
20

An evaluation scheme of software testing
techniques

H. D. Chu
Centre for Software Reliability, Department of Computing Science
University of Newcastle upon Tyne, NE3 2AP, U.K.
Tel:+44-191-222 8972 Fax:+44-191-222 8887
Email:huey-der.chu@newcastle.ac.uk

Abstract

In addressing the two major software testing issues, that is when to stop testing and how good

is the technique after testing, this paper presents a scheme by a data flow diagram (DFD) for
evaluating software testing techniques based on the works of classification. Following this dia­
gram step by step, all the activities involved and the relative techniques were described.A strategy
proposal for software testing in the development of applications is advocated later.

Keywords
Software testing, deterministic testing, statistical testing, test data adequacy

1 INTRODUCTION

The history of software testing is as long as the history of software development itself. It is an
integral part of the software life-cycle and must be structured according to the type of product,
environment and language used. In the absence offeasible and cost-effective theoretical methods
for verifying the correctness of software designs and implementations, software testing plays a

vital role in validating both. The goal of software testing is (Myers, 1978; Bertolino, 1991): First­
ly, to reveal that hidden number of defects which are created during the specification, design and

coding stages of development, secondly, to provide confidence that failures do not occur and
thirdly, to reduce the cost of software failure over the life of a product.

In practice, the software development methodologies typically employ a combination of several
software testing techniques. There is no "silver bullet" testing approach and no single technique

alone is satisfactory. The need to combine testing techniques is further visible when we consider
the primary characteristics of each approach and find that each testing strategy addresses only

a narrow set of concerns.
From this viewpoint, a framework is presented in this paper to the classification of software

testing techniques, to the evaluation of software testing techniques and to the proposal of testing
strategy. An evaluation scheme of software testing techniques is presented in section 2. The pro­
posal of software testing strategy will be discussed in section 3. Concluding remarks are made

in Section 4.

D. Gritzalis (ed.), Reliability, Quality and Safety of Software-Intensive Systems
© Springer Science+Business Media Dordrecht 1997

260 Part Eight Poster papers

2 AN EVALUATION SCHEME OF SOFTWARE TESTING TECHNIQUES

The purpose of this evaluation scheme is to allow us to identify the strengths and weakness of

current software testing techniques. This will provide the information for selecting the testing

strategy in the development of applications. In addressing the two major testing issues, that is

when to stop testing and how good is the technique (or the software) after testing, a Data Flow

Diagram (DFD) depicting the evaluation scheme is shown in Figure 1; the circles in the diagram

correspond to the tasks that will be identified in the following sub-sections.

Dvoamic
Tesung

1-----..
Detenninistic
Testing

Figure 1 An evaluation scheme of software testing techniques

The classification of software testing techniques
The software testing techniques can be classified according to the following viewpoints:

• Does the technique require us to execute the software? If so, the technique is dynamic testing;

if not, the technique is static testing.
• Does the technique require examining the source code in dynamic testing? If so, the technique

is white-box testing; if not, the technique is black-box testing.
• Does the technique require examining the syntax of the source in static testing? If so, the tech­

nique is syntactic testing; if not, the technique is semantic testing.
• How does the technique select the test data? Test data is selected depending on whether the

technique refers to the function or the structure of the software, leading respectively to func­

tional testing and structural testing, where as test data is selected according to the way in which

software is operated with respect to random testing.

• What type oftestdata does the technique generate ?In deterministic testing, test data are prede­

termined by a selective choice according to the adopted criteria. In random testing, test data

are generated according to a defined probability distributed on the input domain.

The classification of software testing techniques is shown in Figure 2.

The evaluation of software testing techniques
With reference to this classification, the work on the evaluation of software testing techniques

can be done in correspondence with the two major testing issues as shown:
• When should testing stop? The exit criterion can be based on a reliability measure when the

test data have been selected by random testing, whereas a test data adequacy criterion for deter­

mining whether or not a test set is sufficient for deterministic testing.

An evaluation scheme ofsoftware testing techniques 261

How does the technique select
the test data?

What the type of the test data
does the technique generate?

Figure 2 The classification of software testing techniques

• How good is the technique after testing? The definition of software reliability measure with

failure rate can be applicable to test software with discrete or continuous test data (DeMilio,

McCracken, Martin & Passafiume, 1987). Test data adequacy criteria are measures oft he qual­

ity of testing. From this viewpoint, the classification of test adequate criteria can be divided

into fault-based testing and error-based testing (Zhu, Hall & May, 1994). However, as this is

the most important aspect of test quality, there are many experimental works to measure it by

metrics, mutation analysis and the expected number of failures detected et al.

3 SOFrWARE TESTING STRATEGY

Some researchers have suggested that static testing techniques should completely replace dy­

namic testing techniques in the verification and validation process and that dynamic testing is

unnecessary (Sommerville, 1996). However, static testing can only check the correspondence be­

tween a program and its specification but it cannot demonstrate that the software is operationally

useful. Therefore, although static testing techniques are becoming more widely used, dynamic

testing is necessary for reliability assessment, performance analysis, user interface validation and

to check that the software requirements are what the user really wants. The dynamic testing strate­

gy advocated here combines deterministic and random testing. The way to mix the two testing

techniques is deduced from their complementary features, that is, to use the deterministic testing

techniques first for removing the more easily discovered faults and to use the random testing tech­

niques later for assessing the reliability of the resulting software. The strategy proposal for soft­

ware testing is shown in Figure 3.

262 Part Eight Poster papers

Improvement feedback
-.I(• • • • •. •. T • • • • • • • •. • • • • • • • • • • • • •

~ ~ ~
-~e!e:~ _ J i Software --.-. Static analysis

1_. .___fo_r_de_~_ec_ts_
Static

requirements t
Static testing

techniques and tools

Faults ;

Dynamic analysis

for faults I-­,_..___~

t Adequacy

criterion
Detenninistic testing

techniques and tools

Defect- and
fault-free
software
-~

Confidence level

'
Failures;

Dynamic analysis· - - ~

for failures +
t Reliable

software

Random testing

techniques and tools

Figure 3 The strategy proposal for software testing

4 CONCLUSION

Software testing is characterized by the existence of many methods, techniques and tools, that

must fit the test situation, including technical properties, goals and restrictions. There is no single

ideal software testing techniques for assessing software quality. Therefore, we must ensure that

the testing strategy was chosen by the combination of testing techniques at the right time on the

right work products. From this viewpoint, a scheme for evaluating software testing techniques

is presented to the classification and evaluation of software testing techniques. A strategy propo­

sal for software testing also is advocated in this paper. We expect that the proposal will provide

a guide-line to testers in the development of applications.

5 REFERENCES

Bertolino, A. (1991). An Overview of Automated Software Testing. Journal Systems Software,

15, 133 - 138.
DeMillo, R. A., McCracken, W. M., Martin, R. J. and Passafiume, J. F. (1987) Software Testing

and Evaluation, The Benjamin/Cummings Publishing Company, Inc., Workingham.

Myers, G.J. (1978). The Art of Software Testing. John Wiley & Sons, New York.

Sommerville, I. (1996). Software Engineering (Fifth ed.). Addison-Wesley Pub., Wokingham.

Zhu, H., Hall, P. & May, J. (1994). Software Test Coverage and Adequacy (Technical Report

94115). The Open University.

6 BIOGRAPHY

H.D. Chu is currently a PhD student in computing science at the University of Newcastle upon

Tyne funded by the National Science Council in Taiwan. He is also a lecturer in the Information

Management Department at the National Defense Management College in Taiwan. His research

interests include methodical and statistical techniques for automating testing.

