
15

A Guide to Manage
New Software Engineering Tools

L. Mathiassen
Computer Information Systems, Georgia State University
Atlanta, GA 30302-4015, USA,
Phone: 404 651 0348, Fax: 404 651 384
larsm@cs.auc.dk

C. S¢rensen
Department of Informatics, Goteborg University
S-400 10 Goteborg, Sweden
Phone: 31 773 2734, Fax: 31 773 4754
carsten@adb.gu.se, and
Warwick Business School, Warwick University
CV4 7 AL Coventry, United Kingdom
Phone: 1203 522 449, Fax: 1203 524 965
wbsrbcs@wbs.warwick.ac.uk

Abstract
Software organizations manage new software engineering tools through initiatives
aimed at improving software processes and products. Each new initiative raises a
number of engineering and management questions. As engineers we are feature arxl
system oriented; we tend to focus on what a new tool can be used for. As managers
we are effect and process oriented; we concentrate on how to implement the tool into
the existing organizational and technical environment.

The purpose of this paper is to direct attention and guide action in managing new
software engineering tools. Based on established theories of software and technology
assimilation we present key decisions, generic options and underlying rationales
involved in designing initiatives. This involves a discussion of five key questions:
why adopt a specific tool, what to use the tool for, which roles to support, where to
use the tool, and how to manage the assimilation process.

Keywords
Software tool management, innovation initiatives, guide action

T. McMaster et al. (eds.), Facilitating Technology Transfer through Partnership
© IFIP International Federation for Information Processing 1997

258 Part Five Facilitating Software Processes

1 INTRODUCTION

Organizations adopting new software engineering tools often experience difficulties
during adoption and unsatisfactory results. This is well docwnented in the CASE
(Computer Aided Software Engineering) literature (Wijers and van Dort, 1990; Aaen
et al., 1992; Wynekoop et al., 1992; S~rensen, 1993). Managing assimilation
initiatives successfully is definitely problematic and it is often a rather complex
process (Gibson and Nolan, 1974; Rogers, 1983; Parkinson, 1990; Galliers ard
Sutherland, 1991; Cash et al., 1992; Wynekoop et al., 1992; Orlikowski, 1993).
One important reason for this is the great variety of options available for each new
initiative and the considerable difficulty involved in managing these options
intelligently.

Let us consider two examples of new software tool initiatives, one in a bank ard
one in a manufacturing company. The IT (Information Technology) department of a
large bank conducts its preliminary investigation of CASE tools in 1988. The
conclusion is drawn that the tool is not yet sufficiently mature. A similar
investigation is carried out in 1992. Two different CASE tools are tested, but
finally, based on a visit by IT management to a CASE vendor, a decision is made to
invest in a third tool with a mainframe based repository and axlegenerator.
Immediately, five trail blaze projects are initiated to ensure a fast implementation
process and widespread usage of the tool in all new projects. Management's
expectations focus on technical improvements of the organizations software
processes (e.g., homogeneous development environment, increased productivity,
improved debugging and quality assurance, reusability, and automatic
codegeneration). During 1993, more projects are initiated. But at the same time, it
becomes apparent that the installation of new application systems create severe
technical problems. In addition, a couple of diagnoses indicate that the expected
technical improvements have not been met, and it also becomes apparent that the
new tool requires some unexpected changes in patterns of collaboration in software
development.

In 1988, in a completely different organizational setting, a large producer of
electronic equipment starts using object-oriented technologies to develop embedded
software. The first two years are charncterized by ad hoc attempts to use new object­
oriented approaches and programming languages, and the change process is primarily
based on individual initiatives. As a result, some projects are delayed and the quality
of software is acknowledged to have contributed to the company beginning to loose
money. A management decision is consequently made in 1992 to systematically
implement a specific object-oriented approach in all projects. Educational activities
are initiated and a support function is established to help projects use the new
approach. To facilitate the effective implementation of the object-oriented approach,
a decision is made to invest in an inexpensive, PC based diagram drawing tool
supporting analysis and design. Few expectations regarding productivity gains are
attached to the introduction of this tool. The real challenge is the transformation to
object-oriented technologies. The new tool is considered to have provided tangible
support. However, it is unclear when further tool initiatives should be taken.

A guide to manage new software engineering tools 259

These two examples illustrate extremes in management of new software
engineering tools. In the bank, a large investment is made. CASE is perceived by IT
management to be a key instrument in making the software processes more effective.
Considerable resources are invested in creating a fast implementation process in the
entire organization. In the production company, an investment is made in a rather
inexpensive graphical tool to supplement existing editors, compilers and debuggers.
The purpose is to support a new analysis and design methodology. The resources
directed towards implementing this new approach, whilst the implementation of the
tool is seen as unproblematic.

Supporting software development by new software engineering tools is, in
general, an important issue in managing IT. Tools such as editors, compilers,
linkers and debuggers provide basic support, but a whole range of tools provide
support for work on development products other than the source code, e.g.:
configuration management tools support the process of managing changes to work
products; dagramming tools support the documentation and communication of
design decisions in the development process; CASE tools supports various stages in
the development process; amgroupware technology supports project coordination,
communication, and collaboration.

The following discussion addresses the management challenge from a practical
perspective. We suggest a simple framework, that can help focus attention and guide
action in managing the assimilation of new software engineering tools. The Bank
and Production Company cases are used to illustrate the framework throughout the
article. The two cases does not serve as empirical evidence. The discussion is OOsed
on established theories on software technology (Henderson and Cooprider, 1990;
Fournier, 1991; Lyytinen et al., 1991; Vessey et al., 1992; Vessey and Sravanapudi,
1995) and technology assimilation (Gibson and Nolan, 1974; Rogers, 1983;
McKenney and McFarlan, 1990; Cash et al., 1992; Wynekoop et al., 1992;
Orlikowski, 1993). The framework is structured using the following five questions,
discussed in the corresponding sections:

Section 2: Why adopt a specific tool?
Section 3: What to use the tool for?
Section 4: Which roles to support?
Section 5: Where to use the tool?
Section 6: How to manage the assimilation process?

For each question, we present and discuss options and rationales, and we conclude
with a summary of our recommendations. Throughout the paper our focus is on
managing a specific initiative-either when taking the first steps in implementing a
new software engineering tool in an organization, or when attempts are made to
diffuse the tool further. We recommend that all five questions are addressed in each
new initiative to create a comprehensive basis for effective management of the
implementation process.

260 Part Five Facilitating Software Processes

2 WHY ADOPT A SPECIFIC TOOL?

A crucial determining factor for the success or failure of an initiative to assimilate a
new software engineering tool is its' rationale-the underlying reasons for taking the
initiative. Such reasons create specific expectations, they influence the motivation
and attitude of those involved, and in the end they influence whether the initiative is
later seen as a success or failure. Management should always explicitly consider:
Why take a software technology initiative?

A considerable number of reasons can be proported for taking initiatives, e.g.,
improved productivity or quality, the importance of experiencing use of the tool, the
requirement for application of a specific tool in a contract, and the adoption of new
methodologies requiring computerbased support (Aaen and Sf/.lrensen, 1991; Aaen et
al., 1992). This variety of reasons stem from two fundamental options:
organizational pull, where the reason for taking a new initiative is organizational
needs or demands usually triggered by a performance gap, and technology push,
where the promise of enhanced organizational performance provides a reason for
introducing new software engineering tools (Zmud, 1984; Ljungberg and S!'Srensen,
1996). Hence, two types of qualitative different arguments apply when considering
the options for the introduction of a new initiative. We can argue that new software
engineering tools are needed and useful in mature software processes, implying
positively that software engineering tools are needed to support effective software
development. However, we can argue conversely that implementation of such tools
into immature software processes has the potential to make things worse. From a
complementary viewpoint we can argue that diffusion of software engineering tools
is a leverage for increased software process maturity. This position is optimistic,
suggesting that new initiatives, if handled properly, can contribute to a positive
development on all levels of software process maturity.

Humphrey and Curtis have promoted a convincing line of arguments in favor of
basing CASE initiatives on organizational pull. They have used the five level
Capability Maturity Model (CMM) to link software process maturity to CASE
considerations (Humphrey, 1989a; Humphrey, l989b; Curtis, 1992). They reach the
conclusion that in order to fully utilize CASE technology and obtain productivity
benefits, the software process needs to have reached level 4, i.e., the managed level
of maturity:

"Oru:e the process has come under management control, it is possible to begin
defining the tools that will benefit the engineering process." (Curtis, 1992)

Curtis concludes that using CASE in software processes at the initial level (level 1)
will have little effect. Software processes near or at level 2, where the primary goal
is to establish management control over the process, can benefit from using project
management tools. Towards level 3 CASE might be used in analysis and design
activities, and once level 3 has been reached, some tools will suggest themselves.
Curtis notes that the usage of CASE at level 4 (managed) and 5 (optimized) can
provide essential quantitative data from projects.

A guide to manage new software engineering tools 261

The argument is convincing, but based on very rational ideals. We have proposed
a set of complementary considerations in favor of a strategy which relies more on
technology push (Mathiassen and S!llrensen, 1996). Also based on a technology push
position, Tate et al. (1992) link the discussion of CASE and CMM to software
process modeling, measurement and management, and argue that CASE can be
viewed as "a major technological agent on which improvement is focused". We
argue, that the benefit of a particular software engineering tool depends strongly on
what the tool is used for (see Section 3), who the users are (see Section 4), ani
where the tool is used in the organization (see Section 5). More fundamentally,
March proposes a view of organizations and people that challenges the basic
assumptions of CMM:

"Interesting people and interesting organizations construct complicated theo­
ries of themselves. In order to do this, they need to supplement the technology of
reason with a technology of foolishness. Individuals and organizations need ways
of doing things for which they have no good reason. Not always. Not usually.
But sometimes. They need to act before they think." (March, 1976)
CMM relies on technologies of reason. March provides a different framework for

interpreting the mismatch between the extensive investments made in software
engineering tools and the rather minimal benefits achieved so far. Sometimes
organizations need to experiment. They need to act before they think. Introducing
new software engineering tools might be a useful approach to formulate operational
goals concerning the use of advanced technologies and to initiate a fundamental
transition process in a software organization.

In both cases introduced above, the underlying rationale is supported actively by
IT management. In the Bank Case, the rationale is mainly technology push
combined with some organizational pull. The initiative is driven by the belief that
CASE technology will lead to a more effective software operation. In the Production
Company Case the rationale is mainly organizational pull. A new object-oriented
approach creates a need for effective tools to create, develop and communicate
models, diagrams and documents.

In summary, there seems to be convincing arguments for both rationales.
According to Zmud, however, the literature on technical innovations confirms our
intuition that, in general, initiatives that are mainly pull driven have higher
probability of success than initiatives based mainly on push arguments (Zmud,
1984). More importantly-based on his own study of the adoption of modem
software practices in a number of software organizations-Zmud concludes that the
success of initiatives to assimilate new software engineering tools is positively
related to the existence of favorable management attitudes towards the initiative
(Zmud, 1984). In other words, initiatives can be based on a combination of
arguments, but the underlying rationale must contain a considerable element of pull
arguments. In addition, it is important that the underlying rationale is actively
supported by IT management.

262 Part Five Facilitating Software Processes

3 WHAT TO USE THE TOOL FOR?

Software tools can potentially support a number of software engineering functions.
When taking a new initiative, it is important to determine what particular software
engineering functions to support. If we characterize software engineering tools
according to features, we end up with an enormous list. Several frameworks
characterizing dimensions of functionality have been suggested. Henderson &
Cooprider (1990) divide tool functionality into the two categories: production
technology, coordination technology, with a third, organizational technology, being
dependent of the two others. Lyytinen et al. (1991) suggests analyzing four different
aspects of tool functionality: technical, communicational, organizational, and meta.
Both of these frameworks are quite complex with several sub categories.

Our more simple view suggests that a new initiative involves choosing between,
or mixing, three main options. The first option is to aim for tools to support
specific engineering functions. The second option is to aim for tools to serve as
media for collaboration. The third option is to aim for software process management
tools.

Software engineering tools can support individual developers basically perform
engineering work through analysis, design and programming. Analysis and design
activities result in models of the software to be used for documentation purposes.
Software tools can, for example, support this by providing data dictionary aro
diagramming facilities. Programming activities result in software which is going to
be part of executable systems. Software tools can support this by providing an
integrated programming environment making it possible to automatically generate
code based on refined design morels.

Software engineering tools can also reduce the complexity of collaboration,
communication and coordination of development activities. This can be done, either
by supporting configuration management of both models and software-meshing
work products using classification structures-or by support for coordination
activities, i.e., stipulating who is doing what, when, how and why.

Software engineering tools can finally support the management functions of
planning, monitoring and controlling the software process. The tools can facilitate
better monitoring of status and progress and support improved planning a00
estimation by providing more tangible empirical data from projects (Aaen aro
S~rensen, 1991; Curtis, 1992).

Matching the nature of the functions to be supported by new software
engineering tools and the capabilities of the adopted software technology is crucial
for the success of an initiative. Asking the question "What functions to support?" is
closely related to an organizational pull rationale. It is a question of which facilities
the tool must possess in order to support the intended functions. New software tools
might, however, be part of a technological push by providing options not previously
recognized.

A guide to manage new software engineering tools 263

In the Production Company Case, the aim is only to support modeling am
configuration management functions. As a result of this decision, a relatively
inexpensive software tool is adopted. In the Bank Case, the organization aims for a
one pass implementation strategy, with CASE tool support for engineering,
collaboration and management functions. If an organization, as in the Bank Case,
primarily base its implementation strategy on a technology push rationale am
invests in a comprehensive software tool, then there will be a significant temptation
to aim for ambitious initiatives implementing support for a broad range of software
functions-a "big bang" approach (Parkinson, 1990). This, of course, presents a
major problem from the point of view of organizational learning (a point to be
elaborated in the last section). Furthermore, state-of-the-art software engineering
tools only partly support the software process functions. Apart from supporting
engineering functions, software tools provide some support for configuration
management. They also provide significant support for managing the software
process (Aaen and S!llrensen, 1991; Tate et a!., 1992). But software engineering
tools, such as programming environments and CASE tools do not yet sufficiently
support coordination among developers (Lyytinen and Tahvanainen, 1992; S!llrensen,
1995; Vessey and Sravanapudi, 1995). It is, therefore, important to introduce
alternative means for supporting this coordination, e.g., paperbased coordination
systems, meetings, groupware technology (Carstensen & S!llrensen 1996)

If only a few individuals in the organization are the target of the software
technology initiative (see Section 5), a focused effort to support engineering
functions will be a viable strategy. Supporting management and collaboration
functions with only a few individuals will have too little effect, given the effort
required Alternatively, it is quite feasible to provide only support for modeling
functions, such as diagramming and documentation, to the entire organization.
Although this implies that the full benefits are not realized, this approach can still
be of significant use, given the relatively small economic and resource investment.

In order to improve the match between functions to be supported and the facilities
afforded by the software tool, a viable approach can be to modify the tool (Smolander
et a!., 1990). In state-of-the-art CASE tools, for example, some features can be
reconfigured, e.g., the type of diagrams supported, the reports printed and the types
consistency checks performed. It is, however, not yet possible to fully tailor such
tools to organization specific methodologies. Most organizations do not modify the
CASE tools as a means of matching working practices and technical capabilities
(S!IIrensen, 1993).

In summary, one of the management challenges of implementing new software
engineering tools is to balance conflicting concerns. Ensuring that the organization
does not invest in more complex and expensive tools than needed, whilst at the same
time, ensuring that the adopted tool will be able to cater for growth in software
technology maturity. The former concern is important for economic reasons, and to
ensure a short learning curve. The latter concern is important in order to prevent
continuous replacement of software tools as the organization aims to support
increasing number of software process functions. The key to manage this challenge
is determining what software process functions to support.

264 Part Five Facilitating Software Processes

4 WHICH ROLES TO SUPPORT?

When designing a new initiative, one of the important decisions concerns
identification of the prospective user groups for the new software engineering tool.
From the abundance of jobdescriptions and titles involved in software development,
we have chosen to characterize software technology users as either software
engineers, domain experts, or managers. Software tools can be applied for modelling
and construction of software, for modeling of software development aspects of
domains, and for managing the software development process.

The question of who is going to use a new software engineering tool is closely
related to the question of what software development functions to support (see
previous section). Engineers are the core user group. Software tools are specifically
constructed to support their work of analysis, design, programming and testing. The
tools can, however, also provide support for both domain experts and managers
(Orlikowski, 1993). Domain experts can benefit from a new tool, for example, by
participating in specification of diagrams or prototypes. Managers can, for example,
use tools to monitor the progress of development efforts. State-of-the-art software
engineering tools do, however, not support the needs of these three groups equally
well. It is, for example, still problematic for software engineers and domain experts
to apply CASE for requirements engineering (Lyytinen and Tahvanainen, 1992).

When combining who is going to use the tool with what functions to support, a
number of scenarios emerge: (1) engineers using tools for modeling; (2) engineers
using tools for modeling and programming; (3) engineers and managers using tools
for engineering and management functions; (4) engineers and domain experts using
tools for modeling; and (5) engineers, domain experts and managers using tools for
configuration management. The Bank Case is an example of scenario (3), where
engineers and software managers use tools for engineering and management
functions. The Production Company Case is an example of scenario (4), where
software engineers and domain experts use tools for software modeling. In this
particular case, the domain experts are engineers building electronic instruments.

In summary, asking the question who is going to use a new software engineering
tool is the flipside of asking the question what software development functions to
support. It is crucial to ensure that new initiatives aim at matching these two
concerns.

5 WHERE TO USE THE TOOL?

It is important to determine where in the organization a new initiative will have
effect. The organizational diffusion of software engineering tools can be described in
many ways. Percentages can be used to express the degree of diffusion among a
certain population (S(6rensen 1993), but we have chosen to express the fundamental
choices according to the following three categories: a few individuals, selected
projects, and the entire organization. The three categories express the span between
ensuring that the individual using a new tool benefits from the tool as an individual,

A guide to manage new software engineering tools 265

and, to ensuring that the tool is providing benefit to the entire organization through
wide spread and disciplined use. Applying software technology in selected projects
can be seen as an intermediate stage.

Planning where in the organization an initiative will have effect is closely linked
to planning how to manage the initiative (see Section 6). Some organizations only
aim to support a few individuals. This must be managed in a way ensuring high
degree of personal motivation. Others might want to use a new tool in selected
projects required by their customers, or in all new development efforts. It is
important to manage an initiative in a way that ensures the proper level of
experimentation. If the goal of the organization is to have the entire organization
using the tool, a sequence of initiatives with a proper mix of experimentation am
control should be considered to facilitate learning.

Determining the degree of organizational implementation of a new software
engineering tool should, of course, be determined in combination with establishing
who should use the tool (see Section 4) for what functions (see Section 3).

In the Production Company Case, the initiative aims at diffusing the new tool in
the entire organization, but only to support software engineers and domain experts in
modeling and configuration management. In the Bank Case another strategy is
chosen. Here, it is the aim to initially support engineers and software managers in
engineering, collaboration and selected management functions in five selected
projects, and subsequently in a second stage implement the technology in the entire
organization.

In summary, for new software engineering tools to become a success, it is
essential that the individuals using the tools perceive them to be a personal benefit
(Wynekoop et al., 1992). In order for the organization to experience sustainable
benefits from implementing a new tool, its use must be widespread and disciplined.
Any initiative aiming at substantial benefits in the entire organization will be a high
risk venture, whilst more modest initiatives aimed at only individual users, will be
relatively low risk. In order to be successful, each initiative must balance these two
concerns and assess the risks, based on the specific organizational setting am
previous initiatives.

6 HOW TO MANAGE THE ASSIMILATION PROCESS?

The benefits of new software engineering tools and the learning initiated by
assimilation initiatives are dependent on the way these initiatives are managed. For
each new initiative it is therefore important to consider: How to manage the
implementation and use of software engineering tools? Initiatives can be organized
in different ways emphasizing different levels of control. Moreover, the degree of
control can vary from the very early phases of a new initiative to the later phases.
From a management point of view there are two extreme options. One is to
emphasize experimentation allowing for variations and differences in patterns of use
and at the same time encouraging creativity to find effective ways to utilize new
software tools. The rationale behind this option is that new tools need to be acla(lfd

266 Part Five Facilitating Software Processes

to the specific organizational context and this require learning to take place. Another
option emphasizes control to obtain homogeneity and discipline, the rationale being
that to obtain the full benefits requires individuals to use software tools in a
disciplined an homogeneous way. This, in tum, requires control mechanisms to be
enforced.

Software organizations go through stages in assimilating each new software
engineering tool. One important development is related to where in the organization
the tool is used: first it is used by a few individuals, then it is used in selected
projects, and, finally, the tool is used in the entire organization (see Section 5).
Another dimension is related to the way in which the use of the tool is managed, as
discussed in this section. Combining the work of Gibson and Nolan (1974) on the
stage hypothesis and Schein's (1985) conceptions on organizational change,
McKenney and McFarlan (1990) have proposed a simple model for how to manage
the use of technology in an organization (see Figure 1). This model suggests an
iterative approach-similar to what Aaen (1992) has called bootstrapping-to
effective adaptation of new software engineering tools.

Stagnation A:
too little
management

Stagnation 8:
too focused on
implementation

Stagnation C:
too much
standardization

Figure 1. Managing implementation and use of software tools (adapted from
McKenney and McFarlan, 1990).

A guide to manage new software engineering tools 267

(1) The process starts with a decision to take a new initiative. This is exactly the
situation in which the five questions of this paper apply. In this first phase, focus is
on detailed planning of the initiative and on starting to use the new tool. Too little
management can result in disasters or delays in effective tool implementation­
stagnation A. (2) The second phase involves learning how to actually use the tool
beyond what was originally planned. Failure to learn from the first projects and to
effectively take the consequences and disseminate this learning leads to a situation
that is too focused on implementation without learning from experience-stagnation
B. (3) Phase three involves continued evolution of the use of the tool, and, most
importantly, development of control mechanisms to guide software projects using
the tool to ensure that the projects are cost effective. If the organization is too
focused on control and enforcement of standards in using the tool this can inhibit
profitable further diffusion through new initiatives-stagnation C. (4) Assessment of
each implementation initiative provides input to formulating subsequent initiatives.

In summary, new software engineering tools must be managed through different
stages of use, each emphasizing different mixtures of experimentation and control. It
is important to manage the implementation process to ensure a successful start.
Later, experiments should be supported to encourage tool adaptation am
organizational learning. Then, appropriate control mechanisms are needed to ensure
homogeneous and disciplined usage, which, in tum, is required to obtain the full
benefits of new software engineering tools. Finally, a situation has been created in
which further initiatives can be consirered.

7 RECOMMENDATIONS

Successful implementation of new software engineering tools requires a number of
critical management decisions to be taken on how to actually use the tool. We
suggest that these decisions are effectively addressed by the five questions
summarized in Table 1. These questions offer a way to define the key requirements to
each new initiative, and, by the same token, a way to formulate a stepwise, iterative
strategy for adaptation of new software engineering tools through a series of
initiatives with increased levels of tool usage.

In practical situations, this framework needs to be supplemented with other
management perspectives. First, careful and systematic budgeting of new software
engineering tools is needed, because adoption costs are typically considerably more
than the acquisition cost of a specific tool (Huff, 1992). Huff describes the key
budget estimation components as they relate to life cycle phases (analysis,
acquisition, implementation, and operation) and to areas of expenditure (technical,
organizational, people, and management). In addition, Huff offers a detailed list of
factors that affect the size of each cost item.

268 Part Five Facilitating Software Processes

NEW S OFI'W ARE ENGINEERING TOOL INITIATIVE

DECISION OPTIONS & RATIONALE LITERATURE

Why adopt a Organizational pull: Software engi- March, 1976; Zmud, 1984;
specific neering tools are needed and useful in Humphrey, 1989b; Hum-
tool? mature software processes phrey, l989a; Curtis, 1992;

Technology push: Diffusion of soft- Huff, 1992; Gibbs, 1994;
ware engineering tools is a leverage Mathiassen and S~rensen,
for increased software process matur- 1996
ity

What to use Engineering: Software engineering Carstensen & S~rensen,
the tool for? tools support engineering of models 1995; Henderson and Coo-

and software prider, 1990; Lyytinen et al.,
Collaboration: Software engineering 1991; Tate et al., 1992;

tools are media for collaboration Vessey et al., 1992; S~ren-
Management: Software engineering sen, 1995; Vessey and

tools are media for managing the Sravanapudi, 1995
software process

Which roles Software engineers: Software engi- Weber, 1988; Vessey et al.,
to support? neering tools are used to model and 1992; Wynekoop and Senn,

construct software 1992; Orlikowski, 1993
Domain experts: Software engineering

tools are used for domain modeling
Managers: Software engineering tools

are used to manage development proc-
esses

Where to use Few individuals: The motivation for Parkinson, 1990; Wynekoop

the tool? using new tools must be high to en- and Senn, 1992; Wynekoop
sure success et al., 1992; S!llrensen, 1993

Selected projects: Appropriate proj-
ects must be selected to support ex-
perimentati on

Entire organization: Sustainable
benefit from new tools require disci-
plined and widespread usa2e

How to man- Experiment: Experiments are needed to McKenney and McFarlan,

age the as- support organizational learning and 1990; Smolander et al.,
similation tool adaptation 1990; Huff et al., 1991;

process? Control: Homogeneous and disciplined Aaen, 1992; Orlikowski,
usage is required to obtain the full 1993
benefits of new software engineering
tools

Table 1: The software tool management model characterizing questions to be
addressed at each new software tool initiative.

A guide to manage new software engineering tools 269

Second, detailed planning of the initial implementation effort is needed to identify
the key roles, activities and issues that must be addressed in a successful operation
(Huff eta!., 1991). A general framework is offered identifying potential roles (upper
management, line management, product champion, change agent, pilot project team,
target users) and lifecycle phases (assess the need, select candidate products, evaluate
candidate products, present product to management and users, gather user
information, plan the implementation, implementation and ongoing support).
Within this framework, check lists are provided to identify the activities and issues
that must be included in the first phase of a specific implementation effort.

The five questions within this paper integrate managerial viewpoints on the
implementation of new software engineering tools. The economic management
perspective can naturally be considered as an extension of the first question: Why
adopt a specific tool? At the same time, the economic perspective can be used as a
practical way to evaluate the consequences of decisions made on the three subsequent
questions: What to use the tool for? Which roles to support? And, where to use a
specific tool in the organization? The process management perspective offers a
natural extension of the fifth cpestion: How to manage the assimilation process? The
process framework suggested by Huff et al. (1991) is a more detailed and operational
view of the initiating phase on figure 1.

In summary, we recommend that the implementation of new software
engineering tools is seen as an iterative process, consisting of a series of initiatives,
each initiative evolving through stages of development. Depending on the match
between each initiative and the organizational setting, the nature of the initiative will
be perceived as either an incremental or a radical change (Orlikowski, 1993; Gallivan
et a!., 1994). Each new initiative starts by considering the five questions: why,
what, which, where, and how, and by including considerations on economy and
implementation process as indicated.

ACKNOWLEDGMENTS

This research has been partially sponsored by the Danish Natural Science Research
Council, Programme No. 11-8394, The Danish National Centre for IT Research,
and the Swedish Trans)Jort & Communications Research Board (Kommunikations­
forskningsberedningen) through its grant to the "Internet project". We would like to
thank the anonymous reviewers and Maxine Robertson for constructive comments
and suggestions. We would also like to thank the members of our working group at
the 18th IRIS conference for their critique of an earlier version of the paper. All
errors in the paper naturally remain the responsibility of the authors.

270 Part Five Facilitating Software Processes

REFERENCES

Aaen, I. (1992): CASE Tool Bootstrapping - how little strokes fell great oaks. In
Next Generation CASE Tools, ed. K. Lyytinen and V.-P. Tahvanainen.
Amsterdam, The Netherlands: lOS Press, 8-17.

Aaen, 1., A. Siltanen, C. S!llrensen, and V.-P. Tahvanainen (1992): A Tale of Two
Countries - CASE Experience and Expectations. In Proceedings from IFIP WG
8.2. Working Conference, Minneapolis, ed. K. E. Kendall, K. Lyytinen, and J.
DeGross. North-Holland, Amsterdam, 61-94.

Aaen, I. and C. S!llrensen (1991): A CASE of Great Expectations. Scandinnvian
Journnl of Information Systems, 3(1):3-23.

Carstensen, P. and C. S!llrensen (1996): From the Social to the Systematic:
Mechanisms Supporting Coordination in Design. Computer Supported
Cooperative Work: Journnl of Collaborative Computing, 5(4), December.

Cash, J. 1., F. W. McFarlan, and J. L. McKenney (1992): Corporate Information
Systems Manngement: The Issues Facing Senior Executives. Homewood, Ill.:
Business One Irwin.

Curtis, B. (1992): The CASE for Process. In The Impact of Computer Technologies
on Information Systems Development, Proceedings from IFIP WG 8.2.
Working Conference Minneapolis, ed. K. E. Kendall, K. Lyytinen, and J.
DeGross. North-Holland Amsterdam, 333-44.

Fournier, R. (1991): Practical Guide to Structured System Development arJ
Maintennnce. Prentice Hall Building New Jersey USA : Yourdon Press.

Galliers, R. D. and A. R. Sutherland (1991): Information Systems Management am
Strategy Formulation: The "Stages of Growth" model revisited. Journnl of
Information Systems, 1 (2):89-114.

Gallivan, M. J., J. D. Hofman, and W. J. Orlikowski (1994): Implementing radical
change: gradual versus rapid pace. In Proceedings of the 15th lnternntionnl
Conference on Information Systems, Vancouver, Canada, ed. J. I. DeGross, S.
L. Huff, and M. C. Munro. ACM Press, New York, USA.

Gibbs, W. W. (1994): Software's Chronic Crisis. Scientific American, 269:72-81,
September.

Gibson, C. F. and R. L. Nolan (1974): Managing the Four Stages of EDP growth.
Harward Business Review, 5 2(1):76-88.

Henderson, J. C. and J. G. Cooprider (1990): Dimensions of liS Planning am
Design Aids: A Functional Model of CASE Technology. Information Systems
Research, 1 (3):227-254.

Huff, C. C. (1992): Elements of a Realistic CASE Tool Adoption Budget.
Communications of the ACM, 35(4):45-54.

Huff, C. C., D. Smith, K. Stephien-Oakes, E. Morris, and P. Zarella (1991): CASE
Adoption Workshop. Carnegie Mellon University, Pittsburgh PA. Software
Engineering Institute.

Humphrey, W. S. (1989a): CASE Planning and the Software Process. Technical
Report Software Engineering Institute.

A guide to manage new software engineering tools 271

Humphrey, W. S. (1989b): Managing the Software Process. Reading,
Massachusetts: Addison-Wesley.

Ljungberg, F. and C. Sfl)rensen (1996): The Push & Pull Profession-Practitioner
Perspectives on Lotus Notes Initiation. In Proceedings of 7 International IRMA
Conference, May 19-22, Washington D. C.

Lyytinen, K., K. Smolander, and V.-P. Tahvanainen (1991): modeling CASE
Environments in Systems Development. In Proceedings of the first Nordic
Conference on Advanced Systems Engineering, Electrum, Kista, Sweden, ed. J.
Bubenko et al. SISU, Stockholm.

Lyytinen, K. and V.-P. Tahvanainen (1992): Introduction: Towards the Next
Generation of Computer Aided Software Engineering (CASE). In Next
Generation CASE Tools, ed. K. Lyytinen and V.-P. Tahvanainen. Amsterdam,
The Netherlands: lOS Press, 1-7.

March, J. G. (1976): The Technology of Foolishness. In Ambiguity and Choice in
Organizations, ed. J. G. March and J. P. Olson. Oslo, Norway:
Universitetsforlaget.

Mathiassen, L. and C. Sfl)rensen (1996): The Capability Maturity Model and CASE.
Journal of Information Systems, 6(3).

McKenney, J. L. and F. W. McFarlan (1990): The Information Archipelago-Maps
and Bridges. In Software State-Of-The-Art: Selected Papers, ed. T. DeMarco an:l
T. Lister. Dorset House Publishing, 99-116.

Orlikowski, W. J. (1993): CASE Tools as Organizational Change: Investigating
Incremental and Radical Changes in Systems Development. MIS Quarterly,
September, 309-40.

Parkinson, J. (1990): Making CASE work. In CASE on Trial, ed. K. Spurr and P.
Layzell. Chichester, England: John Wiley & Sons, 213-42.

Rogers, E. M. (1983): Diffusion of Innovations (Third Ed.). New York: Free Press.
Schein, E. K. (1985): Organizational Culture and Leadership: A Dynamic View. San

Francisco: Jossey-Bass.
Smolander, K., V.-P. Tahvanainen, and K. Lyytinen (1990): How to Combine

Tools and Methods in Practice- a field study. In Advanced Information Systems
Engineering, Berlin, Germany, ed. B. Steinholz, A. Sfl)lvberg, and L. Bergman.
Springer-Verlag, 195-214.

Sfl)rensen, C. (1993): What Influences Regular CASE Use In Organizations? An
Empirically Based Model. Scandinavian Journal of Information Systems,
5(1):25-50.

Sfl)rensen, C. (1995): Why CASE Tools do not Support Co-ordination. In CSCW
(Computer Supported Co-Operative Working) and the Software Process, Savoy
Place, London, ed. M. Barret. IEEE, 4/1-4/3.

Tate, G., J. Verner, and R. Jeffrey (1992): CASE: A Testbed for modeling
Measurement and Management. Communications of the A CM, 3 5(4):65-72.

Vessey, I, S. L. Jarvenpaa, and N. Tractinsky (1992): Evaluation of Vendor
Products: CASE Tools as Methodology Companions. Communications of the
ACM, 35(4):90-105.

272 Part Five Facilitating Software Processes

Vessey, I. and A. P. Sravanapudi (1995): CASE Tools as Collaboration Support
Technologies. Communications of the ACM, 38(1):83-95.

Weber, R. (1988): Computer Technology and Jobs: An Impact Assessment Model.
Communications of the A C M, 3 1(1):68-77.

Wijers, G. M. and H. E. van Dort (1990): Experiences with the use of CASE tools
in The Netherlands. In Advanced Information Systems Engineering, Berlin, ed.
B. Steinholz, A. S!lllvberg, and L. Bergman. Springer-Verlag, 5-20.

Wynekoop, J. L. and J. A. Senn (1992): CASE Implementation: The Importance of
Multiple Perspectives. In Proceedings of SIGCPR '92, New York. ACM.

Wynekoop, J. L., J. A. Senn, and S. A. Conger (1992): The Implementation of
CASE Tools: An Innovation Diffusion Approach. In The Impact of Computer
Technologies on Information Systems Development, Proceedings from IFIP
WG 8.2. Working Conference Minneapolis, ed. K. E. Kendall, K. Lyytinen, am
J. DeGross. North-Holland Amsterdam, 25-42.

Zmud, R. W. (1984): An Examination of 'Push-Pull' Theory Applied to Process
Innovation in Knowledge Work. Management Science, 30(6):727-738.

BIOGRAPHY

Lars Mathiassen is a visiting professor at Department of Computer Information
Systems, College of Business Administration, Georgia State University. He is both
Head of Department of Danish Center for IT Research, and professor of computing at
Aalborg University in Denmark. He holds a MSc in computer science from Aarhus
University, Denmark, and a PhD in computer science from Oslo University,
Norway. Dr Mathiassen's research interest is in the intersection between information
systems and software engineering with particular emphasis on systems development
and IT management. He has published quite a number of papers and books related to
information systems including 'Professional Systems Development', Prentice-Hall,
1990 (together with N. E. Andersen et al.) and 'Computers in Context', Blackwell,
1993 (together with Bo Dahlbom).

Carsten S0rensen is a senior lecturer at Department of Informatics, Goteborg
University, and currently also visiting fellow at Warwick Business School. Dr
S!llrensen is a member of the Internet Project group at Goteborg University. He holds
a BSc. in mathematics, a MSc in computer science and a Ph.D. in computer science
from Aalborg University, Denmark. Dr S!llrensen's area of research is information
technology supporting complex work in technical domains, and comprises the areas
of: organizational implementation of CASE (Computer Aided Software Engineering)
technology supporting the systems development process; coordination mechanims as
a CSCW (Computer Supported Cooperative Work) technology supporting the
coordination of complex work in manufacturing and software engineering; am
organizational use of Internet technology.

