
11

Modification of Safety Critical Systems: An
Assessment of three Approaches

Tor Stalhane, Ph.D and Kari Juul Wedde, Research scientist
SINTEF Telecom and Informatics, Norway
Tel. +47- 735930/4 E-mail: Tor.Stalhane@informatics.sintefno

Abstract
This paper sums up the experience at SINTEF Telecom and Informatics on analysis of a safety
critical systems for traffic control. After a short description of the system under consideration,
the paper naturally falls into two parts. The first one is a description of two modifications, how
they were implemented and how they were analysed for safety. The second one contains a dis­
cussion of the three methods used - FTA, FMECA and Code analysis. We here concentrate on
how these methods differ in focus, the knowledge and information needed, and the types of
problems they can handle.

The paper's conclusion is that all three methods are needed in order to analyse modifications
of a safety critical system. The knowledge needed and the problem focus will, however, differ.

Keywords
safety critical systems, fault tree analysis, failure mode effect analysis, code analysis

INTRODUCTION

This paper describes the methodical part of our work on analysis of a safety critical system. The
goal of the paper is to discuss the pros and cons of the three methods: fault tree analysis (FTA),
failure mode, effect and criticallity analysis (FMECA) and code analysis.

As it turned out, these three ways of analysing a safety critical system provided the analysts
with different foci and strongly influenced the failure modes that were identified. The paper is
discussing the differences between analysing a complete system and analysing the effect of
modifications. In addition, we will discuss how we - in the future - can combine all three meth­
ods and apply each in a way that supports the current part of the analysis, and enables the analyst
to let his expertise have a maximum impact on the quality of the result.

D. Gritzalis (ed.), Reliability, Quality and Safety of Software-Intensive Systems
© Springer Science+Business Media Dordrecht 1997

Modification of safety critical systems 135

2 STATE OF THE ART

Both FfA and FMEA has a long tradition of use in the analysis of safety critical systems. Both
methods have been standardized by several bodies - both national and international. See for
instance IEC 812 (IEC, 1985) and IEC 1025 (IEC, 1990). Problems related to the analysis of
safety critical software systems has been standardized for instance by the MoD in their DEFence
Standards 00-55 and 00-56 (MoD, 1991). A thorough treatment of the area is presented in (Red­
mill, 1993). See also (Bloomfield, 1989).

The use ofFfA on software intensive systems started with Peter R. Harvey's Ph.D. thesis in
1983 (Harvey, 1983). The thesis contained a FfA of part of the control software for a solar sat­
ellite, and the author was able to discover a set of events that would lead to an uncontrolled spin
of the satellite. This work was followed by several others, for instance Harvey and Leveson
(Leveson, 1983) and Leveson and Stolzy (Leveson, 1984). The application of FfA for software
safety analysis has, however, been slow to reach take-off speed.

The use of FMECA for safety analysis of software intensive systems has seen several
attempts over the years. One of the oldest attempts is D. Reifer's paper (Reifer, 1979). In 1992,
ESA published a guide for conducting FMECA on software intensive systems, (ESTEC, 1992).
It remains to be seen how much of an impact this guide will have on software safety evaluation.
One of the latest published papers in this field was written by T. Maier (Maier, 1995) . This paper
discusses both FfA and FMECA.

Several companies that develop embedded systems have been using FfA and FMECA for
some years. See for instance (Rydholm, 1995) and (Struhane, 1990). Both SINTEF and several
other companies will keep on using FfA and FMECA in the future, and will work to extend the
methods in order to improve their applicability for software.

3 THESYSTEM

3.1 Background
The system under consideration was developed for traffic control. Some of the system functions
could have an impact on traffic safety. It was therefore necessary to analyse the system design
and the software with respect to safety. The result of this analysis was that the system, as deliv­
ered, was considered safe. The system was put into operation and after some time two non­
safety problems appeared, causing the system to be modified. Before the modified system could
be put into operation, SINTEF was engaged to analyse the changes with respect to system
safety. This last analyses is the basis for this paper.

3.2 System design and needed functionality
The purpose of the system is to transfer messages between a Mobile Unit and a Central Unit,
placed in a control room. The system consists of:

Several hundred signal transmitters which have fixed positions.
Mobile Units that receive signals from the transmitters and transfer these signals to the
nearest Base Station located along the route of the Mobile Units.
Base Stations that transfer the signals to a Front End Unit by cable.

136 Part Five Safety Critical and Safety Monitor Systems

Front End Units that transfer the signals to a Central Unit for handling and to be displayed
on a VDU, where the operator uses the information for a set of decisions.

The transferred information includes the identification of the Mobile Unit's position. A cor­
rect identification of this position is required due to its use in a safety critical task carried out by
the control room personnel.

The position information is saved in a table that contains all information about each Mobile
Unit. This information is also displayed on a VDU when requested by the personnel or in con­
nection with the display of a message from a Mobile Unit to the Central Unit.

3.3 Fault tree (Ff)
Figure I shows the first four levels of the delivered system's FT, extended by the events "Case
1" and "Case 2". These two events represent the modifications, and are included in order to see
the later analyses in the context of the first analysis. The analysis pertaining to these two events
are discussed in chapters 4 and 5.

In FTs, square boxes denote events that are further analysed. These events can lead to the top
event and are in the rest of the paper called unsafe events. Basic events are denoted by ellipses
and are not going to be analysed any further. Events are connected trough gates. AND-gates are
denoted by semi-circles, OR-gates by triangles and conditions by octagons.

3.4 Problems
The analysed problems were related to two problem areas and were analysed by two different

persons:

Case 1: Hang or loss of the communication between the Central Unit and the VDU. The
development company and the customer agreed that the reason for this was electromag­
netic noise from the system's environment- EMI.

Case 2: In areas with disperse radio coverage, the Mobile Unit's position could be set to
zero - unknown position - for shorter or longer periods. This is caused by a timeout and
happens both in the position table and on the monitor in the control room. Unknown posi­
tion is an event that can be handled by manual operator routines and is· thus not a safety
critical problem.

3.5 Basic assumptions
Only those parts of the system that contain changes were analysed. The reasons for this are:

1. Other parts were previously analysed and found safe. This includes the compiler, the oper­
ating system, all built-in procedures, the mechanisms used for passing parameters and all
communication.

2. The system has been tested and in use by the customer. Up till now the system has accu­
mulated approximately 36 unit years of operation without safety critical failures.

3. The unchanged parts have the same reliability and safety as before the modifications. We
therefore assume that data changed or maintained by unchanged parts of the system have
correct values.

Modification of safety critical systems

System
maintenance

error

Error not
discovered

Figure 1 Delivered system's FI'.

4 CASE 1

4.1 Problem and Solution

Error in
converter
sw

Wrong posi­
tion displayed

Error in
operation

Wrong
in signal

Case I
Link error

137

Case2
Auto pas
failed

It was decided by the customer and the development company that the EMI problem should be
solved as follows:

1. A timer watchdog was installed in the VDU link controller. If the time between two con­
secutive reset commands was too long, this timer was released and the communication
software was restarted.

2. The timer was reset at regular intervals by a special message from the Central Unit. The
choice of interval for resetting the timer watchdog defined the longest time the link could
be down and thus, the availability of the VDU subsystem.

The solution and the required changes gave rise to two types of software modifications. The
first one was that some new modules had to be written in order to implement the restarting of
the communication link software and to refresh the information displayed on the screen. The
other one was that some parts of the code had to be modified in order to adapt the system to the
changes in the communication software.

138 Part Five Safety Critical and Safety Monitor Systems

4.2 Analysis and discussion
We decided to use two different approaches for the two types of software changes for "Case 1 ":

New modules: Here we would use FfA, both for the new modules and for their interaction
with the old, unmodified code. The analysis of the new interactions was done by augment­
ing the FfAs from the first analysis of the system.
Changes: Here we decided to start with an FMECA. The failure modes were related to
the influence of the changes. If the FMECA identified a change as having a possible effect
on the overall safety-related top event of the Ff of the delivered system, this event was
added as an unsafe event in the appropriate place in the Ff and the analysis was repeated.

The FMECA showed that potentially, any change involving an assignment or a procedure call
can change one or more system parameters in a way that could compromise the system's safety.
The job was to single out those changes that could either change a variable unintentionally or

introduce an event or activity that could compromise safety in other ways. An example of an
FMECA is shown in Figure 2 and theFT for "Case I"- Link error- is shown in Figure 3.

The two main safety-related events identified in the new FT, namely "Link error not
detected" and "System cannot repair link error" were developed further into new FTs. The FT
for the first of these events- "System cannot repair link error"- is shown in Figure 4. The anal­
ysis that followed concluded that all changes were done in such a way that no new risks to the

system's safety were introduced.

Module Failure Description Failure Mode Effect
Description

!d.
Func-

Mode Cause Detec- Local System Cnsq Rate
tion tion

Ml Initial- LnkWD X_2 Spuri- Un- Short periods Low Low
ize link is not error ous necessary of
check reset restarts BG unavailability
count restarts

M2 Loop LnkWD HW No No restart No recovery Med Low
until is error restart ofBG when link
restart destroyed when when error

needed needed
OR OR OR Low
Spuri- Un-nec- Short periods
ous essary of
restarts BG unavailability

restarts

Figure 2 Example FMECA

Modification of safety critical systems

System cannot
repair link

Figure 3 FT for "Case 1"

PowerOn
destroyed

Figure 4 FT for the event "System cannot repair link error"

5 CASE 2

5.1 Problem and Solution

Watchdog
error

139

The problem concerning loss of position was solved by letting the Central Unit automatically
send a request to the Mobile Unit and ask for the position. The request is sent when a Mobile
Unit logs on the radio for the first time after leaving a radio shadow area. The main reason for

140 Part Five Safety Critical and Safety Monitor Systems

choosing this solution was that it only required changes to the Central Unit. The other units

remained unchanged. In addition, a position request is a message that has been in use for a long

time by the control room personnel, for manually sending a request for position to the Mobile

Unit. It was therefore seen as a well tested and thus a safe solution. The solution required

changes to several code modules in the Central Unit.

5.2 Analysis and discussions
The analyses approach applied was a combination of two approaches:

FfA: FfA was used to analyse the modifications in the context of the delivered system,

to see if the changes could lead to any of the unsafe events identified in the original Ff.lt

was also used to structure and organize the information obtained during the code analysis.

Code analysis: In order to see which unsafe events the changes could lead to, detailed

knowledge of the modified parts of the system was needed. These parts were therefore

studied in detail, partly by manually executing message sequences for the changed parts

of the communication.

Seen in the context of the delivered system, the changes were related to the event "Wrong

position displayed on monitor". Related to the "Case-2" changes, this event may occur in two

situations. Either the automatic position request is not sent when the Mobile Unit logs on after

leaving a radio shadow area or the automatic position request is sent, but fails.

For the first situation, the system will behave as before the modifications and no new risks

are added. We therefore only have to analyse the second situation, which adds a new unsafe

event to theFT of the delivered system. This new event was put in the "Error in operation"

branch, and is denoted "Case 2" in the FT in Figure l and is the starting point of our analysis of

the modified system. The top event for "Case 2" is named "Automatic position test failed".

The code analyses was used for familiarisation and with respect to what could lead to a

wrong position - we found that:

I. Automatically sending "Position request" requires that the response is converted in order

to be handled automatically. If such a conversion is performed on response to any other

message than a position request, it will lead to a safety critical event, namely that the data

part of another message is wrongly interpreted as position information.

2. The request number is not returned as part of the answer. The conditions used to single

out the response to a position request are based on the values of the source and destination

variables of the message.

The FTA was used for information structuring. The FT for "Case 2" is shown in Figure 5.

Two events were expanded in lower level FTs. Only the "Wrong message contents" event is

described here. TheFT for this event is shown in Figure 6. In this FT the "Converting response

to request>< position request" event is the only concern. How can we be sure that the conditions

used to single out responses to a "Position request" does not let other messages through?

Modification of safety critical systems

Automatic
position test
failed

HWorSW
error

No response
from Mobile
Unit

Figure 5 Ff for "Case 2"

HWorSW
error

Position request
not received by
Mobile Unit

Corrupted
message from
Mobile Unit

Msg=respones to request
Src=Mobile Unit
Dst=Central Unit

Corrupted
message from
Mobile Unit

Wrong
message
contents

Analyse Mes­
sage from Mo­
bile Unit error

Figure 6 Ff for the event "Wrong message contents"

141

142 Part Five Safety Critical and Safety Monitor Systems

Figure 7 Augmented system Ff

Software
maintenance error

According to the system developer, "Position request" is the only message receiving an answer
with "Source= Mobile Unit". Discussions with the developer has convinced us that this state­
ment is valid and that the modified system is safe. The rather complicated predicate gave us,
however, some concerns regarding system maintenance. The statement may, however, be vio­
lated by future changes, for instance by extensions to the message set. The restrictions imposed
by the changes must therefore be thoroughly documented in order to avoid problems later on.
This is especially important since the conditions used to single out the response to a position
request were not designed to be used for such a purpose.

The objective of the analyses was to see if the modified system was safe and could be put into
operation. Therefore, only the "Error in operation" branch of the original Ff was analysed.
What we learned from this case, however, was that we also have to take future changes into con­
sideration and that the "System maintenance error" branch has to be analysed as well. As a result
of this we will extend the "System maintenance error" part of the Ff in Figure 1 with a "Code
maintenance" branch through an OR gate as shown in Figure 7.

6 DISCUSSION OF THE THREE METHODS

6.1 The goal of the discussion
The two modifications -"Case 1" and "Case 2" - were analysed in two different ways - partly
due to the different nature of the changes and partly due to the differences in background and
experience for the two persons who performed the analysis. Even though all three methods have
the same focus - to check if the system is still safe after the changes - the approaches differ in
how they achieved their goals.

All methods for safety analysis - or any other analysis for that matter - are mainly used to
organize the analyst's ideas, experience and knowledge. It is thus clear that people with different
mind sets will need different methods in order to apply their experience in the most efficient way
for a particular problem.

Modification of safety critical systems 143

Our goal in the following discussion is thus not to look for a best method for safety analysis,
but to study the types of problems that can be identified by applying each analysis method to the
problem at hand.

6.2 FTA
An FfA includes all kinds of system components, such as hardware, software, operators and
environment and organizes all events that are identified as being safety critical, irrespective of
how they are implemented. In addition, it focuses on one single, critical event and then follow
this down through the system levels to a predetermined level of details.

It is relatively straight forward to go from software code to a corresponding Ff by means of
an automatic tool- see Leveson (1984). However, since this generated Ff is just a new repre­
sentation of the code, no new insight is gained in the process. In addition, the purely automatic
approach leads to an Ff that lacks focus and ignores system and software knowledge that can
surface during a more goal oriented Ff building process (StMhane, 1990).

For small and dispersed changes, the FfA will consist of going through all existing Ffs
related to the changed parts of the software and see if we need to change the Ff because of code
modifications. Parts that were not safety critical in the delivered system, could be made safety
critical by a modification. This approach supposes that we already have a system Ff.

Some of the parts that were modified were not originally considered safety critical and they
were thus not put of any of the Ffs made for the delivered system. The approach described
above could not be used for the small, dispersed code modifications except if the influenced
areas already were covered by a Ff.

For the new subroutines and additions of large code segments - more than say, 50 lines of
code each - the application of FfA was straight forward. Figure 8 shows a simple example.

The FfA is in our experience a convenient way to combine system knowledge, application
knowledge and knowledge of software implementation. All three types of knowledge are impor­
tant, but the focus of the analysis will decide their relative contribution in the analysis. An FfA
will only be efficient in two situations. One is for large modifications, where a new Ff or sub­
stantial additions to an existing Ff are needed. The other one is in cases where an Ff already
exists for the parts of the system that are modified, and the new FfA just consists of checking
how the components are influenced by the modifications.

PI error

P1(x,y);
P2(y,4,1iste 1);

P2 error

Figure 8 Example Ff for a code modification

Pl(x,y);
IFA>BTHEN

Pm(y,3);
END;
P2(y,4,1istel)

P2 error

144 Part Five Safety Critical and Safety Monitor Systems

6.3 FMECA
In principle, an FMECA could be used for a safety analysis of the delivered system. However,

in order to trace each failure mode from its local source to the top level in the system, one must

perform an analysis that logically is close to an FfA or to an extended structure diagram - ESD

(Stalhane, 1990). Even though this is usually not the case for simple systems, it will almost

always be the case for software. In our opinion, a FMECA should not be used alone on a com­

plete software system. When it comes to modifications, however, and the Ff is already
available, an FMECA is an important method. We can approach the safety analysis through the
following steps:

I. Identify all changes that may have an impact of the system's safety. Such changes are

changes related to the logical structure of the system - decisions - or to the data managed
by the system- the system's state. This follows from the fact that a software system only

can fail if it receives new input in any state or old input in a new state.

2. Follow the identified changes up through the system's levels and identify which low level
events in the Ff that will be influenced by the modification.

3. Re-evaluate the Ff with the changes caused by the software modifications.

An example is shown in Figure 9. Here, the FMECA identified the variable PowerOn as

safety critical and defined two events where this variable could cause safety-related problems.

These two events where added to the appropriate Fr. See also the Ff in Figure 4.
An alternative approach could be to make an FMECA for the next level up - in our case the

procedure level -and let the identified possible critical events be failure modes for the next level
FMECA ans so on. See (Rydholm,l995). Since we already had the system Ffs available, this

approach was not tried in our case.
For an FMECA of code modifications, the implementation and programming language

knowledge is of major importance. Application and system knowledge will be important only

at the upper level.

I Error on B-side I

A
PowerOn Power On Switchset

destroyed bad value destroyed

l

Module Failure Des ription Failure Mode Effect
Description

/d. Function Mode Ca,se
De tee- J Local System Cnsq Rate

tion

Bl Prevent PowerOn PoweiDn IS 7 Switch Cancel or H L
switch has bad destroyed not reset destroy
change value OR

t
call

character PowerOn g=~
toCU wrong value

Figure 9 ConnectiOn between FMECA and Ff

Modification of safety critical systems 145

6.4 Code Analysis
Code Analyses was used to study the code in order to check if the changes could lead to a spe­
cific unsafe event - identified by a previously performed FrA. In order to do this we needed
broad and long experience with software development. This is of major importance in order to
pinpoint problem areas. In this context, side effects of the modification are of special interest
since they can impose new risks. Changes that does not fully solve the problem are not critical
since the system remains as before with respect to safety.

In addition, system knowledge is needed in order to have a context for judging the problem
areas found. It is of great importance that changes do not impose unwanted interactions between
changed and unchanged functions. It is also important to check that the changes fit into the orig­
inal design of the system.

Except for the relationships to the unsafe events, it is not easy to define a general approach
to code analyses. The reason for this is that a major part of the analyses always will be the com­
bination of system understanding and general development experience. A possible approach
may be to develop a checklist for safety critical code. SINTEF will later look into this possibil­
ity. In our opinion code analyses is most efficient for system modifications. The amount of states
and decisions that need to be considered will be too large for a complete system.

Below is a small piece of code that was of special interest in our case. It contains the changes
to a procedure in the Central Unit that analyses messages from the Mobile Units.

(* --- check if answer to an automatic position request--- *)
IF(Class = Answer) &
(Code = Request) &
(Source= MobiiUnit) &
(Destination = CentraiUnit) THEN
(*--- Convert data part of the message to position information --- *)
END;

The code is new and entered in order to handle response to an automatic position request.
The purpose of the code is to convert the data part of this response to position information. Four
predicates are needed in order to single ou~ the messages for which this conversion has to be
done. None of the predicates pertain directly to a position request. Our general experience tells
us that changes combining several - originally unrelated - status variables frequently lead to
problems. Thus, this code is considered a problem area. The conversion of the data part of a
"wrong" message would be a safety critical side effect.

In order to verify whether this change is safe or not, we need to know more about the system
and especially about the communication protocols. The protocols has to be studied in order to
find out if there exist other messages satisfying the given predicates. If such messages exist, we
would get the side effect mentioned above. In addition, the conversion would disturb the func­
tion that the message is a part of. We will thus get unintended interactions between changed and
unchanged functions.

By studying the message protocols and discussing with the developer, we concluded that
source and destination- in this case - could be used in order to single out the response to a posi­
tion request. The solution could thus be considered safe. Such solutions were, however, not
planned for and not covered by the design. It therefore imposes future risks. Our recommenda­
tion was therefore that the modification could be put into operation if comments were added to

146 Part Five Safety Critical and Safety Monitor Systems

the Mobile Unit code where it responds to requests the following actions were performed. The
protocol specifications also had to be updated according to the changes performed, especially
with respect to the restrictions imposed by the conditions set forth in the added comments.

7 SUMMARY AND CONCLUSIONS
We have seen in the discussion above how the three methods FfA, FMECA and code analysis
can be brought to bear on safety evaluation for modifications to a software intensive system. By
starting with a system that has already been analysed for safety through a FfA, we could trust
those parts of the system that were not effected by the modifications. In addition, the Ff - pos­
sibly augmented- could be used to study the impact of the local modifications on the system's
safety.

The Ff of the delivered system- augmented because of later changes- was the basis for both
types of analysis. This Ff, or the corresponding ESD, is needed in order to follow the local effect
up to the system's effect. This may not be necessary for an FMECA for another type of system
but is in our opinion important for a software intensive system due to the complexity of such
systems. Thus, the Ff is needed both for FMECA and code analysis.

The FMECA and the code analysis did, however, have quite different foci for their analysis.
This difference influences what we find. The FMECA focuses on what happens if a statement
goes wrong or does not have the intended effect, while the code analysis have three areas of con­
cern: The unsafe events, good development practice and the combination of development and
system knowledge.

The FMECA in all cases pointed out code segments or procedures that needed to be further
investigated by the FfA. As such, the FMECA should be considered a supplementary method
for FfA of changes to an already existing system.

The code analysis pointed out cases where the code, as it was after the modifications, was
correct but was written in such a way that later changes could jeopardize the system's safety.
This experience is consistent with our experience from the safety analysis of an ILS system
(StiUhane, 1995).

Our experiences can be summed up in Table 1.

Table 1 Experience summary

Method Performed by Input Results

FfA Systems engineers System description FTs
Software engineers Software code Dangerous events organized
Safety engineers in cut sets

FMECA Systems engineers Software code Dangerous events for Ff
Software engineers Ffs augmentation
Safety engineers

Code Software engineers System documentation Dangerous events for Ff
analysis Software code augmentation

Ffs Dangerous design side effects
for later maintenance

Modification of safety critical systems 147

8 REFERENCES

Robin E. Bloomfield et al. (1989), Requirements for the Analysis of Safety Critical Hazard.
Adelard report.

CEillEC (1990), Fault tree analysis (FfA), CEUIEC standard 1025.
ESTEC, (1992) Guidelines for considering a software intensive system with FMECA studies.

QS/91/24 7/082/RA
IEC (1985), Analysis techniques for system reliability. Procedures for failure mode and effect

analysis (FMEA). IEC Standard publication 812.
Peter R. Harvey, (1982) Fault Tree Analysis of Software, Ph.D. Thesis, University of California.

Irvine.
Ministry of Defence (1991), Hazard Analysis and Safety. Classification of the Computer and

Programmable Electronic System Elements of defence Equipment. Standard 00-56/ Issue I.
Nancy Leveson and Peter R. Harvey, (1983) Software Fault Tree Analysis, Journal of Systems

and Software, no. 3, 173-181.
Nancy Leveson and Janice L. Stolzy, (1984) Software Fault Tree Analysis Applied to Ada,

COMPSAC, November 7-9, Chicago, USA, 458-466.
Thomas Maier, (1995) FMEA and FfA to support safe design of embedded software in safety­

critical systems, First annual ENCRESS Conference, Bruges, Belgium, 12- 15 September,
section 20.

Donald J. Reifer, (1979) Software Failure Modes and Effect Analysis, IEEE Transactions on
Reliability, vol. R-28, no. 3, August, 247-249.

Felix Redmill, (1993) Safety-critical Systems- Current issues, techniques and standards. Chap­
man & Hall, London.

Kjell Rydholm, (1995) FfA and FMECA for Software, EN CRESS seminar, Boras, Sweden, 29
November.

Tor Stiilhane, (1990) Fault Tree Analysis as Tool for Safety and Reliability, Second European
Conference on Software Quality Assurance, May 30- June 1, Oslo, Norway.

Tor Stalhane and Joe Gorman, (1995) Review of DSP Software, SINTEF memo 400407.37.
SINTEF, Trondheim.

9 BIOGRAPHY

Tor Stilhane was born in 1944 in Skien, Norway. He studied electrical engineering at the Tech­
nical University of Norway from 1964 to 1969. After this he worked with compiler development
and maintenance until 1985. He then had a four years leave to complete a Ph.D. in statistics,
which was finished in 1988. After returning to SINTEF, he has been working on software reli­
ability and safety plus software process improvement. He is associate professor in computer
science at the polytechnic in Stavanger, Norway.

Kari Juul Wedde was born in Steinkjer, Norway. She studied computer science at the Trond­
heim Engineering high school from 1970 to 1972. After that she has worked for SINTEF.
During this period she has combined practical work with theoretical studies in computer science
at the Technical University of Norway. Past experience include compiler development and
maintenance, software engineering environments and formal verification and validation of com­
munication systems. Current work includes software process improvement and distributed
software architectures.

