
1

Pythia: A regression test selection tool
based on textual differencing

F. /. Vokolos
AT&T Labs
Murray Hill, NJ, USA, +1-908-582-7127, email:filip@att.com

P G Frankl
Polytechnic University
Brooklyn, NY, USA, +1-718-260-3870, email: phyllis@morph.poly.edu

Abstract
Regression testing is a commonly used activity whose purpose is to determine whether the mod­
ifications made to a software system have introduced new faults. For many large, complex, soft­
ware systems the retest all strategy is not practical: the resources required to reexecute and
verify all available test cases (i.e., time and human effort) are prohibitive. Ad hoc methods are
not desirable, as they can compromise the reliability of the regression test activity and conse­
quently the reliability of the software system being tested. In this paper we present a new tech­
nique for selecting regression test cases based on the modifications that have been made on the
program. The technique, which is based on the idea of directly comparing source files from the
old and the new version of the program, has been implemented in a tool called Pythia. A novel
characteristic of Pythia, which is capable of analyzing large software systems written in C, is
that it has been implemented primarily through the integration of standard, well known, UNIX 1

programs.

Keywords
Regeression testing, selective regression testing techniques, regression test selection.

I. UNIX is a registered trademark of X/Open and licensed exclusively through X/Open Co. Ltd.

D. Gritzalis (ed.), Reliability, Quality and Safety of Software-Intensive Systems
© Springer Science+Business Media Dordrecht 1997

4 Part One Software Testing

1 INTRODUCTION

Most software systems that have been developed have used testing as the principal method to
determine whether the software deviates from the specified requirements. Typically, software
testing is carried out in different phases and there is a close relationship with the various phases
of the life-cycle. For example, at the time of module development unit testing is conducted.
When major software components are integrated to produce one or more of the subsystems
integration testing takes place. Finally when the system exists as a complete entity the software
undergoes system testing. Each of these testing phases varies in scope, but in theory the various
test phases should complement each other and share the same objective, that is, try to uncover
faults that have been created during the specification and/or implementation of the software.

The development of a typical software system requires a number of iterations between mod­
ule development and system testing and before the system is released to its user community.
Once the system is released, then the software enters the maintenance phase of the life-cycle.
During the maintenance phase the system will undergo many changes. Some of these changes
fix known faults, while others provide additional functionality. The amount of modification
made to the code to support these changes varies greatly from simple statement changes to a
complete rewrite of the system.

Our experience as developers and testers, as well as statistics referenced in the literature
[22], indicate that the likelihood of introducing faults while making modifications is substan­
tial. Software that has been modified, whether to fix a known fault, or to provide additional
functionality, should be retested with the following objectives: (i) ensure that the new specifi­
cations have been implemented correctly, (ii) establish that the modifications made to the code
have not introduced any new faults, and (iii) test those parts of the application that have not
been tested before. The process of retesting the software to determine that the modifications
have not introduced any new faults is known as regression testing. In theory, regression testing
should exercise all the test cases that were used to test the software before the modifications
were made. In practice, especially with large software systems, this is not practical, primarily
due to time and cost. In these situations the testing organization must decide which test cases to
use in their regression testing. Typically, testing organizations employ ad hoc selection meth­
ods; consequently, the regression testing effort, when completed, does not provide high level of
confidence that indeed the code modifications did not introduce any new faults.

Over the years, various techniques have been proposed, and some have been implemented,
to mechanize the process of identifying the test cases that should be included in the regression
test suite. These techniques vary on both the level of analysis being performed and on the
expected characteristics of the software system being analyzed.

In this paper we discuss a new technique that we have developed to select test cases for
regression testing. We call this technique textual differencing because it works by comparing
the program text from source files, rather than using an abstract representation of the program.
We have implemented this technique in a tool called Pythia which runs on the UNIX environ­
ment and which can be used to analyze software systems written in the programming language
C [17]. A novel characteristic of Pythia is that it has been implemented by integrating standard,
well known, UNIX programs.

The paper is organized as follows: Section 2 defines the terms used in this paper. Section 3
briefly overviews recent work in the area of test case selection for regression testing. Section 4
discusses the textual differencing technique and the implementation of Pythia. It also provides

Pythia: A regression test selection tool 5

a small example that illustrates how textual differencing works. Section 5 analyzes textual dif­
ferencing by using accepted criteria for the analysis of such techniques. We conclude in section
6 with a summary and our plans for future work.

2 TERMINOLOGY AND BACKGROUND

A program P is a collection of one or more functions. Each function consists of a collection of
statements <Sl' ... , S0 >. p' denotes a modified version of the program P. We use the terms old

version to refer toP and new version to refer toP'. A basic block is a sequence of consecutive
statements <S,, ... , Sm> with the property that control enters at the beginning statement Si and

may leave only at the very last statement sn.
A test case, denoted by ti, is an identifiable set of inputs accepted by the program along with

the output that results from the execution of the program, which we denote as P(t). We refer to
the set of test cases T = {t1, t2, ••• }used to test the program Pas the test suite for P.

The execution of P with input ti results in the execution of a sequence of program state­
ments, and by extension basic blocks, called the execution trace. ETiP(t)) denotes the execu­
tion trace of basic blocks for test case ti'

Selective regression testing refers to the strategy of retesting the modified program using
some subset of the available test suite. The test cases chosen by a selective regression test tech­
nique form the selected test suite.

A test case is considered to be modification-traversing [25] if it executed code that was sub­
sequently changed, inserted into P (to create P '), or deleted from P. A selective regression test­
ing technique is safe if it selects (from the available test suite) all the modification-traversing
test cases. Precision measures the extent to which a technique omits test cases that do not pro­
duce different outputs in P and P '.

If P and P' are executed on identical operating environments1 and T' is a safe subset ofT,
then executing T' on P' will detect any failures introduced by the modifications on P that T
would have detected. In the rest of this paper we assume that P and P' are executed on identical
operating environments.

3 OVERVIEW OF RELATED WORK

The subject of selective regression testing has received a fair amount of attention from the soft­
ware testing research community, especially in recent years [1], [2], [3], [4], [6], [9], [10], [11],
[12], [13], [18], [19], [20}, [21], [22], [24], [26], [29], [31]. Rothermel and Harrold have sur­
veyed and compared these techniques in [25]. In what follows in this section we discuss two
promising techniques capable of analyzing large software systems.

Rothermel and Harrold [24] have developed a regression test selection technique that is
based on the idea of creating control flow graphs (CFGs) to represent, and compare, P and P '.

I. We use the term operating environment to denote all the things that may influence the execution of the pro­
gram, such as h/w architecture, operating system, environment variables, exceptional interrupts, etc.

6 Part One Software Testing

The nodes in the CFG contain actual program statements. During the execution of P, a list of
all the edges traversed by each test case is maintained. The CFGs are compared by simulta­
neously traversing the nodes of each graph and looking for differences in either (i) the contents
of a node, or (ii) the contents of succeeding nodes. When differences are detected, the test
cases that have traversed the edges associated with these nodes are selected.

The Rothermel and Harrold technique supports both intraprocedural and interprocedural
analysis and is capable of detecting, with good precision, modification traversing test cases.
Two different prototype tools, DejaVul (for intraprocedural analysis) and DejaVu2 (for inter­
procedural analysis) have been developed to analyze C programs. The authors have used these
prototype tools on a large software system with encouraging results. However, as they point
out, they were not able to instrument, or run their implementation, on about 15% of the proce­
dures.

Chen, Rosenblum, and Vo [6] have developed a regression test selection technique based on
the idea of detecting modified code entities such as functions, variables, types, and preproces­
sor macros. Test cases that have traversed modified code entities form the selected test suite.
This technique has been implemented in a tool called TestTube, which has been developed
around existing analysis tools, namely app (the Annotation Preprocessor for C [23]) and CIA
(the C Information Abstractor [7]).

The guiding principle in developing the modified entities technique has been to reach a bal­
ance between efficiency and precision. The result has been a technique that is capable of fully
analyzing large software systems in C and which is considered to be the most efficient safe
regression test selection technique available [25]. However, the analysis performed is fairly
coarse-grained and as a result the technique is not as precise as the one developed by Rother­
mel and Harrold.

4 PYTHIA

Pythia is a UNIX-based regression test selection tool that can analyze software systems written
in C. It implements an analysis technique that we call textual differencing. The differentiating
characteristic of textual differencing (from other analysis techniques for the selective regres­
sion test problem) is that it compares source files from the old and the new versions of the
program, using a general purpose text comparison tool, in order to determine statement differ­
ences that may potentially affect the contents of the selected test suite. We feel that this is an
important characteristic in light of the fact that in the past, the idea of comparing source files,
using a general purpose file comparison tool, in applications that require a comparison between
two versions of a program (such as the selective regression test problem) has been viewed by
researchers as inadequate [25]. [30]. In summary, the characteristics of Pythia are:

It selects a safe regression test suite.
It can be used on stand alone C functions, as well as on software systems composed of
many C functions. That is, it supports both intraprocedural and interprocedural analysis.
It has been implemented primarily through the integration of existing, widely used,
UNIX programs.
The comparison between the two versions, P and P', is done by the well known UNIX
program di f f, directly on the program text, rather than on an abstract representation of
the program.

Pythia: A regression test selection tool 7

Instrumentation, for determining the execution trace of P, is done directly by the C com­
piler, during module compilation.
In principle, it can be easily extended to support other popular programming languages,
such as C++.

The major UNIX programs that have been integrated to implement Pythia are: cc, the C
language compiler, pretty, a beautifier for C programs, and diff, the general purpose file
comparison program. Pythia consists of the following stand-alone programs: kform, instr,
xqt, and txt. The program txt is written in Perl [28]; the other three programs are written in
KomShell [5]. A data flow diagram showing these components is shown in Figure 1. The func­
tionality of these programs and a high-level description on how Pythia works is as follows:

i. The source files for the old version of the program are converted -- using the program
kform-- into a canonical form. Kform is a script around the program pretty, the C
program beautifier.

u. The canonical files, i.e., the source files in canonical form, are instrumented and com­
piled using the program instr. Instrumentation is used to maintain a basic block exe­
cution trace for P. Instr is a script around cc, the C compiler.

iii. The program being tested is executed via the program xqt, which maintains a history
of test cases along with the basic blocks executed by each test case.

iv. After the development of the new program has been completed, the new source files are
also converted into canonical files with the program kform.

v. The program txt compares the old with the new canonical files, by calling the UNIX
program diff, and analyzes the differences, as reported by diff, to determine the set of
all test cases that have exercised modified statements.

The concept of a canonical form, the idea of using the C compiler for instrumentation, and
the comparison of source files with the program di f f are the essence of the technique and the
tool. In what follows we discuss these in more detail.

4.1 The Canonical Form

In general, it is non trivial to compare the program text from two different versions of a pro­
gram and get useful information regarding actual statement differences [14], [30]. Blank lines,
comment lines, stylistic differences, such as multiple statements on a single line, are some of
the obstacles. Figure 2 illustrates some of these differences.

To compare two source files, in a way that we can capture essential statement differences,
we must assume that these files have been written using consistent syntactic and stylistic
guidelines. Although it is unreasonable to expect that the person(s) developing and/or modify­
ing a program will adhere to such guidelines, it is possible to mechanically transform the
source code to satisfy such guidelines. Program beautifiers, or pretty-printers, have been used
extensively, especially by software projects with large development teams to get all the source
code into a consistent, pretty, style.

Pythia uses an existing C program beautifier to bring the source files into canonical form.
The canonical form serves two very important purposes: First, it helps filter out irrelevant
details that may hinder the comparison of the two programs. Second, because of the indenta­
tion of the program text, it allows us to use the text as an abstract representation of the program

8

old main()
source r.Jes lprintf("helloln"):

compuleX();

in
canonical
form

basic block
identifiers

test case
history

I

compuoeX()

I
.... ; x=x+ 1;

main()

I
prinlf("helloln");
compuoeX(); ,

compuoeX()

I
.... ;
X=:t+ J; ,

Part One Software Testing

Figure 1 Pythia data-flow architecture.

main()
lprintf("belloln");
compuleX();

I

compuleX()

I
.... ; x=x+2;

main()

I
printf("helloln");
compuleX();

I
compuleX()

I

I
x =x + 2;

regression
test suite

new
source files

in
canonical
form

Pythia: A regression test selection tool 9

during the analysis phase. We consider a source file to be in canonical fonn if it satisfies the
following conventions:

1. There is a single statement on a given line.
2. There are no comment lines.
3. Blank lines (other than the ones inserted by the C program beautifier) are removed.
4. There are no split lines.
5. The text has been indented using the guidelines of structured programming.

Figure 3 shows the canonical form of the, seemingly different, C programs in the files
old. c and new. c (Figure 2). The canonical form of all the C constructs (i.e., selection state­
ments, iteration statements, and jump statements) is described in [27].

1 I* old.c: A sample C program *I
2
3 main()
4 {
5 int x;
6
7 scanf("%d", &x);if(x==10)
8 { printf ("x is 1 0\n"); }
9 }

Figure 2 Two seemingly different programs.

1 main()
[2] {
3 intx;
4
5
6

scanf("%d", &x);
if (x == 10)
{

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

7
[8] printf("x is 10\n");
9 }
[10] }

I*
*new. c: The same program
* written in different style.
*I

main()
{

int x;

scanf ("%d", &x);

if(x == 10)
{

printf ("xis 10\n");
}

}

Figure 3 The canonical form of the files old. c and new. c. (Line numbers in square brack­
ets denote initial statements of basic blocks.)

10 Part One Software Testing

4.2 Code Instrumentation

Code instrumentation is a well known technique for tracing the execution of program entities,
such as statements, predicates, etc. One form of code instrumentation (the one typically used in
connection with software testing tools) works by inserting new statements in the code to act as
counters, during the execution of the program.

There are commercially available, as well as research, code instrumentation tools that one
can choose depending on the scope of the application. Typically, code instrumentation tools
will modify the source code. The modified source will then be compiled and linked to create
the executable program. Development and testing teams (especially the ones working on soft­
ware systems that are critical in nature) are concerned about using instrumented code when in
system testing and/or in production. The concern is centered around efficiency and, at times,
around reliability, as the executable comes from modified source.

Pythia takes a different approach with respect to instrumentation. Rather than using a tool
that modifies the source code, it uses the compiler directly to instrument and compile the
source code in a single invocation. Instrumentation is done through the option of the C com­
piler that maintains a list of all the basic blocks traversed during the execution of the program.
In theory, the instrumentation done by the compiler should represent a more desirable
approach, as one would expect that it would result in more efficient, and perhaps even more
reliable, executable code.

In Figure 3, and all subsequent examples, we have used square brackets around the line
numbers to denote the initial statement of each basic block. Although, ultimately, Pythia looks
at modified statements, knowing which basic blocks have been executed provides enough
information to do further analysis at the statement level. Actually, keeping track of basic block
execution traces is much more desirable than keeping track of statement execution traces as the
latter can be many times larger.

4.3 Source File Comparison

Given the source files in canonical form, Pythia uses the program di f f to get a list of the
statement differences between the old and new versions of the program. Knowing how these
two versions differ at the statement level, and having basic block execution traces, Pythia is
able to identify all the modification-traversing test cases.

Given two text files, di f f performs a line-by-line comparison and produces a prescription
using the operations change, add, and delete that will convert one file into another. For exam­
ple, the comparison between swi tchl . c and swi tch2 . c, shown in Figure 4, will produce
the following di ff output:

14&15, 16
> printf("CASE 200\n");
> break;
16c1B
< print£ ("CASE 200 or 300\n");

> print£ ("CASE 300\n");
26d27
< print£ ("end_of_program\n");

Pythia: A regression test selection tool

1 main() 1 main()
[2] { 2 {
3 intx; 3 int x;
4 4
5 scanf("%d", &x); 5 scanf("%d", &x);
6 if(x < 1000) 6 if (x < 1000)
7 { 7 {
[8] printf("x is less than 1000\n"); 8 printf("x is less than 1000\n");
9 switch (x) 9 switch (x)
10 { 10 {
11 case 100: 11 case 100:
[12] printf("CASE 100\n"); 12 printf("CASE 100\n");
13 break; 13 break;
14 case 200: 14 case 200:
15 case 300: 15 I printf("CASE 200\n");
[16] printf("CASE 200 or 300\n"); 16 break;
17 break; 17 case 300:
18 default: 18 l!!rintf("CASE 300\n");
[19] printf("NOT 100,200,or 300\n"); 19 break;
20 break; 20 default:
21 21 printf("NOT 100,200,or 300\n");
22 22 break;
23 else 23
24 24

[25] printf("x is .GE. to 1000\n"); 25 else
26 printf("end_of_program''); 26
27 } 27 I printf("x is .GE. to 1000\n");

[28] } 28 }
29 }

Figure 4 The files swi tchl. c and swi tch2. c.

Each operation reported by di ff is of the form:
nl,[n2] operation n3.[n4]

context_line(s)

11

where nl[,n2] represents ranges of lines in the first file, n3[,n4] represents ranges of lines in
the second file, operation is one of {add I change I delete}, and context_line(s) are all the lines
affected in both files. The lines prefixed with the less-than sign (<) pertain to the first, or in our
case old, file. The lines prefixed with the greater-than sign (>) pertain to the new file. For
example, the first operation reported by the command $di ff swi tchl. c swi tch2 . c,
14&15, 16, indicates that the lines printf ("CASE 200\n") ; and break; should be added
after line 14 in the file swi tchl . c. The second operation, 16c1B, indicates that the 16th
line in switchl. c printf ("CASE 200 or 300\n" J; should be replaced with the line
printf ("CASE 300\n" J;. Finally, the operation, 26d27, says that the 26th line of the file
swi tchl. c printf ("end_of_program\n"); should be deleted.

12 Part One Software Testing

The effect that the operations add, change, and delete have on the statements and keywords
of the various C constructs (i.e., selection statements, iteration statements, and jump state­
ments) has been studied by the authors and appears in [27].

In analyzing the di f f output, Pythia processes each operation, along with its
context_line(s), separately. Before processing these operations, Pythia uses the algorithm
ComputeBnclosingBasicBlock, discussed in section 4.4, to identify the basic block
associated with a given statement. In the context of textual differencing, the add operation is
treated slightly different from the change and delete operations. In what follows, we discuss
the semantics of each operation, with point of reference the first (or old) source file, and how
we deal with each operation.

The operation add
The operation add is specified as:

nlan3[,n4]

context_line(s)
and the meaning of the operation is: Add the context_line(s) immediately following line nl.

When the add operation is reported by di f f, all the test cases that have executed that basic
block associated with the statement nl are selected. In processing the add operation, Pythia
uses the assignment of basic blocks to statements as it was computed by the algorithm Com­
puteBnclosingBasicBlock. In some special cases, in order to increase its precission,
Pythia overwrites some of these assignments. That is, it associates a statement with a new basic
block number. These special cases are:

i. When new statements are inserted after the left curly brace ({) that follows the state­
ments: if (...) . while (...) , and for (...) .

ii. When new statements are inserted after the right curly brace (}) that encloses the then
clause of an if-e 1 s e construct.

iii. When new statements are inserted after the right curly brace (}) that encloses the else
clause of an if -else construct.

iv. When new statements are inserted after a case statement of the switch construct.

In each of these cases, the basic block used is the basic block assigned to the next statement.

The operation change
The operation change is specified as:

nl[,n2]cn3[,n4]

context_line(s)
and the meaning of the operation is: Replace all the lines specified by the range nl[,n2] with
all the lines specified by the range n3[,n4] of the second (or "new") source file.

Unlike the add operation, the change operation may involve multiple statements. All of
these statements are specified in context_line(s) and are prefixed with the less-than sign (<).
Since it is possible that two different statements may belong in two different basic blocks, each
statement in the range nl[,n2] is processed separately. All the test cases that have traversed the
basic block associated with each of the statements in the range nl,n2 are selected.

Pythia: A regression test selection tool

The operation delete
The operation delete is specified as:

nl[,n2]dn3

context_line(s)
and the meaning of the operation is: Delete all the lines specified by the range nl [,n2].

13

The delete operation is similar to the change operation, in that they both specify multiple
lines that are modified in the first file. As a result, the delete operation is handled the same way
as the change operation.

4.4 Program Statements and Basic Blocks

As a general purpose text comparison tool, diff doesn't provide any information regarding
the relationship between program statements and basic blocks. This relationship is essential for
textual differencing, since on the one hand there exist basic block execution traces (from the
instrumentation and execution phases) and on the other statement differences. To associate
modified statements to basic blocks Pythia uses the algorithm ComputeEnclosingBa­
sicBlock, a summary of which is shown in Figure 5.

ComputeEnclosingBasicBlock ()
(

II INPUTS: An array which contains the source file in canonical fonn.
II An array which contains the initial statement of each basic block.
II OUTPUTS: An array with the basic block number for each statement.
II VARIABLES: level: the indentation level of a statement.
II monitor: the line # of the initial statement of a basic block.

Get the first monitor;
Mark all the statements of the program with the first monitor;
While there are more monitors to process

Get the next monitor;
Go to the statement pointed to by monitor;
Mark that statement with the monitor;
Let A be the level of that statement;
If (line n-1 is a "(" @ level A-1 &&

line n-2 is the keyword "else" @ level A-1)
Mark the lines n-1 and n-2 with the monitor;

If (line n-1, is a label starting on column 1)
Mark the line n-1 with the monitor;

Mark all following statements @ level == A with the monitor
until either a statement @ level == A-1 I

end_of_function (i.e., } in the 1st column) I
the EOF is found;

If (the statement@ level== A-1 is the "}" of an else clause
Mark the "}"with the same monitor as the "else" keyword;

Figure 5 A summary of the algorithm ComputeEnclosingBasicBJock.

14 Part One Software Testing

The algorithm is actually invoked before processing the output from di f f. With the use of the
indentation of the program text, which is part of the canonical form, in a single pass, it associ­
ates each statement in the file with the appropriate basic block.

In essence, after the execution of ComputeBnclosingBasicBlock, Pythia "knows"
which basic blocks have been modified and it can then easily select (by "looking" at the basic
block execution traces) all the test cases that have executed modified basic blocks.

4.5 An Example

We now consider an example to illustrate the textual differencing technique. The example we
use is based on a C function written by I.S. Dunietz to raise a floating point number to an inte­
ger power, using Dijkstra's algorithm. The function power () appeared as part of the docu­
mentation for the addmon family of tools [8].

The program, called power, consists of two files: main. c and power. c.; each file con­
tains one function. The old version of the program is shown in Figure 6. The new version is
shown in Figure 7. For the benefit of space we assume that the first step of textual differencing
(i.e., bringing the source files into canonical form) has been completed and show these files in
their canonical forms.

The initial version of the program was tested using the set oftest cases T = (tl' t2, t3, t4, t5 }.

The input and output values for each test case are shown in the table below:

id: input value output value

tl: -5.0 2 25

t2: -3.03 27 incorrect

t3: 2.0° I

t4: 1.04 I

's= o.o-1 0

Test case t2 revealed a fault for the case of a negative base with a positive, odd, exponent. For

all other test cases the program computed the correct values.
The basic block execution trace for each function was as follows:

{14,22)

ET8(power({t1}) = {4, 15, 17, 20, 22, 24, 26, 29, 31, 37)

ET8(power({t2)) = {4, 15, 17, 20, 22, 24, 26, 29, 31, 37)

ET8(power({t3}) = {4, 15, 17, 22, 31, 37)

ET8 (power({t4}) = {4, 15, 17, 22, 24, 26, 29, 31, 37)

ET8 (power({t5}) = {4, 10, 17, 22, 24, 29, 31, 37)

The power program was modified to address the following:

Pythia: A regression test selection tool 15

i. Correct the exit (0) statement on line 20 in the function main () .
ii. Provide an error message whenever the program is invoked with incorrect number of

arguments.
iii. Correct the fault revealed by t2•

The modified and new statements are highlighted in Figure 7.
The comparison of the old and the new versions of the file main. c produced the following

di f f output:
:ZOc:ZO,:Zl

<

>
>

exit (0);

printf("Illegal number of arguments\n");
exit(l);

In analyzing this output the program txt determined that, since the statement on line 20
was replaced by two different statements, it has to select all the test cases that went through
that statement. The statement on line 20 defines a basic block and as a result txt selected all
the test cases that executed the basic block on line 20. Since none of the test cases appear in the
execution trace of that basic block, txt returned the null set.

The comparison of the old and the new versions of the file power . c produced the follow­
ing di f f output:

:ZOa:Zl,Uo

> if (n % 2 -- 1)
> (

> sgn -1;
>

In analyzing this output the program txt determined that, since new code was inserted
immediately following the statement on line 20, it has to select all the test cases that went
through that statement. The statement on line 20 defines a basic block and as a result txt
selected all the test cases that executed the basic block on line 20. The execution trace indicates
that only two test cases, namely t1 and t2, went through that basic block.

As a result of this analysis, Pythia returned the following set of test cases:

Selected Test Suite = 0 u { t 1, t2}

16 Part One Software Testing

1 extern double power(); 1 double power(x, n)
2 2 double x;
3 extern double atof(); 3 register int n;
4 [4] {
5 extern int atoi(); 5 int recip, sgn;
6 6 double y;
7 extern void printf(); 7
8 8 if (n <0)

9 extern void exit(); 9 {
10 [10] recip = 1;
11 main(argc, argv) 11 n =-n;
12 int argc; 12 }
13 char *argv[]; 13 else

[14] { 14 {
15 double x; [15] recip = 0;
16 intn; 16 }
17 [17] sgn = 1;
18 if (argc != 3) 18 if (x < O.OeO)
19 { 19 {

[20] exit(O); [20] x = -x;
21 } 21 }

[22] x = atof(argv[l]); [22] for (y = l.OeO; n > 0; ·-n)
23 n = atoi(argv[2]); 23 {
24 printf("power(%.1f, %d) =\n", x, n); [24] while (n % 2 == 0)
25 printf(" %g\n\n", power(x, n)); 25 {
26 } [26] x *=x;

27 n/=2;
28 }
[29] y *=x;
30 }

[31] if (recip != 0 && y != O.OeO)
32 {
[33] return (sgn * l.OeO I y);

34 }
35 else
36 (

[37] return (sgn * y);

38 }
39 }

ma~n.c power.c

Figure 6 Old version of the program power.

Pythia: A regression test selection tool 17

1 extern double power(); 1 double power(x, n)
2 2 double x;
3 extern double atof(); 3 register int n;
4 4 {
5 extern int atoi(); 5 int recip, sgn;
6 6 double y;
7 extern void printf(); 7
8 8 if(n<O)
9 extern void exit(); 9 {
10 10 recip = 1;
11 main(argc, argv) 11 n=-n;
12 int argc; 12 }
13 char *argv[]; 13 else
14 { 14 {
15 double x; 15 recip = 0;
16 int n; 16 }
17 17 sgn = 1;
18 if (argc != 3) 18 if (x < O.OeO)
19 { 19 {
20 ~ printf("IIIegal number ofarguments\n");l 20 x = -x;
21 exit(1); 21 if(n%2==1)
22 } 22 {
23 x = atof(argv[1]); 23 sgn = -1;
24 n = atoi(argv[2]); 24 }

25 printf("power(%.1£, %d) =\n", x, n); 25 }
26 printf("%g\n\n", power(x, n)); 26 for (y = l.OeO; n > 0; --n)
27 } 27 {

28 while (n % 2 == 0)
29 {
30 x *::::: x;
31 n /= 2;
32 }
33 y *= x;
34 }
35 if (recip != 0 && y != O.OeO)
36 {
37 retnrn (sgn * l.OeO I y);
38 }
39 else
40 {
41 retnrn (sgn * y);
42 }
43 }

rnain.c power.c

Figure 7 New version of the program power.

18 Part One Software Testing

5 ANALYSIS OF TEXTUAL DIFFERENCING

Rothermel and Harrold have developed a framework for evaluating selective regression testing
techniques. The framework consists of the following four categories: inclusiveness, precision,
efficiency, and generality. Rothermel and Harrold have used this framework to analyze and
compare known selective regression testing techniques [25]. In what follows we use the
Rothermel and Harrold framework to analyze the textual differencing technique.

Inclusiveness: Textual differencing is a safe selective regression testing technique. That is,
it will select all modification-traversing test cases. To see this consider the following:

Diff will identify all statements that are different between P and P'. The analysis of the
diff output will consider each statement that appears in context_line(s), and which is pre­
fixed with the less-than sign (<), separately to determine the associated basic block. Conse­
quently, at the end of the analysis test cases will be selected for all modified statements.

Precision: Textual differencing, like all other known techniques, is not 100% precise for
arbitrary programs. This means that textual differencing, in addition to the modification-tra­
versing test cases that will select, it may also select a number of test cases that are not modifi­
cation-traversing.

The imprecision is due to the following: Like the techniques of Rothermel and Harrold, and
Chen, Rosenblum, and Vo, textual differencing considers statement differences without any
further semantic analysis. As a result, changes that do not affect in any way the behavior of the
program (e.g., while (0==0) vs. while (1==1)) will be flagged and all test cases that have
traversed the modified statements will be selected. Second, on a small number of occasions the
current implementation of textual differencing will opt for efficiency and safety over precision
[27]. Finally, the di f f program, in its attempt to report the minimum number of line changes
necessary to convert one file into the other, may include statements in the operations it pre­
scribes that have not been modified. These statements will be analyzed and all test cases that
traversed these statements will be selected.

Efficiency: As we mentioned in section 4, textual differencing consists of four major, dis­
tinct, steps, which are carried out in sequence: (i) the transformation of the original source files
of P into canonical form, (ii) the instrumentation of P's canonical files, (iii) the transformation
of the original source files of P' into canonical form, and (iv) the source file comparison.

Steps (i) and (ii) have time complexity linear in the size (i.e., number of statements) of P,
thus 9(1PI). Both of these steps are performed during the testing phase of P and thus they do
not consume any of the time available for regression testing.

Steps (iii) and (iv) are performed during regression test time. Step (iii) has time complexity
linear in the size of P', thus 9(1P'I). The time complexity of the comparison of the source files,
in step (iv), is dominated by the time required for diff, which in the worst case has time com­
plexity O(IPI*IP'I*logiPI) [15]. In practice, diff has been used extensively on large software
systems in connection with version control programs with acceptable performance. We feel
comfortable, that in practice, the computational cost of textual differencing will be reasonable.

Generality: Textual differencing handles all forms of code modifications: insertion, dele­
tions, and modifications of statements. It works equally as well on both intraprocedural and
interprocedural regression testing. Although the technique has been implemented for C pro­
grams, in principal it can be easily extended to programs written in languages for which there
exists tools to perform basic block instrumentation and to transform the original source into
canonical form.

Pythia: A regression test selection tool 19

6 CONCLUDING REMARKS

We have presented a safe regression test selection technique which is based on the idea of com­
paring source files to determine statement differences between two versions of a program.

We have developed a tool called Pythia that implements the technique. Pythia is capable of
fully analyzing large software systems written in C. Analytical studies [27] show that the tech­
nique is fairly precise, when compared to other available techniques. We believe the precision
combined with the fact that Pythia has been developed by integrating exiting, well known,
UNIX programs will make it attractive to development and testing organizations.

Our experience in using Pythia with small programs has been very encouraging. We are
planning to conduct empirical studies using Pythia on large software systems to determine its
overall effectiveness in practice. If the results from these studies indicate that indeed Pythia is a
valuable tool in selecting a regression test suite, then we'll port Pythia on other languages,
most likely C++. In the mean time, we are working to increase the precision of the technique
by carefully examining the effect of likely modifications on various C constructs, such as the
one specified by the switch statement.

7 ACKNOWLEDGMENTS

The work on Pythia has been inspired by the work of Yih-Fam Chen, David Rosenblum and
Kiem-Phong Vo on TestTube. David Rosenblum, Phong Vo, and Larry Wehr made several
important observations and suggestions during the early phases of this work.

8 REFERENCES

[1] Agrawal, H., J.R. Horgan, E.W. Krauser, and S.A. London. "Incremental Regression
Testing", Proc. Conf. on Software Maintenance 1993, pp. 348-357, [Sep. 1993].

[2] Bates, S., and S. Horowitz. "IncremeJ;J.tal Program Testing Using Program Dependence
Graphs", Proc. 20th ACM Symp. on Principles of Programming Languages, 9(9), pp.
384-396, [Jan. 1993].

[3] Benedusi, P., A. Cimitile, and U. De Carlini. "Post-maintenance Testing Based on Path
Change Analysis", Proc. Conf on Software Maintenance 1988, pp. 352-361, [Oct.
1988].

[4) Binkley, D. "Using Semantic Differencing to Reduce the Cost of Regression Testing",
Proc. Conf on Software Maintenance, pp. 41-50, [Nov. 1992].

[5] Bolsky, M.I., and D.G Korn. The Korn Shell Command and Programming
Language. Prentice-Hall, Inc., Englewood Cliffs, NJ, [1989].

[6] Chen, Y-F., D.S. Rosenblum, and K-P. Vo. "TestTube: A System for Selective Rgression
Testing", Proc. 16th Int. Conf on Software Engineering, pp. 211-220, [May 1994].

[7] Chen, Y-F., M. Nishimoto, and C.V. Ramamoorthy. "The C Information Abstraction Sys­
tem", IEEE Transactions on Software Engineering, SE-16(3), pp. 325-334, [March
1990].

20 Part One Software Testing

[8] Dunietz, I.S. "The addmon Family of Tools", AT&T Bell Laboratories Technical Memo­
randum, 103122000-930426-01TMS, [May 1993].

[9] Fisher, K., F. Raji, and A. Chruscicki. "A Methodology for Retesting Modified Soft­
ware", Proc. National Telecommunications Conf 1981, pp. B6.3.1-B6.3.6, [Nov.
1981].

[10] Gupta, R., M.J. Harrold, and M.L. Soffa. "An Approach to Regression Testing using Slic­
ing", Proc. Conf on Software Maintenance, pp.299-308, [Nov. 1992].

[11] Harrold, M.J., and M.L. Soffa. "An Incremental Approach to Unit Testing During Main­
tenance", Proc. Conf on Software Maintenance 1988, pp. 362-367, [Oct. 1988].

[12] Hartmann, J., and D.J. Robson. "Approaches to Regression Testing", Proc. Conf on Soft­
ware Maintenance 1988, pp. 368-372, [Oct. 1988].

[13] --·"Techniques for Selective Revalidation", IEEE Software, 7(1):31-36, [Jan. 1990].
[14] Horwitz, S. "Identifying the Semantic and Textual Differences between Two Versions of

a Program", Computer Science Technical Report #895, Univ. of Wisconsin,
[Nov. 1989].

[15] Hunt, J.W., and M.D. Mcilroy. "An Algorithm for Differential File Comparison", Com­
puter Science Technical Report 41, Bell Laboratories, [1975].

[16] Hunt, J.W., and T.G. Szymanski. "A Fast Algorithm for Computing Longest Common
Subsequences", Comm. ACM, 20(5), pp.350-353, [May 1977].

[17] Kernighan, B.W., and D.M. Ritchie. The C Programming Language. Prentice­
Hall, Englewood Cliffs, NJ, [1978].

[18] Laski, J., and W. Szermer. "Identification of Program Modifications and its Application
in Software Maintenance", Proc. Conf on Software Maintenance 1992, pp. 282-290,
[Nov. 1992].

[19] Leung, H.K.N., and L. White. "A Study of Integration Testing and Software Regression
at the Integration Level", Proc. Conf on Software Maintenance 1990, pp. 290-301,
[Nov. 1990].

[20] --· "Insights into Testing and Regression Testing Global Variables", Journal of Soft­
ware Maintenance, 2, pp. 209-222, [Dec. 1990).

[21] --. "A Cost Model to Compare Regression Test Strategies", Proc. Conf on Software
Maintenance 1991, pp. 201-208, [Oct. 1991].

[22] Ostrand, T.J., and E.J. Weyuker. "Using Data Flow Analysis for Regression Testing",
Proc. 6th Annual Pacific Northwest Software Quality Conf, pp. 233-247, [Sep. 1988].

[23] Rosenblum, D.S. "Towards a Method of Programming With Assertions", Proc. 14th Int.
Conference on Software Engineering, pp. 92-104, [May 1992].

[24] Rothermel, G., and M.J. Harrold. "A Safe, Efficient Regression Test Selection Tech­
nique", Ohio State University Technical Report, OSU-CISRC-4/96-TR25, to appear
in: ACM TOSEM.

[25] --. "Analyzing Regression Test Selection Techniques", to appear in: IEEE Transac­
tions on Software Engineering, 1996.

[26] Sherlund, B., and B. Karel. "Modification Oriented Regression Testing", Conf Proc.
Quality Week 1991, pp. 1-17, [May 1991].

[27] Voko1os, F.I. "A Regression Test Selection Technique Based on Textual Differencing",
Ph.D. diss., Polytechnic University, (in preparation).

[28] Wall, L., and R.L. Schwartz. Programming perl. O'Reilly & Associates, Inc.,
Sebastopol, CA, [Jan. 1991].

Pythia: A regression test selection tool 21

[29] White, L.J. et al. "Test Manager: A Regression Testing Tool", Proc. Conf on Software
Maintenance 1993, pp. 338-347, [Sep. 1993].

[30] Yang, W. "Identifying Syntactic Differences Between Two Programs", Software- Prac­
tice and Experience, 21(7), pp. 739-755, [July 1991].

[31] Yau, S.S., and Z. Kishimoto. "A Method for Revalidating Modified Programs in the
Maintenance Phase", COMPSAC '87: The 11th Annual Int. Computer Software and
Applications Conf, pp. 272-277, [Oct. 1987].

