
13

BEAST: A fast block cipher for
arbitrary blocksizes

Stefan Lucks
Georg-August-Universitiit Gottingen
Institut fur Numerische und Angewandte Mathematik
Georg-August-Universitiit Gottingen
Lotzestr. 16-18, D-31083 Gottingen, Germany
(email: lucks@namu01. gwdg. de)

Abstract
This paper describes BEAST, a new blockcipher for arbitrary size blocks. It is a Luby­
Rackoff cipher and fast when the blocks are large. BEAST is assembled from cryptographic
hash functions and stream ciphers. It is provably secure if these building blocks are secure.

For smartcard applications, a variant BEAST-RK is proposed, where the bulk oper­
ations can be done by the smartcard's host without knowing the key. Only fast key­
dependent operations remain to be done by the smartcard.

Keywords
Block-cipher, Luby-Rackoff, pseudorandom permutation, provably secure, smartcard,
remote key

1 INTRODUCTION

Based on random functions, Luby and Rackoff (1988) described provably secure block
ciphers. This theoretical break-through is of practical interest, since it enables us to as­
semble a secure cipher from secure components. Components are known, which we can
reasonably expect to be secure. In this paper, the hash function SHA-1 (see Schneier,
1995) and the stream cipher SEAL (Rogaway and Coppersmith, 1993) are considered as
components, though other choices would do, as well (Lucks, 1996). SHA-1 and SEAL have
been suggested by Anderson and Biham (1996), but BEAST is faster than their ciphers.

BEAST, like Luby-Rackoff ciphers in general, is a Feistel cipher, similar to DES. While
DES requires 16 rounds, BEAST only needs three. On the other hand, BEAST's round
functions must be cryptographically stronger than the round functions of DES.

Due to its construction, BEAST performs best when operating on large blocks. This
copes well with a possible use of BEAST in multimedia security applications, when a high
throughput is required from the cipher, and the overall data volume is huge, too.

High-throughput encryption with smartcards is difficult, because of the smartcards'
limited computational power and their slow communication links. Blaze (1996) suggested
to share the encryption burden between the smartcard and its host. The smartcard's host
does the bulk encryption work but is not trusted with the key, while the card only performs

P. Horster (ed.), Communications and Multimedia Security II
© IFIP International Federation for Information Processing 1996

BEAST 145

fast key-dependent operations. We exploit Blaze's idea for BEAST-RK, the remote-key
variant of BEAST.

2 BACKGROUND

Encrypting with a block cipher means to apply a key-dependent permutation g to the
plaintext, decrypting to apply the inverse g-1 to the ciphertext; g is computed by the
'encryption engine' and g-1 by the 'decryption engine'. A block cipher is secure if g
appears like a randomly chosen permutation for anyone without knowledge of the key.

The type of attack we consider is a 'chosen plaintext attack', where the attacker chooses
a plaintext x1 , injects x1 into the encryption engine and gets the ciphertext g(x!). This is
repeated with x 2 , x 3 , •.. (see Figure 1). After a couple of plaintext injections the attacker
has to decide whether g is a random permutation or not.

/
Figure 1 Chosen ciphertext attack.

Similarly one can consider chosen ciphertext attacks. We only consider block ciphers
where the ciphertexts are as long as the plaintexts, so in this case, we can simply use the
inverse permutation g- 1 for encryption and the straight permutation g for decryption.

Resistance against such attacks is commonly accepted as a sufficient security criterion
for block ciphers.

Every cipher is designed to be resistant against certain attacks, but fails to others.
Among the advantages of using a cipher with a proof of security (under a reasonable
assumption) is the simplicity of finding out which attacks the cipher is designed for - and
which not. Overstretching the security of any cipher is like using an insecur~ one.

BEAST is not secure against 'combined chosen plaintext/chosen ciphertext attacks',
where the attacker accesses both the encryption and the decryption engine. It is very
dangerous, anyway, to allow the enemy to decrypt and encrypt with the secret key. Look
out for this type of attack and try to rule it out for your application - but if
you can't, use another cipher!

146 Communications and Multimedia Security II

Let JI, Jz, and h be random functions h,h: {0,1}'---+ {0,1}1 and h: {0,1}1 ---+
{0, 1 }'. By 'Ee' we denote the bit-wise X OR. We compute values S, U E {0, 1 }1 and
T E {0, 1}' by

S L E8 h(R),
T R E8 h(S), and
U S E8 h(T).

This way we have defined a permutation '1j;(f1,h,h)(L,R) = (U,T) over {0, 1}1+r. This
is represented by Figure 2 - just start with L and R and follow the arrows. Similarly,
'lj;(h,f2, ft) = 'lj;- 1(h, h, h) is the inverse.

u T

Figure 2 The permutation 'lj;(JI, Jz, h)(L, R) = (U, T).

Luby and Rackoff (1988) showed in their famous paper that 'lj;(JI, /2, h) is indistinguish­
able from a random function if l = r and /t, h, and h are random or pseudorandom
functions. If a permutation pis undistinguishable from a random function, it also is undis­
tinguishable from a random permutation. Maurer (1992) gave an amazingly simple proof
for Luby's and Rackoff's theorem. Neither Luby and Rackoff nor Maurer regarded l =Jr.

Theorem 1 Let g: {0, 1}'+1 ---+ {0, l}r+l be either a random/unction or g = 'lj;(JI, h, h),
where h,h: {0,1}'---+ {0,1}1 and / 2 : {0,1}1 ---+ {0,1}' are random functions. Let
n S min { l, r} be a security parameter.

Let A be a distinguisher. Given a 'black box' which is able to compute g, A outputs
either 1 or 0. By ~AND and ?pERM we denote the probabilities for A to output 1 if g is
randomly chosen, resp. if g = 'lj;(/J, h, h).

A accesses the 'black box' at most k times, i.e. A chooses at most k inputs (Lt, R 1), •.. ,

(Lk,Rk) and receives the corresponding (U1 ,T1), ... , (Uk,Tk) with (U;,T;) = g(L;,R;).
Then

(1)

BEAST 147

Informally spoken, there is no reasonable chance for an attacker to distinguish between
1/J(JI, h, h) and a random function, except when the attacker has chosen close to ,J'Fi
plaintexts and has got the corresponding ciphertexts. The proof is based on Maurer's
proof for l = r = n and is given by Lucks (1996).

Lucks also found a 'shortcut' for the third round: If r > l, we may replace the function
h by a function f. : {0, 1 }1 --> {0, 1 }1 which only uses any l of the r input bits to hand
ignores the remaining r- l bits. If r ~ l, one can expect to evaluate f. much faster than

h-

Theorem 2 Let the function f. : {0, 1}1 --> {0, 1}1 be a random function. If- except
for h(T) = f.(T mod 21) - the conditions of theorems 1 are satisfied, then IPRAND -

k2
PpERMI < 2"·

3 PSEUDORANDOMNESS AND 'SECURITY'

If the functions f 1 , hand hare not random but pseudorandom, 1/J(!J, h, h) represents a
pseudorandom permutation - and a practical three round Feistel cipher as well. We know
that if the pseudorandom functions are secure, the block cipher is secure, too. But what
is meant by 'secure' in this context?

In theoretical cryptography, the 'security' of a scheme often is reduced to the non­
existence of probabilistic polynomial time algorithms to break it. Luby-Rackoff ciphers
are much stronger! Recall the distinguisher A and the probabilities PRAND and PrERM
in theorem 1. By PrsEu, we denote the probability that A outputs 1 if A accesses the
function g = 1}!(!1 , h, h) with pseudorandom f; at most k times. If

k2
IPRAND- PrsEul :::0: P + 2,;:

holds for p > 0, then it is straightforward to use A as a test for the randomness of JI, h,
and !J. The distinguishing probability is at least p:

IPpERM - PrsEu I :::0: p.

In other words, attacks on Luby-Rackoff ciphers are at least as hard as attacks on the
underlying pseudorandom function generators, except for possibly increasing the attacks'
probability of success by P /2n:

Let g = 1/!(!J, fz, h) be an encryption function. Let !J, fz, and h be generated by a pseu­
dorandom function generator which is secure in the following sense: 'There is no algorithm
which in timet (i.e. the time required to encrypt t pla.intexts) distinguishes between random
and pseudorandom !I, fz, and h with probability p or more.'
Then the block cipher defined by g is secure in the following sense: 'There is no algorithm A
to distinguish between g and a random function in time t with probability p + k2 j2n or more,
where A chooses exactly k inputs x1 , J:2 , ••. , Xk and gets the corresponding outputs g(x 1),

g(xz), ... , g(xk)·'

148 Communications and Multimedia Security II

Note that the computation of the k ciphertexts takes time k and is a part of A's overall
run time.

4 THE BLOCK CIPHERS BEAR AND LION - AND BEAST

If 1 =f. r, 'compressing' (pseudo-)random functions J; (with more input bits than output
bits) and 'expanding' h±t (less input bits than output bits) alternate in Figure 2. For
compressing, cryptographic hash functions are well suited- Anderson and Biham (1996)
suggested to use SHA-1. For expanding, they considered the stream cipher SEAL.

Cryptographic hash functions such as SHA-1 are authentication tools. We may use
them as building blocks for our ciphers, but then we have to demand t~e hash functions
to be pseudorandom. Being pseudorandom is a widely accepted security-related design
goal for cryptographic hash functions, anyway. Anderson (1993) describes some risks of
using non-pseudorandom hash functions for authentication.

SEAL is a stream cipher explicitly designed by its authors to be a pseudorandom
function, too. (A stream cipher is 'secure', if given random inputs the outputs are undis­
tinguishable from random outputs - where the output-size exceeds the input-size. Being a
pseudorandom function requires more, since here the outputs have to be undistinguishable
from random functions even if different inputs are deliberately chosen by the attacker.)

On a 133 MHz DEC Alpha machine (a 'sandpiper'), Roe (1994) measured a compression
speed of about 40 Mbit/sec for SHA-1 and a expansion speed of more than 100 Mbit/sec
for SEAL. The second result, though, is a more asymptotical one since SEAL runs through
a very slow key-setup before it actually starts encryption. The key-setup takes about as
much time as hashing a 32000 bit input with SHA-1 (i.e. as evaluating the internal 512
bit to 160 bit compression function of SHA-1 about 200 times- see Schneier (1995)).

Anderson and Biham proposed two block ciphers for flexible but large blocks: BEAR
and LION, both similar to Figure 2 with (1 + r)-bit Blocks. BEAR was based on the
choice 1 = 160 ~ r, with two SHA-1 r-bit to 1-bit compression steps and one SEAL 1-bit
to r-bit expansion step, similarly LION on l ~ r = 160 with two expansion step and
one compression step. For large blocks (i.e. blocks greater than about 6 Kbyte), LION is
faster than BEAR.

Anderson and Biham only considered a very weak type of attack, and their security
proof for BEAR and LION is not valid for chosen plaintext attacks. But thanks to theorem
1 both ciphers are as secure as any block cipher based on Figure 2 - if the underlying
pseudorandom functions are secure.

Theorem 2 enables us to define the BEAST ('Block Encryption Algorithm with Shortcut
in the Third round', see Figure 3), a variant of BEAR, but faster than both BEAR and
LION.

Since the round functions of Luby-Rackoff ciphers have to depend on a key*, we need
keyed variants SHAK and SEALK of SHA-1 and SEAL:

SHAK(x) = SHA(K EB x) and SEALK(x) = SEAL(K EB x).

*Actually, the second round of BEAR and LION does not depend on a key. This is theoretically sound,
but does not simplify or speed-up the ciphers significantly.

BEAST 149

L__L_T~_]
Figure 3 The block cipher BEAST.

Note that the input size to the keyed hash function is known in advance, otherwise we
could use e.g. SHAK(x) = SHA(I<IIxiiK), where 'II' stands for the concatenation of bit
strings. BEAST can be described by the following equations:

S L(f)SHAK1 (R),

T R ffi SEALK2(S), and
U S ffi h(T*) with T* ='first l bits ofT'.

Here, /{1 , /{2 , and /{3 represent the BEAST's round keys. It is straightforward to generate
them from a smaller master key I<M using SEALKM·

How fast is BEAST? On the same 'sandpiper' Roe used, Anderson and Biham measured
the speed of BEAR and LION. With the blocksize 1 Mbit, they measured an encryption
speed of 13.62 blocks/sec for BEAR and 18.68 blocks/sec for LION. BEAR consist of
two rounds of hashing with SHA-1 and one round of SEAL, while in LION there are one
SHA-1- and two SEAL-rounds. For BEAST, the encryption speed is dominated by one
SHA-1- and one SEAL-round- the time required for the third round is negligible for large
blocks. Based on these facts, we expect BEAST to encrypt and decrypt 1 Mbit blocks at
about 23.6 blocks/sec on on the same computer. BEAST's expected 23.6 Mbit/sec can
be compared with about 1.86 Mbit/sec of the classical 'DEA' (Roe, 1994).

5 REMOTE-KEY ENCRYPTION WITH BEAST-RK

If SHA-1 is collision-resistant and SHAK is a secure pseudorandom function, then the
function FK(x) = SHAK(SHA-1(x)) is a. secure pseudorandom function, too. Similarly, if

150 Communications and Multimedia Security II

SEALK also is a secure pseudorandom function, GK = SEAL(SHAK(x)) is so, as well. Is
there a point in replacing a secure pseudorandom function by another secure but slower
one?

There is - sometimes. Obviously, the operation which does the bulk work (if the blocks
are large), i.e. SHA-1 in FK and SEAL in GK, does not depend on a key. The key­
dependent operation is always SHAK, operating on fixed input and output blocks of 160
bits - whatever the actual blocksize may be. This leads us to the idea of doing the bulk
operation on a fast but untrusted host and doing the key-dependent operation on a slow
tamperproof device like a smartcard.

This observation leads to BEAST-RK, see Figure 4. The r-bit right side R of the input
is split into a 160-bit subblock R* and a (r -160)-bit subblock R**. Similarly, the second
round key K 2 is split up into K; and K;*, and the right side T of the output is the
concatenation of a 160-bit subblock T* and a (r- 160)-bit subblock T**. BEAST-RK
operates as follows:

s L ffi SHAK,(R*IISHA(R**))
T* R* EB SHAK; (S)
T** R** EB SEAL(SHAK;·(S))
U S EB SHAK3 (T*)

Figure 4 The remote-key variant BEAST-RK of BEAST.

In order to share the encryption between the host and the (hopefully tamperproof)
card, the following protocol is used:

1. Given L, R*, and R**, the host sends L, R* and SHA(R**) to the card.
2. The card computes S, T*, SHAK;·(S), U and sends U, T* and SHAK;·(S) to the host.

S remains secret for the host.

BEAST 151

3. The host uses SHAK;' (S) to compute T**.

The large rectangle below the L- and R*-box represents the smart card. When encrypting
one block, three 160-bit inputs L, R*, and SHA-1(R**) enter the smartcard, and three
160-bit outputs U, T*, and SHAi(,(S) leave it- independently of the blocksize.

BEAST-RK looks like is a four round cipher, but it is a three round one, just like
BEAST. The output of the second roun:d function is (R* EB T*)II(R** EB T**), the round
key is K2 = K;IIK;*.

During a chosen plaintext attack, the attacker not only gets ciphertexts, but also inter­
mediate values of the form SHAi(,(S). Does giving away such intermediate information
weaken BEAST-RK, compared to BEAST?

The answer is 'no'. Let an attacker be given a plaintext block (Lo,R~,R~*) and a
bit-string X of blocklength. For i E {1, ... , k }, the attacker chooses plaintext blocks
(Li, R';, Ri*) different from (L0 , R~, R~*) and gets the corresponding intermediate values
SHAi(,(Si) and ciphertext blocks (U;, T;*, T;'*). If BEAST-RK's components SHA-1 and
SEAL are secure, it is infeasible for the attacker to decide whether X is randomly gen­
erated X or X= (U0 ,T;,T;*). Here, we omit a formal proof but note that this can be
proved based on the following three observations:

1. If the hash function SHA-1 is collision-resistant, it is infeasible find different plain­
text blocks (L11 R~,Ri*) f= (L2,R;,R;*) with L1 = L2, Ri = R;, and SHA(Ri*) =
SHA(R;*).

2. Consider a variant of BEAST-RK with 480-bit blocks, where SEAL is replaced by
the identical function, i.e. T** = R** EB SHAi(,(S). If BEAST is secure, then so is
this variant. Hence, given any 'new' plaintext block (L;,R';,R';*), it is infeasible for
attackers to distinguish between the corresponding (U;' Tt' SHA K, (si)) and a random
triple (X, Y, Z) E ({0, tp60) 3 .

3. If SEAL is a secure stream cipher, attackers who don't know SHAi(,(S) can't distin­
guish between SEAL(SHAi(,(S)) and random bit strings.

IF BEAST is secure, then BEAST-RK is so, too. In some sense, BEAST-RK is more
secure than BEAST, since BEAST-RK does not require SEAL do be a pseudo-random
function. Any secure stream cipher could replace SEAL - possibly a stream cipher with
a faster set-up.

BEAST-RK is somewhat similar to Blaze's RKEP, the 'remotely keyed encryption
protocol' (Blaze, 1996). But, as outlined above, BEAST-RK is provably secure if its com­
ponents are secure. No such result is known for the RKEP.

BEAST-RK can be used e.g. for pay-TV and similar applications, where encrypted data
are transmitted via a broadcast-channel. Decryption is done on the customers' decoder
boxes (these can either be hardware, or software running on PCs), connected to tamper­
proof tokens. The sender A lives from selling these tokens. Since one can not expect all
of the customers to be honest, A is literally giving away decryption engines to potential
attackers. In other words, A has to worry about chosen ciphertext attacks and should use
inverse BEAST-RK for encryption and straight BEAST-RK for decryption.

The boxes and the tokens can also be used for public-key like encryption: The customers
encrypt their messages using straight BEAST-RK, and only A can read the messages. Even

152 Communications and Multimedia Security II

token-owners who listened to an encrypted message can do no better than to guess the
message and to verify their guess by encrypting it on their own. This feature is due to the
smartcard and its one-way use- by no means can BEAST or BEAST-RK be regarded as
public-key ciphers.

6 CONCLUDING REMARKS

As mentioned in section 2, one should look out for possible combined chosen plain­
text/chosen ciphertext attacks. In the case of the above application example, there are
two potential risks:

1. A encrypts and broadcasts data provided by the third party B.
2. A decrypts messages sent to her and publishes these.

If B is not considered trustworthy by A, there is but one cure for the first risk: A has
to use another cipher.

If one does not need remote-key encryption, Anderson's and Biham's LIONESS, the
four-round variant of LION, should be considered. LIONESS is slower than BEAR and
LION, but secure against combined chosen plaintext/chosen ciphertext attacks. It is un­
clear whether BEAR, LION, or LONESS can be adapted for remote key encryption- as
we have done with BEAST.

The second risk can be ruled out by a careful application design, so BEAST-RK can be
used. Troublesome are those customers who - instead of choosing a message, encrypting
and sending it - directly choose a ciphertext x and send it to A. If A gives away the
decryption of such an x, she allows access to her decryption engine. Hence A must not
reply something like 'your message has been scrambled, I only read ... '

The cure is to demand the messages to be redundant in a certain way and to ignore all
other messages. If e.g. the last n bits of every message block have to be zeroes, a plaintext
corresponding to a chosen ciphertext will be ignored with the probability 1- 2-n.

The designers of new cryptosystems frequently prove security against certain types of
cryptanalysis, e.g. differential or linear cryptanalysis. Here, we need no such proof. We
know that our ciphers are secure against all types of cryptanalysis, even the ones not yet
discovered, if the underlying building blocks are secure.

Note that we can use our cipher like a 'box of bricks', i.e. define variants of BEAST
and BEAST-RK not based on SHA-1 and SEAL, but on other hash functions or stream
ciphers. This may be done because of lack of trust in the security of SHA-1 and SEAL, or
in order to to speed-up the block cipher. E.g. one can replace SEAL by another component
with a faster set-up. Lucks (1996) considers a hash function based replacement for SEAL.
There are two advantages of that proposal: It is faster if the blocksize is moderately large,
and the security of the hash function is a sufficient security criterion for the security of
the block cipher.

BEAST 153

7 REFERENCES

R. Anderson (1993) The Classification of Hash Functions, in Fourth IMA conference on
cryptography and coding, 83-93.

R. Anderson, E. Biham (1996) Two Practical and Provably Secure Block Ciphers: BEAR
and LION, in Fast Software Encryption (ed. D. Gollmann), Springer LNCS 1039, 113-
120.

M. Blaze (1996) High-Bandwidth Encryption with Low-Bandwidth Smartcards, in Fast
Software Encryption (ed. D. Gollmann), Springer LNCS 1039, 33-40.

M. Luby, C. Rackoff (1988) How to construct pseudorandom permutations from pseudo­
random functions, SIAM J. Computing, Vol. 17, No. 2, 373-386.

S. Lucks (1996) Faster Luby-Rackoff Ciphers, in Fast Software Encryption (ed. D. Goll­
mann), Springer LNCS 1039, 189-203.

U. Maurer (1992) A Simplified and Generalized Treatment of Luby-Rackoff Pseudorandom
Permutation Generators, in EuroCrypt '92 (ed. R. Rueppel), Springer LNCS 658, 239-
255.

P. Rogaway, D. Coppersmith (1993) A Software-Optimized Encryption Algorithm, in Fast
Software Encryption (ed. R. Anderson), Springer LNCS 809, 56-63.

M. Roe (1994) Performance of Block Ciphers and Hash Functions- One Year Later, in
Fast Software Encryption (ed. B. Preneel), Springer LNCS 1008, 359-362.

B. Schneier (1995) Applied Cryptography, Wiley.

8 BIOGRAPHY

Stefan Lucks received his Diplom (diploma) in computer science from the University of
Dortmund. He expects to receive his Ph. D. soon. Currently, he is employed as a scientific
assistant at the University of Gottingen, where he works on the design and analysis of
efficient cryptographic schemes. Apart from cryptography, his research interests include
computer security, communications security, and complexity theory.

