
20

Formalizing Composable Software
Systems - A Research Agenda
0. Nierstrasz, J.-G. Schneider, M. Lumpe

Software Composition Group, Institutfiir lnformatik (lAM),
UniversityofBerne, Neubriickstrasse 10, CH-3012 Berne, Switzerland.
Tel: +41 (31) 631.4618. Fax: +41 (31) 631.3965.
E-mail: [oscar, schneidr, lumpe}@ iam.unibe.ch.

Abstract
Flexibility is achieved in open systems by adopting software architectures that allow software
components to be easily plugged in, adapted and exchanged. But open systems are generally con­
current, distributed and heterogeneous in addition to being adaptable. Ad hoc approaches to spec­
ifying component frameworks can lead to unexpected semantic conflicts. We propose, instead, to
develop a rigorous foundation for composable software systems by a series of experiments in
modelling concurrent and object-based software abstractions as composable, communicating
processes. Eventually we hope to identify and realize the most useful compositional idioms as a
composition language for open systems specification.

Keywords
Components, Object-Oriented Programming, Software Composition, 1t calculus, PI CT.

INTRODUCTION

Complex software systems are increasingly required to be open, flexible conglomerations of het­
erogeneous and distributed software components rather than monolithic heaps of code. This plac­
es a strain on old-fashioned software technology and methods that are based on the maxim:

Programs = Algorithms + Data

This equation perhaps still has some relevance for well-defined and delimited problems, but it
tells us nothing about how to coordinate complex systems. We now need an equation of the form"':

Open Systems = Components + Coordination

But what do we mean by "components"? How should we understand "coordination"? Are
components and coordination just glorified data and algorithms, or is something else going on?
How can we tell? A rigorous semantic foundation for defining, studying and comparing ap­
proaches would clearly help, but where should we start, and what can we hope to achieve?

* Or perhaps, as one wag put it: Objects = Objects + Objects

2

E. Najm et al. (eds.), Formal Methods for Open Object-based Distributed Systems
© IFIP International Federation for Information Processing 1997

272 Part Seven Object and Process Calculi

We present, in section 2, a list of requirements and a research agenda for formalizing software
composition. In section 3, we outline our observations from modelling object-oriented features
in PICT, an experimental programming language based on the 1t calculus. In section 4 we discuss
various ways in which we may bootstrap from the low-level computational model of the 1t calcu­
lus to higher-level composition abstractions and idioms useful for developing open systems. We
conclude with some remarks about future work and directions.

2 REQUIREMENTS

Open systems pose an interesting mix of computational and compositional requirements. The ba­
sic requirements for open systems are that they be distributed, (and hence concurrent), heteroge­
neous and evolving. Clearly some form of computation is the end goal of any system, but an open
system has the additional constraint that the computations it performs be flexibly composed from
interchangeable components.

The computational viewpoint of open systems is as collections of communicating, potentially
active objects. The compositional viewpoint is that of collections of coordinated components.
These two viewpoints are complementary rather than opposing. They are not, however, equally
well-supported by current software technology and methods. In fact, the object viewpoint is often
presented and interpreted as if it were a component viewpoint, with consequent disappointments
and failures in software projects.

The object viewpoint is essentially computational. Object~ can be seen as (either active or pas­
sive) server processes that encapsulate and manage computational resources and data. Composi­
tion is provided mainly through programming language features: dynamic binding, inheritance
and genericity support, respectively, plug-compatibility, incremental modification, and parame­
terization. But only the last of these three allows one to compose specifications at a higher level
of abstraction. In general it is not possible to specify new kinds of objects by composing library
abstractions, just as it is not possible to specify systems of objects by composing library abstrac­
tions alone.

The component view is compositional. Components are designed to be plugged together.
Components may be implemented as objects, but they need not necessarily be. The granularity of
a component is typically coarser than that of objects, but may also be finer. (Mixins and synchro­
nization policies are good candidates for fine-granularity components.) The main difference be­
tween the two viewpoints is (or should be) that the component viewpoint makes system
architecture explicit [15]. The kinds of components that may exist in the system, what their inter­
faces are, how they can be plugged together, and how they are currently configured, must be ex­
plicitly represented ifthe system is to evolve in a disciplined way [25].

2.1 A Research Agenda
If we are to have any hope in developing a better software technology for open systems we must
be precise about our requirements, and we must resolve the computational and compositional (or
object and component) viewpoints. A kind of "lambda calculus for open systems" would help us
to formally specify different notions of objects and components, compare object models, investi­
gate the integration of computational and compositional language features like synchronization
and inheritance, explore richer notions of contracts and type compatibility for concurrent sys­
tems, and reason about properties of systems built from components.

Formalizing composable software systems- a research agenda 273

Here are some of the questions we would like to answer:

• What is an appropriate Object Calculus? The 1t calculus [20] seems to support the basic
features we wish to model: concurrency, communication, abstraction, mobility, creation of
processes and names. But the 1t calculus is very low level, and we must work hard to model
objects [30][32]. Is there a more suitable formalism with equivalent expressive power but
more convenient abstractions for modelling and reasoning about objects and components?

• What is a good model of objects and components? One appealing view is that of objects
as processes and components as (higher-order) abstractions over the object space [22].
Should objects and components be unified? Do functions play a special role? Should active
and passive objects be distinguished?

• Whatforms of composition are .fundamental? Most forms of composition, including in­
heritance [5], can be reduced to more basic forms. Functional composition, communica­
tion and genericity seem to be primitive, but genericity is only an issue in typed systems.
and functional composition can be effectively modelled by communication [31], so per­
haps communication is the root of all forms of composition. What is a good basis for mod­
elling other kinds of composition (such as inheritance, pipes, dataflow, triggering, etc.)?

• Is there a uniform type system that accommodates objects and components? Most object­
oriented languages do not treat all software entities uniformly. The inheritance interface,
for example, is typically not typed [14], but is indirectly described by ad hoc language con­
structs to control the visibility of features to clients.

• Can dynamic aspects of contracts he expre.ued in the type system? Services provided by
objects and components may not be uniformly available. Correct compositions may de­
pend on clients and servers conforming to a common protocol [23].

• Can we reason about correctness in a compositional way? Traditional approaches to
software specification and verification require global knowledge to prove programs cor­
rect. In an open system, global knowledge is by definition not available. We would like to
reason about correctness of parts of a system based on known properties of constituent
components and their compositions [22].

• How can we explicitly represent software architecture? A "composition language" would
serve the component viewpoint much as object-oriented languages serve the object view­
point. Explicit representations of components, compositions and software architecture>
should facilitate the evolution of open systems [I 5][25].

2.2 Experiments in Formalizing Software Composition
We have been using PICT [27], an experimental programming language based on the 1t calculus,
as an executable specification language for modelling compositional abstractions. We have used
it to model both traditional object-oriented features, such as inheritance and dynamic binding
[32], as well as more esoteric abstractions needed for composing concurrent systems, such as ge­
neric synchronization policies [16][35]. We expect these modelling exercises to lead us to (i) an
expressive formal model of objects and components. and (ii) a formal language for specifying
open systems abstractions at a higher level than the 1t calculus.

Our goal is to define a formal foundation that we can use to design and implement a composi­
tion language suitable for specifying component frameworks for open systems development

274 Part Seven Object and Process Calculi

[24]. Such a language would support both Component Engineers who need a means to specify
compositional interfaces, rules and components, i.e., component frameworks, and Application
Developers, who will use component frameworks to develop specific applications, i.e., composi­
tions.

A system for software composition should also support the integration of components. written
in other systems and languages and it should offer component engineers and application develop­
ers an interactive environment that supports design, composition andre-engineering. At present,
we are (i) identifying and developing software abstractions for open, distributed applications, and
(ii) developing experimental tools to support visual composition of graphically presented soft­
ware components. These additional efforts provide us with concrete application requirements for
the design of the composition language.

3 MODELLING OBJECTS AS PROCESSES

PrcT is an experimental programming language [29] whose features are defined by syntactic
transformation to a core language that implements the mini 1t calculus (a reduction of the 1t cal­
culus [20] originally proposed by Honda and Tokoro [12]). PICT is as much an attempt to turn the
1t calculus into a full-blown programming language as it is a platform for experimenting with
modelling of language features [30] and a platform for experimenting with type disciplines and
type inference schemes for the 1t calculus [28]. As such, it appears to be an ideal tool for model­
ling objects and more advanced object features.

A detailed description of PICT is beyond the scope of this paper; for further information about
its usage, its implementation, and its type system refer either to the PrcT tutorial [29], or to Turn­
er's thesis on the implementation ofPICT [34].

3.1 The Pierce/Turner Basic Object Model
Pierce and Turner [30] have outlined a basic model for object as processes in PICT, in which an
object is modelled as a set of persistent processes representing instance variables and methods.
The interface of an object is a record* containing the channels of all exported features. A concur­
rent queue could thus be modelled as shown in figure I.

A concurrent queue consists of (1) two exported request channels (put to add a new item to the
queue and get to get a stored item) and (2) a set of internal channels and processes representing
the state of a queue object. Each request channel is the interface to a process abstraction. These
are defined using the keyword abs and are the only processes able to query and manipulate the
state of an object (since the names of the channels used to realize the state are never exported). In
order to simplify their use, the request channels are packaged together as a record. The behaviour
of a queue is correct in presence of concurrent clients: both methods obtain and release the nec­
essary local sources in a consistent sequence, thus avoiding both interference and deadlock.

The reader may have noticed (i) the generic type parameter T (one of the major advantages of
the PICT type system is that it is quite easy to define processes with generic type parameters; the
concrete type of an instantiated generic process will be inferred by the type system), and (ii) the
explicitly folding and unfolding of recursive types (the type inference algorithm used by the cur­
rent PrcT implementation does not support recursive type resolution).

*Records, like tuples, can be encoded as processes in the 1t calculus, but are provided as primitives in PICT.

Formalizing composable software systems - a research agenda 275

def queue [:T:] []
let

{- generic type parameter T -)

in

end

new head, tail, init
run head! ini t

{- new, private channels -}
{- store name of head cell -)
{- next available tail -) run tail!init

record

end

put = abs [value, r] > {-put new value at tail of queue -)
let

in

end
end,

new link {- make a new tail channel -)

tail?last >

tail!link
last! [value,
r! [] I

{- retrieve last available tail -)
{- store new link and value -)

(fold (Cell T) link)]
{- and reply to client -)

get = abs [r] > {- get value from head of queue -)
head?item > item?[value, link] >

head! (unfold link){- remember the new head -)
I r!value) {- return value to client -)

end

Figure 1 A Concurrent Queue in PICT

The essentials of concurrent objects arc captured by this basic object model: encapsulation,
identity, persistence, instantiation, and synchronization. It is less clear whether the model can be
extended to capture other common features of object-oriented programming languages. Basic
features found in most of the better known languages include self-references of objects, dynamic
binding, inheritance, overriding, genericity, and class variables.

3.2 Modelling Object-Oriented Abstractions in PICT

Let us outline some observations resulting from our experiences modelling objects in PICT. For
details, please refer to the corresponding technical reports [32][35].

The basic object model of Pierce and Turner is a robust basis for modelling many aspects of ob­
jects. We have been able to extend this model to support all the basic features mentioned above.
While we added many features to objects and modified their internal representation and imple­
mentation, the interface of objects did not change.

An object is a server process containing a set of local processes and channels representing
methods and instance variables. The interface to an object is a record containing the channels of
all exported features. By modifying the interface record, the visibility of features can be selective­
ly controlled.

Two mechanisms are used to control feature visibility: scope rules and type system. When finer
grained control over a feature is needed, it is moved to an inner scope; for coarse-grained control,
it is moved to an outer scope. The type system offers a more sophisticated way for controlling vis­
ibility: type restriction can be used to hide features whereas type extension allows features to be
added or redefined. The use of type restriction may cause problems when type-safe downcasting

276 Part Seven Object and Process Calculi

is possible, because downcasting might be used to obtain uncontrolled access to protected fea­
tures.

To model class variables, class methods, and self-references, we have introduced metaohject.1·
to represent classes as run-time entities. The need to use metaobjects arises naturally when we
want to model correct initialization and controlled access to these features. Class variables and
methods are modelled as features of the metaobject, whereas self-references are achieved by a
combination of a generator and a fixed point process in the metaobject (i.e., mimicking the way
self-reference can be modelled using functions and records [5]).

Metaobjects and Metaobject Protocols [13] (MOPs) are a key feature of several object-orient­
ed languages and systems, including CLOS [8], Smalltalk [10], Beta [2] and now even C++ [4].
Although metaobjects are usually associated with MOPs, we did not find a need to introduce a full
MOP for the purpose of modelling objects in PICT. Metaobjects were useful even without any ap­
plication of runtime reflection. Metaobjects provide a general mechanism for modelling variow,
aspects of object creation and composition, in contrast to ad hoc solutions that result in new lan­
guage features for each new aspect- for example, to model the super feature of Smalltalk, we
do not need to introduce a new language feature, but simply alter the metaobject.

We also found that modelling objects and classes as processes clarifies the separate roles of
mechanisms that are merged or confused in most object-oriented programmi~g languages. For
example, object-oriented languages overload classes to represent four or even five distinct no­
tions: (i) classes as "cookie-cutters" (i.e., intensions) for objects, (ii) classes as extensible (i.e., in­
heritable) software components, (iii) classes as types, (iv) classes as metaobjects, and sometimes
even (v) classes as sets of instances (i.e., extensions). The PICT object model clearly separates
these distinct roles.

Since PICT is statically typed, every abstraction or process is statically typed. Therefore, unlike
those of CLOS or Smalltalk, our metaobjects are also statically typed. Typed metaobjects have
several advantages: (i) metaobjects are typed first class objects representing plain classes, (ii) no
runtime method lookup is needed, (iii) visibility of features of metaobjects can be controlled by
the type system, and (iv) genericity is well-typed; it is just a parameterization of metaobject fea­
tures.

Modelling inheritance and dynamic binding requires a more sophisticated solution. We found
that we needed to define so-called intermediate objects that define all the methods and instance
variables of a class, while leaving self-reference unbound. Binding of self-reference is estab­
lished by the metaobject when an object is actually created. Inheritance can be modelled by cop­
ying and modifying intermediate objects of superclasses. This approach follows closely that used
by Cook and Palsberg to propagate self-reference to a modified client [5].

As an extension to our object model, we have modelled McHale's "generic synchronization
policies" (GSP) [16] as composable concurrent abstraction in PICT. GSPs are reusable specifica­
tions of synchronisation policies, such as "mutual exclusion", "readers/writers" and so on, that
may be bound to the implementation of different object classes. In our first approach, we used a
preprocessor to translate GSP abstractions into PICT code. After a few iterations, we found we
were able to omit the preprocessing phase and implement GSPs directly in PICT.

4 COMPOSITIONAL IDIOMS

Modelling object-oriented features in the 1t calculus is tedious work, akin to programming in a
"concurrent assembler." PICT simplifies this work somewhat by providing syntax for a large

Formalizing composable software systems- a research agenda 277

number of common, basic programming abstractions, like Boo leans and integers, control struc­
tures, functions, expressions and statements. Still, to model objects as processes, one is often
obliged to forsake natural abstractions and explicitly describe behavioural in low-level, opera­
tional terms. For example, to specify the concurrent queue in figure I. we had to explicitly create
and manipulate the reply channel used to deliver put and get results to clients. This is not inher­
ently a problem of either the 1t calculus or PICT, hut is rather symptomatic of the fact that we have
not yet been able to identify the right compositional idioms for specifying concurrent objects.

In fact, it is possible to specify the concurrent queue in PICT without explicitly mentioning re­
ply channels, but the abstractions needed to do so are not immediately obvious. It is necessary to
model a range of different kinds of objects before such compositional idioms become apparent
and can be factored out as useful software abstractions.

A number of questions then suggest themselves: Can we identify a less primitive, intermediate
calculus that is more convenient for modelling objects and components? Can a type system he de­
veloped, perhaps based on that currently used for PICT, that is more convenient for characterizing
the kinds of abstractions we need? Can we identify a set of"kernel abstractions" that simplify the
task of modelling higher-level components? Can we use our modelling tools to formal character­
ize reusable design abstractions, i.e., design patterns'1 Can we adequately characterize the com­
positional rules of a component framework? Let us briefly consider each of these questions in
turn.

Several authors have already proposed various "object calculi" for modelling object-oriented
concepts [6][12][18][21][26]. So far none of these calculi provides both a good basis for model­
ling concurrent object abstractions and a formal foundation as mature as that of the 1t calculus
(while acknowledging that the 1t calculus is still far from being well-understood!). Rather than
trying to define yet another original object calculus, it would seem to be a better strategy to look
for an intermediate calculus that (i) provides the "right" abstractions for modelling component
frameworks, and (ii) can be easily be specified by a mapping to the 7t calculus, just like PICT con­
structs are defined hy a mapping to the mini 7t core language. The difference is that we would like
to be able to work exclusively at the higher level of the intermediate calculus, and hide the 1t core.

As a hypothetical example, consider the respecification of our concurrent queue in a so-called
"guarded object calculus" (figure 2). With only some minor syntactic variation, we can write this
specification directly in PICT. The key difference is that we restrict ourselves to to the guarded ob­
ject calculus (GOC) idiom, which can be summarized as "Linda meets Lambda": terms are lamb­
da expressions (abstractions or applications), possibly decorated with input guards or output
triggers relative to a local tuple space. Instead of being able to specify arbitrary 1t calculus proc­
esses, as is possible in PICT, we are now forced to specify components exclusively in the GOC
style. On the one hand, this liberates us from having to explicitly represent primitive notions such
as reply channels, on the other hand it takes away from us the freedom to represent these notions,
should we need them.

By analogy, consider the difference between programming in a pure object-oriented language
like Eiffel, in which we must program with objects, or programming in C++, which enables, but
does not enforce the object paradigm. The relative advantages and disadvantages of the two ap­
proaches are clear in both cases, and are not the subject of our debate. Instead, our question is, giv­
en that we want to enforce a component-oriented paradigm, what should be the core abstractions
that we provide? Is the GOC idiom a good basis, or do we need to look further'!

This example presents preliminary ideas using the GOC idiom. The constructs illustrated are
very closely related to those currently available in PICT. But the process of developing a suitable

278 Part Seven Object and Process Calculi

concQueue () =
let

new head, tail, item
head litem
tail litem

in

put val
let

tail?item
new link
item! (val, link)
tail !link

in
()

end

get () =
let

head?item
item?(val, link)
head! link

in
val

end

concurrent queue abstraction

local tuple space
name of head item in queue
next available tail slot

record with two fields

put new value at tail

get next available tail slot
make a new slot name
link value into queue
remember new tail slot

confirm completion

get value from head of queue

get name of head item
retrieve value and next item link
remember the next head

return the value

Figure 2 The Concurrent Queue in the GOC Idiom

intermediate calculus is an incremental one. We are continuing with our PICT object modelling
experiments, and hope to discover useful compositional idioms in this fashion. Therefore, we
hope that by evaluating our results and refining the intermediate calculus we will be able to estab­
lish the foundations for a compositional programming environment.

The current type system ofPICT is very rich, but it also has some drawbacks. First, the program­
mer has to explicitly fold and unfold values of recursive types (unfold transforms a value with
a recursive type into one with a non-recursive type, fold is used for the inverse transformation).
In the queue implementation, the types of all internal channels (head, tail, ini t, link) are
recursive. Second, in the presence of recursive types no subtype relation can be established. In the
current version ofPICT, two recursive types are either equal or incomparable*, which is problem­
atic when one wants to use polymorphic data structures. At this point it is not clear how the P!CT
type system can be consistently extended to support subtypes for recursive types. (Subtyping of
recursive types is still an active research area.)

An important task will be to discover what kind of abstractions are necessary for software com­
position. Do we really need all the abstractions common to most object-oriented languages, or are
there abstractions which should be avoided? Is it, on the other hand, possible (or even desirable)
to incorporate abstractions from other programming paradigms (such as functional or logic pro­
gramming)? One possible approach is to define a small number of well-understood and orthogo­
nal kernel abstractions and to provide mechanisms for defining higher level abstractions in terms
of the kernel abstractions. These higher level abstractions can be seen a~ syntactic sugar on top of

* According to Pierce, this is likely to change in a future version of PICT.

Formalizing composable software systems- a research agenda 279

the kernel abstractions and be used to define domain-specific framework abstractions. (PICT al­
ready goes a long way in this direction.)

Design patterns [9] are specifications of compositional idioms at the level of design rather than
as concrete software abstractions. Design patterns provide specific design guidelines for building
flexible object-oriented systems given certain requirements. They provide, amongst others,
guidelines for setting-up and adapting class structures. So far design patterns are not available as
reusable generic abstractions that are realized in software. No approaches have been presented
that transform these guidelines into rules that can be enforced in software in order to make adap­
tation and extension of class structures easier. One may apply design patterns in the implementa­
tion of a system, and one may recognize where they have been used, but the possibility to rew.e
these patterns in software is rather restricted. Turning design patterns into reusable software ab­
stractions would be one step towards explicitly representing software architecture in the imple­
mentation of open systems [15][17]. A good test of a formal object calculus is how well it can be
used to express design patterns as components.

In [7], a knowledge-based parallel programming environment is presented. The environment
assists an application programmer in finding an algorithmic skeleton well-suited for solving a
particular problem, which can then be completed by the programmer. A similar approach could
be used for design patterns: the composition language can be used to specify design-pattern com­
ponent templates, which only need to be bound to application-specific classes and components.

Before we define a component model for SiJftware, it is natural to have a closer look how hard­
ware is built. A stereo system, for example, may consist of an amplifier, CD-player, tuner, tape
deck, and other components. Each of these stereo components is built up from smaller compo­
nents (e.g., circuits), which again use even smaller components (e.g., transistors). All stereo com­
ponents have a well-defined basic behaviour and support standard interfaces. Before they can be
used, they have to be connected to a power supply. Although in principle each of these compo­
nents would function by itself, their real value lies in the way they are designed to be plugged to­
gether.

A customer composing a stereo system is usually not interested in how the components are
built, but is interested in the services they deliver (a tape deck should support a specific noise re­
duction system) and their composability (it should be possible to connect components from dif­
ferent vendors). The producers on the other hand have a different view of their hardware
components: they know the internal architecture (design and implementation) of their compo­
nents, and often reuse existing layouts and pieces of hardware to develop new components.

We would like to adapt the concepts and standard mechanisms of hardware composition and
use them in software development. If we hope to compose software in the same way hardware is
composed, a (software) component framework must support the specification of (i) exact behav­
iour of components, (ii) standard interfaces, (iii) protocols for intercomponent communication,
and (iv) rules for component substitutability.

There are other properties which a component framework must guarantee. As an example, let
us consider dynamically bound local method calls in object-oriented programming: a method
foo calls another method bar. If the method bar is redefined in a subclass, its behaviour is
changed. As a side effect, the behaviour off oo will also change, although the implementation of
f oo has not changed. We argue that any kind of implicit dependencies have to be avoided in a
component framework: all allowable dependencies should be explicitly represented and docu­
mented.

280 Part Seven Object and Process Calculi

5 FUTURE WORK

Although it is our long-term goal to define an object model suitable for specifying the composi­
tion of open, concurrent systems, so far we have mainly concentrated on modelling common fea­
tures of object-oriented languages that do not necessarily address concurrency. There are still a
few abstractions we did not incorporate into our first object models, such as multiple inheritance,
binary methods, type-safe downcasting, and constrained genericity.

Modelling binary methods is a challenging task, especially in the context of subclassing and
polymorphic data structures, since the definition of binary methods naturally leads to recursive
type definitions. Bruce et al. [3] have surveyed the sources of problems with binary methods, and
have presented a comparison of various solutions to these problems. We plan to adapt some of
these solutions to our 1t calculus object models.

One of the next steps will be to model abstractions for concurrent and distributed programming
and to define a concurrent object model. As mentioned above, we already have some preliminary
results in modelling McHale's "generic synchronization policies." There are numerous other in­
teresting approaches concurrent objects worth investigating, such as the "composition filters" ap­
proach of Sina [1], the state variable unification approach to synchronization of Oz [33], or the
separate extension to Eiffel [19].

Although metaobjects are usually associated with MOPs, we only defined a basic MOP for our
PrcT object models. Two major questions arise: what kind of MOPs do we need in a composition
language, and what are the consequences for the underlying type system? To our knowledge,
most of the languages supporting run-time MOPs are not statically typed. It is therefore a chal­
lenging task to see what kind of MOP can be defined with the current type system of PrcT, or how
the type system should be extended in order to support run-time reflection using metaobjects.

A general-purpose software composition system must support the integration of components
developed using other systems or languages. As a first step towards such an integration, we have
implemented a simple interpreter for a subset of the PICT programming language with an addi­
tional possibility to integrate C++ objects [36]. Although this first prototype has only limited ap­
plicability, it has helped us to obtain further insight in how to define precisely the requirements
for such integrations. An important step will be to study already existing standards for intercom­
ponent communication (e.g., COM and CORBA).

Ultimately we are targeting the development of open, hence distributed systems. A composi­
tion language for open systems should not only have its formal semantics specified in terms of
communicating processes, but should really support concurrent and distributed behaviour. The
prototype mentioned in the paragraph above is first step in this direction, since one can add com­
ponents that support communication between distributed nodes. What we need, however, is a dis­
tributed abstract machine as run-time system for the composition language, comparable to that
used for Java [11]. A distributed abstract machine for software composition could be built on top
of an existing intercomponent communication system.

The development of an environment for software composition will be an iterative task. In each
iteration step, the usability of the composition environment for real applications has to be validat­
ed by (i) programming components within the environment, (ii) integrating components written
in other systems and languages, (iii) building up component libraries, and (iv) using components
to build larger applications. After each step, the benefits and drawbacks have to be carefully eval­
uated in order to improve the environment.

Formalizing composable software systems- a research agenda 281

REFERENCES

Further references may be found at: http://iamwww.unibe.ch/-scg.

[I] Lodewijk Bergmans, "Composing Concurrent Objects," PhD Thesis. University ofTwente. 1994.

[2] S~ren Brandt and ReneW. Schmidt, "The Design of a Meta-Level Architecture for the BETA
Language," Proceedings of META '95: Workshop on Advances in Metaohject Protocols andRe­
flection at ECOOP '95, August 1995.

[3] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. Leavens
and Benjamin Pierce, On Binary Methods, 1996, To appear in Theory and Practice of Object Sys­
tems.

[4] Shigru Chiba, "A Metaobject Protocol for C++," Proceedings ofOOPSLA '95, ACM SIGPLAN
Notices, vol. 30, no. 10, October 1995, pp. 285-299.

[5] William Cook and Jens Palsberg, "A Denotational Semantics of Inheritance and its Correctness,"
Proceedings OOPSLA '89, ACM SIGPLAN Notices, vol. 24, no. 10, Oct. 1989, pp. 433-443.

[6] Laurent Dami, "Functions, Records and Compatibility in the Lambda N Calculus," Ohject-Ori­
ented Software Composition, 0. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 153-
174.

[7] Karsten M. Decker, Jiri J. Dvorak and Rene M. Rehmann, "A tool environment for parallel pro­
gramming- User-driven development of a novel programming environment for distributed
memory parallel processor systems," Priority Programme Informatics Research, lt~f(mnatirm
Conference Module 3 on Massively parallel systems, November 1994, pp. 40-47.

[8] Linda G. DeMichiel and Richard P. Gabriel, "The Common Lisp Object System: An Overview."
Proceedings ECOOP '87, J. Bezivin, J-M. Hullot, P. Cointe and H. Lieberman (Ed.), LNCS '276,
Springer-Verlag, Paris, France, June 15-17, 1987, pp. 151-170.

[9] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, Addison Wes­
ley, Reading, MA, 1995.

[I 0] Adele Goldberg and David Robson, Smalltalk 80: the Language and its Implementation, Addison­
Wesley, Reading, Mass., May 1983.

[II] James Gosling and H. McGilton, The Java Language Environment, Sun Microsystems Computer
Company, May 1995.

[12] Kohei Honda and Mario Tokoro, "An Object Calculus for Asynchronous Communication," Pro­
ceedings ECOOP '91, Pierre America (Ed.), LNCS 512, Springer-Verlag, Geneva, Switzerland,
July 15-19, 1991, pp. 133-147.

[13] Gregor Kiczales, Jim des Rivieres and Daniel G. Bobrow, The Art of the Metaohject Protocol,
MIT Press, 1991.

[14] John Lamping, "Typing the Specialization Interface," Proceedings OOPSLA '93, ACM S/GPLAN
Notices, vol. 28, no. 10, Oct. 1993, pp. 201-214.

[15] Jeff Magee, Naranker Dulay and Jeffrey Kramer, "Specifying Distributed Software Architec­
tures," Proceedings European Software Engineering Conference, Springer Verlag, Lecture Notes
in Computer Science, 1995.

[16] Ciaran McHale, "Synchronisation in Concurrent, Object-oriented Languages: Expressive Power,
Genericity and Inheritance," Ph.D. Dissertation, Department of Computer Science, Trinity Col­
lege, Dublin, 1994.

[17] Theo Dirk Meijler and Robert Engel, "Making Design Patterns Explicit in FACE, a Framework
Adaptive Composition Environment," draft manuscript, IAM, U. Berne, Aprill996, Submitted
for publication.

282 Part Seven Object and Process Calculi

[18] Tom Mens, Kim Mens and Patrick Steyaert, "OPUS: a Calculus for Modelling Object-Oriented
Concepts," Technical Report, No. VUB-TINF-TR-94-04, Department of Computer Science, Vrije
Universiteit Brussel, Belgium, 1994.

[19] Bertrand Meyer, "Systematic Concurrent Object-Oriented Programming," Communications (!l
the ACM, vol. 36, no. 9, September 1993, pp. 56-80.

[20] Robin Milner, Joachim Parrow and David Walker, "A Calculus of Mobile Processes, Part VII,"
Information and Computation, vol. 100, 1992, pp. 1-77.

[21] Oscar Nierstrasz, "Towards an Object Calculus," Proceedings of the ECOOP '91 Workshop on
Object-Based Concurrent Computing, M. Tokoro, 0. Nierstrasz and P. Wegner (Ed.), LNCS 612,
Springer-Verlag, 1992, pp. 1-20.

[22] Oscar Nierstrasz and Laurent Dami, "Component-Oriented Software Technology," in Object-Ori­
ented Software Composition, ed. 0. Nierstrasz and D. Tsichritzis, Prentice Hall, 1995, pp. 3-28.

[23] Oscar Nierstrasz, "Regular Types for Active Objects," Object-Oriented Software Composition, 0.
Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 99-121.

[24] Oscar Nierstrasz and Thee Dirk Meijler, "Requirements for a Composition Language," Proceed­
ings of the ECOOP '94 Workshop on Coordination Languages, ed. P. Ciancarini, 0. Nierstrasz,
A. Yonezawa, Springer-Verlag, LNCS 924, 1995, pp. 147-161.

[25] Oscar Nierstrasz and Thee Dirk Meijler, "Research Directions in Software Composition," ACM
Computing Surveys, vol. 27, no. 2, June 1995, pp. 262-264.

[26] Else K. Nordhagen, "Omicron, An Object-Oriented Calculus," Proceedings FMOODS'96, IFIP
WG 6.1 (Ed.), Paris, France, March 1996.

[27] Benjamin C. Pierce, "PICT: An Experiment in Concurrent Language Design," PICT Version 3.6
tutorial, University of Edinburgh, March, 1994.

[28] Benjamin C. Pierce and David N. Turner, "Simple Type-Theoretic Foundations for Object-Ori­
ented Programming," Journal of Functional Programming, vol. 4, no. 2, April 1994, pp. 207-247.

[29] Benjamin C. Pierce, "Programming in the Pi-Calculus: An Experiment in Concurrent Language
Design," Technical Report, Computer Laboratory, University of Cambridge, UK, May 1995, Tu­
torial Notes for PICT Version 3.6a.

[30] Benjamin C. Pierce and David N. Turner, "Concurrent Objects in a Process Calculus," Proceed­
ings Theory and Practice of Parallel Programming (TPPP 94), Takayasu Ito and Akinori Yone­
zawa (Ed.), Springer LNCS 907, Sendai, Japan, 1995, pp. 187-215.

[31] Davide Sangiorgi, "Expressing Mobility in Process Algebras: First-Order and Higher-Order Par­
adigms," Ph.D. thesis, CST-99-93 (also: ECS-LFCS-93-266), Computer Science Dept., Univer­
sity of Edinburgh, May 1993.

[32] Jean-Guy Schneider and Markus Lumpe, "Modelling Objects in PICT," Technical Report, no.
IAM-96-004, University of Bern, Institute of Computer Science and Applied Mathematics, Janu­
ary 1996.

[33] Gert Smolka, "A Survey of Oz," Draft, German Research Center for Artificial Intelligence
(DFKI), January 24, 1995.

[34] David N. Turner, "The Polymorphic Pi-Calculus: Theory and Implementation," Ph.D. thesis, De­
partment of Computer Science, University of Edinburgh, UK, 1996.

[35] Patrick Varone, "Implementation of 'Generic Synchronization Policies' in PICT," Technical Re­
port, no. IAM-96-005, University of Bern, Institute of Computer Science and Applied Mathemat­
ics, March 1996.

[36] Pierre Viret, "Viewing C++ Objects as Communicating Processes," Master's thesis, Laboratoire
de Teleinformatique, Ecole Polytechnique Federale de Lausanne (EPFL), CH, March 1996.

