 Pro (Supports Idea 1.1): Use of a pump requires practice
The instructions should be as informative as possible, because there is only few lines available
for them. Relevant instructions increase usability and reliability.
(QuestMup Administrator)

1.2 Idea (Responds To Question 1): Reliability
A set of attributes that bear on the capability of software to maintain its level of performance under
stated conditions for a stated period of time.
(QuestMup Administrator)
1.2.1 Pro (Supports Idea 1.2): "Drunken" users

Same as 1.1.2.
(QuestMap Administrator)

1.2.2 Pro (Supports Idea 1.2): Use of a pump requires practice
Same as 1.1.3 ..
{ QuestMap Administrator)

1.3 Idea (Responds To Question 1): Portability
A set of attributes that bear on the ability of software to be transferred from one environment to
another.
(QuestMap Administrator)
1.3.1 Pro (Supports Idea 1.3): Large market area

The potential market area for the system is large. It should therefore be easy to adapt to different
environments, and easy to install in sports arenas, concerts halls, etc.
(QuestMap Administrator)

4.2 Choosing between alternative design solutions

We can also use the QuestMap tool to choose between design alternatives. In view of the
prioritized quality goals, we can justify our solutions in terms of usability, reliability and
portability factors. The design decision situation considers improvement of the beer pump
service with additional messages, and with an indicator which confirms that a glass has been
placed below the tap.

We have two alternative versions for operating the beer pump, i.e. dispensing the beer. The
first simply indicates that the button has been pressed, while the second is more complicated
and ensures that there is a glass under the tap, to prevent waste, and that the glass is not

A quality-intensive approach to software development 63

removed until it is full. These alternative versions are described with state-transition diagrams,
but due to _space limits they are not presented in this paper. Instead, we present the QuestMap
supported discussion concerning the justification for alternative versions. A summarized
description is given in Figure 7 and more detailed reasons in Table 3.

r;; ---Likeability

? ---- Non·aafety operation (ver. 1) -
Ease of use

What kind of implementation--

Q
Safety operation (ver . 2)

------ Likeability

+
Ease of use

Figure 7 Choosing between alternative modes of operation.

Table 3 Textual description of the QuestMap discussion on modes of operation

Operation

Question : What kind of implementation?
What mode of operation should we choose if we emphasize usability? The beer pump must be easy to use. It
is possible that users may be under the influence of alcohol and hence the instructions must be easy to
understand . We can explain usability in tenns of likeability and ease of use.
(QuestMap Administrator)

1.1 Idea (Responds To Question 1): Non-safety operation (ver. 1)
There are only a few instructions in the version I and no control mechanism that makes sure that there
is a glass under the tap.
(QuestMap Administrator)
1.1.1 Con (Objects To Idea 1.1): Likeability

Unexpected operation may cause unwillingness to use the system, e.g. if there is no glass under
the tap and beer flows onto the floor, or if you do not understand how the system works.
(QuestMap Administrator)
1.1.2 Con (Objects To Idea 1.1): Ease of use
Missing messages may cause confused situations, e.g. if you do not know how to get one glass
of beer.
(QuestMap Administrator)

1.2 Idea (Responds To Question I): Safety operation (ver. 2)
There are additional instructions in version 2. The added control mechanism makes sure that there is
a glass under the tap, otherwise the system stops.
(QuestMap Administrator)

1.2.1 Pro (Supports Idea 1.2): Likeability
The added control mechanism makes sure that there is a glass under the tap and prevents unlikely
events such as beer flowing onto the floor.
(Quest Map Administrator)

1.2.2 Pro (Suppons Idea 1.2): Ease of use
Additional instructions give relevant infonnation to users.
(QuestMap Administrator)

64 Part Two Software Quality

5 CONCLUSIONS

This paper addresses the problem of quality-intensive software development, which invites a
software engineer to evaluate the software from the quality viewpoint. Our approach is based
on the GRCM (goal-rule-checklist-metric) model and on the use of a triad of supporting tools,
i.e. a graphical editor, the QuestMap tool for problem solving and the Quality Training tool for
supporting the organizational memory. The Quality Training tool acts as a central tool and
provides an introduction to the quality concepts. It also supports the organizational memory by
recording design solutions and their justifications for further reuse. These solutions are
described in the form of snapshots from the graphical editor and the QuestMap tool, which also
provides discussions for further argumentation.

In our illustrative example we present some situations that arising in the design of a user
interface for a beer pump application. We prioritized usability, reliability and portability as the
most important of the 11 alternative goals and justified our design solutions in terms of rules
derived from these factors. The example represents one of our first attempts to apply the
GRCM model in practice, and our future work will include more experiments of this kind.

6 REFERENCES

Conklin, J. (1996) Designing Organizational Memory: Preserving Intellectual Assets in a
Knowledge Economy, a chapter in a book (in preparation) Conklin J., The Information
Paradox: When Information Defeats Understanding, http://www.cmsi.com/business/info/
pubs/desom

Crosby, P.B (1996) Philip Crosby's Reflections on Quality, McGraw-Hill, New York, NY

ISO (1990) Information technology - software product evaluation - quality characteristics and
guidelines for their use, Draft International Standard ISO/IEC DIS 9126, International
Organization for Standardization, Geneve

McCall, J.A, Richards, P.K, and Walters, G.F (1977) Factors in Software Quality, Volumes
I, II, and III, RADC reports

Tervonen, I. (1994)Quality-driven Assessment: a pre-review method for object-oriented
software development, Dissertation thesis, University of Oulu, Department of Information
Processing Science, Reserch papers, Series A19

Tervonen, I. (1996) Support for Quality-Based Design and Inspection, IEEE Software, 13, 1,
44-54

7 BIOGRAPHY

Ilkka Tervonen is a professor (acting) of software engineering at the University of Oulu. He
recieved PhD in software engineering from University of Oulu. His current research interests
include software quality, software inspection and organizational memory.

Jouni Kokkoniemi is an assistant at the University of Oulu. He recieved MS in software
engineering from University of Oulu. His current research interests include software inspection
and object-oriented databases.
Gareth Smith is a student at the University of Manchester. His current research interests
include software quality and object-oriented approach.

