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Abstract 
This paper describes BEAST, a new blockcipher for arbitrary size blocks. It is a Luby­
Rackoff cipher and fast when the blocks are large. BEAST is assembled from cryptographic 
hash functions and stream ciphers. It is provably secure if these building blocks are secure. 

For smartcard applications, a variant BEAST-RK is proposed, where the bulk oper­
ations can be done by the smartcard's host without knowing the key. Only fast key­
dependent operations remain to be done by the smartcard. 
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1 INTRODUCTION 

Based on random functions, Luby and Rackoff (1988) described provably secure block 
ciphers. This theoretical break-through is of practical interest, since it enables us to as­
semble a secure cipher from secure components. Components are known, which we can 
reasonably expect to be secure. In this paper, the hash function SHA-1 (see Schneier, 
1995) and the stream cipher SEAL (Rogaway and Coppersmith, 1993) are considered as 
components, though other choices would do, as well (Lucks, 1996). SHA-1 and SEAL have 
been suggested by Anderson and Biham (1996), but BEAST is faster than their ciphers. 

BEAST, like Luby-Rackoff ciphers in general, is a Feistel cipher, similar to DES. While 
DES requires 16 rounds, BEAST only needs three. On the other hand, BEAST's round 
functions must be cryptographically stronger than the round functions of DES. 

Due to its construction, BEAST performs best when operating on large blocks. This 
copes well with a possible use of BEAST in multimedia security applications, when a high 
throughput is required from the cipher, and the overall data volume is huge, too. 

High-throughput encryption with smartcards is difficult, because of the smartcards' 
limited computational power and their slow communication links. Blaze (1996) suggested 
to share the encryption burden between the smartcard and its host. The smartcard's host 
does the bulk encryption work but is not trusted with the key, while the card only performs 
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fast key-dependent operations. We exploit Blaze's idea for BEAST-RK, the remote-key 
variant of BEAST. 

2 BACKGROUND 

Encrypting with a block cipher means to apply a key-dependent permutation g to the 
plaintext, decrypting to apply the inverse g-1 to the ciphertext; g is computed by the 
'encryption engine' and g-1 by the 'decryption engine'. A block cipher is secure if g 
appears like a randomly chosen permutation for anyone without knowledge of the key. 

The type of attack we consider is a 'chosen plaintext attack', where the attacker chooses 
a plaintext x1 , injects x1 into the encryption engine and gets the ciphertext g(x!). This is 
repeated with x 2 , x 3 , •.. (see Figure 1). After a couple of plaintext injections the attacker 
has to decide whether g is a random permutation or not. 

_/\_ 
Figure 1 Chosen ciphertext attack. 

Similarly one can consider chosen ciphertext attacks. We only consider block ciphers 
where the ciphertexts are as long as the plaintexts, so in this case, we can simply use the 
inverse permutation g- 1 for encryption and the straight permutation g for decryption. 

Resistance against such attacks is commonly accepted as a sufficient security criterion 
for block ciphers. 

Every cipher is designed to be resistant against certain attacks, but fails to others. 
Among the advantages of using a cipher with a proof of security (under a reasonable 
assumption) is the simplicity of finding out which attacks the cipher is designed for - and 
which not. Overstretching the security of any cipher is like using an insecur~ one. 

BEAST is not secure against 'combined chosen plaintext/chosen ciphertext attacks', 
where the attacker accesses both the encryption and the decryption engine. It is very 
dangerous, anyway, to allow the enemy to decrypt and encrypt with the secret key. Look 
out for this type of attack and try to rule it out for your application - but if 
you can't, use another cipher! 
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Let JI, Jz, and h be random functions h,h: {0,1}'---+ {0,1}1 and h: {0,1}1 ---+ 
{0, 1 }'. By 'Ee' we denote the bit-wise X OR. We compute values S, U E {0, 1 }1 and 
T E {0, 1}' by 

S L E8 h(R), 
T R E8 h(S), and 
U S E8 h(T). 

This way we have defined a permutation '1j;(f1,h,h)(L,R) = (U,T) over {0, 1}1+r. This 
is represented by Figure 2 - just start with L and R and follow the arrows. Similarly, 
'lj;(h,f2, ft) = 'lj;- 1(h, h, h) is the inverse. 

u T 

Figure 2 The permutation 'lj;(JI, Jz, h)(L, R) = (U, T). 

Luby and Rackoff (1988) showed in their famous paper that 'lj;(JI, /2, h) is indistinguish­
able from a random function if l = r and /t, h, and h are random or pseudorandom 
functions. If a permutation pis undistinguishable from a random function, it also is undis­
tinguishable from a random permutation. Maurer (1992) gave an amazingly simple proof 
for Luby's and Rackoff's theorem. Neither Luby and Rackoff nor Maurer regarded l =Jr. 

Theorem 1 Let g: {0, 1}'+1 ---+ {0, l}r+l be either a random/unction or g = 'lj;(JI, h, h), 
where h,h: {0,1}'---+ {0,1}1 and / 2 : {0,1}1 ---+ {0,1}' are random functions. Let 
n S min { l, r} be a security parameter. 

Let A be a distinguisher. Given a 'black box' which is able to compute g, A outputs 
either 1 or 0. By ~AND and ?pERM we denote the probabilities for A to output 1 if g is 
randomly chosen, resp. if g = 'lj;(/J, h, h). 

A accesses the 'black box' at most k times, i.e. A chooses at most k inputs (Lt, R 1 ), •.. , 

(Lk,Rk) and receives the corresponding (U1 ,T1 ), ... , (Uk,Tk) with (U;,T;) = g(L;,R;). 
Then 

(1) 
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Informally spoken, there is no reasonable chance for an attacker to distinguish between 
1/J(JI, h, h) and a random function, except when the attacker has chosen close to ,J'Fi 
plaintexts and has got the corresponding ciphertexts. The proof is based on Maurer's 
proof for l = r = n and is given by Lucks (1996). 

Lucks also found a 'shortcut' for the third round: If r > l, we may replace the function 
h by a function f. : {0, 1 }1 --> {0, 1 }1 which only uses any l of the r input bits to hand 
ignores the remaining r- l bits. If r ~ l, one can expect to evaluate f. much faster than 

h-

Theorem 2 Let the function f. : {0, 1}1 --> {0, 1}1 be a random function. If- except 
for h(T) = f.(T mod 21) - the conditions of theorems 1 are satisfied, then IPRAND -

k2 
PpERMI < 2"· 

3 PSEUDORANDOMNESS AND 'SECURITY' 

If the functions f 1 , hand hare not random but pseudorandom, 1/J(!J, h, h) represents a 
pseudorandom permutation - and a practical three round Feistel cipher as well. We know 
that if the pseudorandom functions are secure, the block cipher is secure, too. But what 
is meant by 'secure' in this context? 

In theoretical cryptography, the 'security' of a scheme often is reduced to the non­
existence of probabilistic polynomial time algorithms to break it. Luby-Rackoff ciphers 
are much stronger! Recall the distinguisher A and the probabilities PRAND and PrERM 
in theorem 1. By PrsEu, we denote the probability that A outputs 1 if A accesses the 
function g = 1}!(!1 , h, h) with pseudorandom f; at most k times. If 

k2 
IPRAND- PrsEul :::0: P + 2,;: 

holds for p > 0, then it is straightforward to use A as a test for the randomness of JI, h, 
and !J. The distinguishing probability is at least p: 

IPpERM - PrsEu I :::0: p. 

In other words, attacks on Luby-Rackoff ciphers are at least as hard as attacks on the 
underlying pseudorandom function generators, except for possibly increasing the attacks' 
probability of success by P /2n: 

Let g = 1/!(!J, fz, h) be an encryption function. Let !J, fz, and h be generated by a pseu­
dorandom function generator which is secure in the following sense: 'There is no algorithm 
which in timet (i.e. the time required to encrypt t pla.intexts) distinguishes between random 
and pseudorandom !I, fz, and h with probability p or more.' 
Then the block cipher defined by g is secure in the following sense: 'There is no algorithm A 
to distinguish between g and a random function in time t with probability p + k2 j2n or more, 
where A chooses exactly k inputs x1 , J:2 , ••. , Xk and gets the corresponding outputs g(x 1 ), 

g(xz), ... , g(xk)·' 
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Note that the computation of the k ciphertexts takes time k and is a part of A's overall 
run time. 

4 THE BLOCK CIPHERS BEAR AND LION - AND BEAST 

If 1 =f. r, 'compressing' (pseudo-)random functions J; (with more input bits than output 
bits) and 'expanding' h±t (less input bits than output bits) alternate in Figure 2. For 
compressing, cryptographic hash functions are well suited- Anderson and Biham (1996) 
suggested to use SHA-1. For expanding, they considered the stream cipher SEAL. 

Cryptographic hash functions such as SHA-1 are authentication tools. We may use 
them as building blocks for our ciphers, but then we have to demand t~e hash functions 
to be pseudorandom. Being pseudorandom is a widely accepted security-related design 
goal for cryptographic hash functions, anyway. Anderson (1993) describes some risks of 
using non-pseudorandom hash functions for authentication. 

SEAL is a stream cipher explicitly designed by its authors to be a pseudorandom 
function, too. (A stream cipher is 'secure', if given random inputs the outputs are undis­
tinguishable from random outputs - where the output-size exceeds the input-size. Being a 
pseudorandom function requires more, since here the outputs have to be undistinguishable 
from random functions even if different inputs are deliberately chosen by the attacker.) 

On a 133 MHz DEC Alpha machine (a 'sandpiper'), Roe (1994) measured a compression 
speed of about 40 Mbit/sec for SHA-1 and a expansion speed of more than 100 Mbit/sec 
for SEAL. The second result, though, is a more asymptotical one since SEAL runs through 
a very slow key-setup before it actually starts encryption. The key-setup takes about as 
much time as hashing a 32000 bit input with SHA-1 (i.e. as evaluating the internal 512 
bit to 160 bit compression function of SHA-1 about 200 times- see Schneier (1995)). 

Anderson and Biham proposed two block ciphers for flexible but large blocks: BEAR 
and LION, both similar to Figure 2 with (1 + r)-bit Blocks. BEAR was based on the 
choice 1 = 160 ~ r, with two SHA-1 r-bit to 1-bit compression steps and one SEAL 1-bit 
to r-bit expansion step, similarly LION on l ~ r = 160 with two expansion step and 
one compression step. For large blocks (i.e. blocks greater than about 6 Kbyte), LION is 
faster than BEAR. 

Anderson and Biham only considered a very weak type of attack, and their security 
proof for BEAR and LION is not valid for chosen plaintext attacks. But thanks to theorem 
1 both ciphers are as secure as any block cipher based on Figure 2 - if the underlying 
pseudorandom functions are secure. 

Theorem 2 enables us to define the BEAST ('Block Encryption Algorithm with Shortcut 
in the Third round', see Figure 3), a variant of BEAR, but faster than both BEAR and 
LION. 

Since the round functions of Luby-Rackoff ciphers have to depend on a key*, we need 
keyed variants SHAK and SEALK of SHA-1 and SEAL: 

SHAK(x) = SHA(K EB x) and SEALK(x) = SEAL(K EB x). 

*Actually, the second round of BEAR and LION does not depend on a key. This is theoretically sound, 
but does not simplify or speed-up the ciphers significantly. 
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L__L_T~_] 
Figure 3 The block cipher BEAST. 

Note that the input size to the keyed hash function is known in advance, otherwise we 
could use e.g. SHAK(x) = SHA(I<IIxiiK), where 'II' stands for the concatenation of bit 
strings. BEAST can be described by the following equations: 

S L(f)SHAK1 (R), 

T R ffi SEALK2(S), and 
U S ffi h(T*) with T* ='first l bits ofT'. 

Here, /{1 , /{2 , and /{3 represent the BEAST's round keys. It is straightforward to generate 
them from a smaller master key I<M using SEALKM· 

How fast is BEAST? On the same 'sandpiper' Roe used, Anderson and Biham measured 
the speed of BEAR and LION. With the blocksize 1 Mbit, they measured an encryption 
speed of 13.62 blocks/sec for BEAR and 18.68 blocks/sec for LION. BEAR consist of 
two rounds of hashing with SHA-1 and one round of SEAL, while in LION there are one 
SHA-1- and two SEAL-rounds. For BEAST, the encryption speed is dominated by one 
SHA-1- and one SEAL-round- the time required for the third round is negligible for large 
blocks. Based on these facts, we expect BEAST to encrypt and decrypt 1 Mbit blocks at 
about 23.6 blocks/sec on on the same computer. BEAST's expected 23.6 Mbit/sec can 
be compared with about 1.86 Mbit/sec of the classical 'DEA' (Roe, 1994). 

5 REMOTE-KEY ENCRYPTION WITH BEAST-RK 

If SHA-1 is collision-resistant and SHAK is a secure pseudorandom function, then the 
function FK(x) = SHAK(SHA-1(x)) is a. secure pseudorandom function, too. Similarly, if 
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SEALK also is a secure pseudorandom function, GK = SEAL(SHAK(x)) is so, as well. Is 
there a point in replacing a secure pseudorandom function by another secure but slower 
one? 

There is - sometimes. Obviously, the operation which does the bulk work (if the blocks 
are large), i.e. SHA-1 in FK and SEAL in GK, does not depend on a key. The key­
dependent operation is always SHAK, operating on fixed input and output blocks of 160 
bits - whatever the actual blocksize may be. This leads us to the idea of doing the bulk 
operation on a fast but untrusted host and doing the key-dependent operation on a slow 
tamperproof device like a smartcard. 

This observation leads to BEAST-RK, see Figure 4. The r-bit right side R of the input 
is split into a 160-bit subblock R* and a (r -160)-bit subblock R**. Similarly, the second 
round key K 2 is split up into K; and K;*, and the right side T of the output is the 
concatenation of a 160-bit subblock T* and a (r- 160)-bit subblock T**. BEAST-RK 
operates as follows: 

s L ffi SHAK,(R*IISHA(R**)) 
T* R* EB SHAK; ( S) 
T** R** EB SEAL(SHAK;·(S)) 
U S EB SHAK3 (T*) 

Figure 4 The remote-key variant BEAST-RK of BEAST. 

In order to share the encryption between the host and the (hopefully tamperproof) 
card, the following protocol is used: 

1. Given L, R*, and R**, the host sends L, R* and SHA(R**) to the card. 
2. The card computes S, T*, SHAK;·(S), U and sends U, T* and SHAK;·(S) to the host. 

S remains secret for the host. 
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3. The host uses SHAK;' ( S) to compute T**. 

The large rectangle below the L- and R*-box represents the smart card. When encrypting 
one block, three 160-bit inputs L, R*, and SHA-1(R**) enter the smartcard, and three 
160-bit outputs U, T*, and SHAi(,(S) leave it- independently of the blocksize. 

BEAST-RK looks like is a four round cipher, but it is a three round one, just like 
BEAST. The output of the second roun:d function is (R* EB T*)II(R** EB T**), the round 
key is K2 = K;IIK;*. 

During a chosen plaintext attack, the attacker not only gets ciphertexts, but also inter­
mediate values of the form SHAi(,(S). Does giving away such intermediate information 
weaken BEAST-RK, compared to BEAST? 

The answer is 'no'. Let an attacker be given a plaintext block (Lo,R~,R~*) and a 
bit-string X of blocklength. For i E {1, ... , k }, the attacker chooses plaintext blocks 
(Li, R';, Ri*) different from (L0 , R~, R~*) and gets the corresponding intermediate values 
SHAi(,(Si) and ciphertext blocks (U;, T;*, T;'*). If BEAST-RK's components SHA-1 and 
SEAL are secure, it is infeasible for the attacker to decide whether X is randomly gen­
erated X or X= (U0 ,T;,T;*). Here, we omit a formal proof but note that this can be 
proved based on the following three observations: 

1. If the hash function SHA-1 is collision-resistant, it is infeasible find different plain­
text blocks (L11 R~,Ri*) f= (L2,R;,R;*) with L1 = L2, Ri = R;, and SHA(Ri*) = 
SHA(R;*). 

2. Consider a variant of BEAST-RK with 480-bit blocks, where SEAL is replaced by 
the identical function, i.e. T** = R** EB SHAi(,(S). If BEAST is secure, then so is 
this variant. Hence, given any 'new' plaintext block (L;,R';,R';*), it is infeasible for 
attackers to distinguish between the corresponding ( U;' Tt' SHA K, ( si)) and a random 
triple (X, Y, Z) E ( {0, tp60) 3 . 

3. If SEAL is a secure stream cipher, attackers who don't know SHAi(,(S) can't distin­
guish between SEAL(SHAi(,(S)) and random bit strings. 

IF BEAST is secure, then BEAST-RK is so, too. In some sense, BEAST-RK is more 
secure than BEAST, since BEAST-RK does not require SEAL do be a pseudo-random 
function. Any secure stream cipher could replace SEAL - possibly a stream cipher with 
a faster set-up. 

BEAST-RK is somewhat similar to Blaze's RKEP, the 'remotely keyed encryption 
protocol' (Blaze, 1996). But, as outlined above, BEAST-RK is provably secure if its com­
ponents are secure. No such result is known for the RKEP. 

BEAST-RK can be used e.g. for pay-TV and similar applications, where encrypted data 
are transmitted via a broadcast-channel. Decryption is done on the customers' decoder 
boxes (these can either be hardware, or software running on PCs ), connected to tamper­
proof tokens. The sender A lives from selling these tokens. Since one can not expect all 
of the customers to be honest, A is literally giving away decryption engines to potential 
attackers. In other words, A has to worry about chosen ciphertext attacks and should use 
inverse BEAST-RK for encryption and straight BEAST-RK for decryption. 

The boxes and the tokens can also be used for public-key like encryption: The customers 
encrypt their messages using straight BEAST-RK, and only A can read the messages. Even 
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token-owners who listened to an encrypted message can do no better than to guess the 
message and to verify their guess by encrypting it on their own. This feature is due to the 
smartcard and its one-way use- by no means can BEAST or BEAST-RK be regarded as 
public-key ciphers. 

6 CONCLUDING REMARKS 

As mentioned in section 2, one should look out for possible combined chosen plain­
text/chosen ciphertext attacks. In the case of the above application example, there are 
two potential risks: 

1. A encrypts and broadcasts data provided by the third party B. 
2. A decrypts messages sent to her and publishes these. 

If B is not considered trustworthy by A, there is but one cure for the first risk: A has 
to use another cipher. 

If one does not need remote-key encryption, Anderson's and Biham's LIONESS, the 
four-round variant of LION, should be considered. LIONESS is slower than BEAR and 
LION, but secure against combined chosen plaintext/chosen ciphertext attacks. It is un­
clear whether BEAR, LION, or LONESS can be adapted for remote key encryption- as 
we have done with BEAST. 

The second risk can be ruled out by a careful application design, so BEAST-RK can be 
used. Troublesome are those customers who - instead of choosing a message, encrypting 
and sending it - directly choose a ciphertext x and send it to A. If A gives away the 
decryption of such an x, she allows access to her decryption engine. Hence A must not 
reply something like 'your message has been scrambled, I only read ... ' 

The cure is to demand the messages to be redundant in a certain way and to ignore all 
other messages. If e.g. the last n bits of every message block have to be zeroes, a plaintext 
corresponding to a chosen ciphertext will be ignored with the probability 1- 2-n. 

The designers of new cryptosystems frequently prove security against certain types of 
cryptanalysis, e.g. differential or linear cryptanalysis. Here, we need no such proof. We 
know that our ciphers are secure against all types of cryptanalysis, even the ones not yet 
discovered, if the underlying building blocks are secure. 

Note that we can use our cipher like a 'box of bricks', i.e. define variants of BEAST 
and BEAST-RK not based on SHA-1 and SEAL, but on other hash functions or stream 
ciphers. This may be done because of lack of trust in the security of SHA-1 and SEAL, or 
in order to to speed-up the block cipher. E.g. one can replace SEAL by another component 
with a faster set-up. Lucks (1996) considers a hash function based replacement for SEAL. 
There are two advantages of that proposal: It is faster if the blocksize is moderately large, 
and the security of the hash function is a sufficient security criterion for the security of 
the block cipher. 



BEAST 153 

7 REFERENCES 

R. Anderson (1993) The Classification of Hash Functions, in Fourth IMA conference on 
cryptography and coding, 83-93. 

R. Anderson, E. Biham (1996) Two Practical and Provably Secure Block Ciphers: BEAR 
and LION, in Fast Software Encryption (ed. D. Gollmann), Springer LNCS 1039, 113-
120. 

M. Blaze (1996) High-Bandwidth Encryption with Low-Bandwidth Smartcards, in Fast 
Software Encryption (ed. D. Gollmann), Springer LNCS 1039, 33-40. 

M. Luby, C. Rackoff (1988) How to construct pseudorandom permutations from pseudo­
random functions, SIAM J. Computing, Vol. 17, No. 2, 373-386. 

S. Lucks (1996) Faster Luby-Rackoff Ciphers, in Fast Software Encryption (ed. D. Goll­
mann), Springer LNCS 1039, 189-203. 

U. Maurer (1992) A Simplified and Generalized Treatment of Luby-Rackoff Pseudorandom 
Permutation Generators, in EuroCrypt '92 (ed. R. Rueppel), Springer LNCS 658, 239-
255. 

P. Rogaway, D. Coppersmith (1993) A Software-Optimized Encryption Algorithm, in Fast 
Software Encryption (ed. R. Anderson), Springer LNCS 809, 56-63. 

M. Roe (1994) Performance of Block Ciphers and Hash Functions- One Year Later, in 
Fast Software Encryption (ed. B. Preneel), Springer LNCS 1008, 359-362. 

B. Schneier (1995) Applied Cryptography, Wiley. 

8 BIOGRAPHY 

Stefan Lucks received his Diplom (diploma) in computer science from the University of 
Dortmund. He expects to receive his Ph. D. soon. Currently, he is employed as a scientific 
assistant at the University of Gottingen, where he works on the design and analysis of 
efficient cryptographic schemes. Apart from cryptography, his research interests include 
computer security, communications security, and complexity theory. 


