
19

An object-oriented description of services in a
distributed system
C. Popien, A. Kuepper
Aachen University of Technology, Department of Computer Science N
Ahomstr. 55, D-52056Aachen, Germany, Phone: +49(241)8021415,
Fax: +49(241)8888 220, popien@informatik.rwth-aachen.de

Abstract
This paper studies the requirements of services in a distributed system. It examines

management possibilities for describing the service trading scenario according to the
computational viewpoint of the Open Distributed Processing (ODP) Reference Model. Because
of similar architectures and properties ODP services, service offers, types, exporters and
traders are mapped onto management components and modelled as managed objects.
Therefore, the Guidelines for the definition of Managed Objects (GDMO) are used. The
concept allows a precise study of the service trading scenario and provides means for exporting
and importing of service offers in a distributed environment.

1 INTRODUCTION

For global networks of interconnected computers, new services to manage resources of
distributed systems are needed. A growing number of components offering services leads to an
open service market. The client's problem to select a service arises. Therefore, the client/server
model is extended to a three-party model: the importer/exporter/trader model.

The tasks of the ODP trader are divided into domain and type management, respectively.
Domain management supports finding a service, type management supports interface matching.
While existing papers like [Sl 90] and [Dr 92] do not consider these topics, realization of type
management is independend from management concepts, but there are suitable relations
between the object-oriented modelling techniques of ODP and the managed object based
description methods. It is the aim of this paper to study this relationship between management
and ODP in order to get a formal basis for describing a service trading scenario.

The paper is structured as follows. The second chapter gives an overview about the
requirements of service trading described in the ODP Reference Model. The third chapter
discusses management concepts defined in the management standards. The ODP properties and
requirements are compared with available techniques in GDMO. Subsequently, the fourth
section formally specifies some ODP components. In order to operate on service offers ODP
enables export and import of services. Finally, the fifth section derives the conclusions and
mentions some open questions.

2 SERVICES IN DISTRIBUTED SYSTEMS

An ODP trader is an object that performs trading, primarily satisfying identification
requirements [ODP Tr], [MaBl 92]. A trader can be seen as an object from which another
object can buy (import) its needs and sell (export) its services in a distributed environment.

In order to study the process of service trading in more detail some notions are introduced.
A service is a function provided by an object at a computational interface. It is a set of
capabilities available at an interface of an object. Every service is an instance of a service type.
Associated with each service type is an interface type, which determines the computational

E. Najm et al. (eds.), Formal Methods for Open Object-based Distributed Systems
© IFIP International Federation for Information Processing 1997

262 Part Six Case Studies II

behaviour. Interfaces of the same type provide the same functionality. However, instances of
the same service type may differ in some noncomputational aspects. These additional aspects
are called service properties.

In the trading context, service properties can be classified as either static or dynamic. A static
service property is a property that changes infrequently. The values are asserted by an exporter
in a service offer and are stored in the service directory (SD) of the trader, see Fig. 1. A
dynamic service property is a property whose values change much more frequently than the rate
at which the trader is asked to perform a match based on that property value. Values of dynamic
properties are obtained on demand by the trader. A service offer describes a service that is
being traded. It is an assertion made by an exporter about a service that is offered for use by
other objects at a computational interface. In addition to service type and service property
values, a service offer can also have service offer property values. Considering the trader in
more detail, it performs two major functions: the domain management function and type
management function.

Figure 1 Service trading in distributed systems

The type management function realizes the management of the subtype relationship between
types. In more detail, the set of all service types known to the trader is organized into a service
type hierarchy. The service type hierarchy is represented as a directed acyclic graph, called
interface offer graph, in which each node is a service type and each directed edge represents
supertype to subtype relationships.

The domain management function manages the service offer space. The service offer space
within a trader may be structured into sets called contexts. A context structure is defined by the
containment relationship between contexts. A trader context structure can be represented as a
directed acyclic graph, called trading context graph, with the nodes representing the trading
contexts, and arcs representing the containment relationship.

Considering the description of a service offer, it is possible to derive a structure for service
offers of an importer. A service offer consists of exporter ld (Eid), service interface ld (SII) ,
service type description and service offer properties, where a service type description can be
further split into an interface type description (IT) and aservice property type description.
Service properties are static service properties (SSP) or dynamic service properties (DSP),
respectively, described as ordered pairs

<service property name, service property value>.
If a local trader fails to return a service offer to its clients it can establish an import contract

with a remote trader. This trader acts as exporting trader and has to establish an export contract.
The new system is called trading federation [BeRa 91], [PoMe 93].

In large distributed systems, changes of configurations are likely to appear quite often.
Therefore, the behaviour of management and administration services must be flexible to cope

An object-oriented description of services in a distributed system 263

with these dynamically changing configurations and requirements. In order to achieve a flexible
object behaviour, it has to be determined by a policy.

3 GDMO AND SERVICES IN DISTRIBUTED SYSTEMS

Managing the services in a distributed system requires powerful concepts for efficient
service management. First approaches of service management have been presented in [PoKM
94] and [PoKu 94].

To establish a service management, some functionality can be yield from the Open Systems
Interconnection (OSI) respective standards [OSI MF, MI, MO, SM]. This holds for instance
for the model of managed objects (MO) and its specification language Guidelines for the
Definition of Managed Objects (GDMO) which is applied to ODP architectures in the
following. Subsequently, a management scenario is created that demonstrates the abstraction of
a whole ODP environment by MOs [RPB 93].

Managed Object Class

Figure 2 Deriving MOs from its common class

The use of management functions presumes information about the resources that are to be
managed. This holds particulary for the configuration management [Pa 91]. This information is
contained in MOs which are characterized by their respective MO class as can be seen in Fig. 2.
A MO is an abstract view of a resource which can be a hardware or a software component.
According to the OSI management framework, a MO consists of several elements like attributes
to represent the resource's state and properties, actions to handle the resource, notifications for
the generation of reports recording the occurence of particular events or confirming operations,
and its relationship to other MOs. These properties of a MO are given by several templates that
establish the MO class.

In the following, a management scenario for an ODP environment will be established,
subdivided into an exporter and a trader. The exporter in turn is subdivided into several
functional units, called service type database, to store the exporter's offered service types, the
service entity which contains the services and performs them, the service assignement which
assigns the incoming importers to their required services, and a service supplier which is
responsible for establishing service offers in the service directory. The service directory is the
most important entity of the trader and contains all service offers of the related ODP
environment.

The MOs, as well as their classes, are arranged hierarchically. MOs are arranged in a
containment relation, whereas the hierarchy between classes is called inheritance relation. The
containment relation is useful for abstracting real world hierarchies like the ODP environment.

264 Part Six Case Studies II

A MO can contain several MOs, but it is contained in exactly one MO. except for the MO
establishing the top of the containment tree. Moreover, the containment relation is responsible
for the naming of MOs. Each MO has an identifier called relative distinguished name (RON).
The RON of a MO must be distinct from the RONs of all other MOs below the same, superior
MO. The distinguished name (ON) of a MO formed by combinig its RON with the ON of the
superior MO. The containment relation is realized by a name binding template.

The inheritance relation is a class hierarchy and enables a class to take over all properties
from the superior classes. It is possible to manipulate these properties in a restrictive way or to
add further elements, but not to delete the derived properties.

This architecture, including service types, services and service offers, should be mapped
onto MOs and reproduced by the containment relation which is shown in Fig. 3. This is done
by defining a particular MO class for each of these components. The inheritance relation
between these MO classes is illustrated at the top. In our example, the MO class
ServiceOffer takes over properties from Service. Service is derived from
ServiceType, and all MO classes are subordinated to ODPTop, which is a generic class,
that is a class which is not instantiated. It is useful for specifying elements that have to be
included in all MOs of its subordinated classes. For example, each MO has to possess an
attribute which contains its RON. By specifying this attribute in the MO class ODPTop and
arranging it at the top of the inheritance tree, all subordinated classes automatically contain this
attribute.

Service
Type A

OOP

Service Service
A.2 A.l

Containment
Relation

Service Service Servic
Offer Offer Offer
A.J.a A.J.b A.2.a

Figure 3 Containment relation

By defining special operations on MOs it is possible to realize the functions of an exporter.
MOs which represent a service type have to possess a function for instantiating it, i.e. for
creating a service. The MO of a service must contain a function destroy for eliminating a
service and export for creating a service offer and establishing it in the service directory of
the trader. Furthermore, the MO of a service offer realizes its manipulation by the function
replace and its elimination by the function withdraw. The functions export,
withdraw, and replace are compatible with the given functions of the OOP-RM.

The attributes of the MOs representing a service offer are subdivided into attributes
describing static properties and those representing dynamic properties. For example, static
properties of a service offer are the offer identifier and the associated service type; dynamic
properties contain the state of the associated service. The actual state of a service is realized by

An object-oriented description of services in a distributed system 265

three attributes called operatiomil state, usage state and administrative state. The first one
shows, if the concerning resource is installed and ready for working. The second indicates the
frequence of using the service, whereas the third enables the locking of the service, for example
to install a new version.

<template-label> TEMPLATE-NAME
CONSTRUCT-NAME [<construct-argument>];
[CONSTRUCT-NAME [<construct-argument>];]*
[REGISTERED AS <object-identifier>];
[supporting productions
[<definition-label> -> [<syntatic definition>]*]

Figure 4 Structure of a template

Notifications realized in the MO of the service can report the change of one of these state
attributes. Changes of the operational state or usage state are automatically sent to the
responsible management process, whereas the change of the administrative state executed by a
management process is transmitted as a confirmation.

Remote Operation CMIP Remote Operation
Invocation Return Re ult - _... - _...

R•

Invoke Invoke
ld. ld.

Actior Action Action
... ... Type Inforn Reply

-:::::: ::-- ::::::::- ~--:::::;;.- :::::;;.-
m-even -reoon m-evenl·re

Invoke Invoke
Id ld

Event Event Event Event
... Type Time Inform. Reply

I-- -
Figure 5 Parameter fields in a management PDU

The Guidelines for the Definition of Managed Objects is a specification language for the
definition of MOs. The properties of a MO are given by its MO class that is composed from
several templates. Each template is a specification of a template structure whose typical
construction is shown in Fig. 4. It consists of a template label combined with the name of a
template structure, at least one construct, identified by CONSTRUCT-NAME, a non-ambigious
object name for registration and supporting productions. template-label is used as a local
reference in other templates, whereas object-identifier allows the identification in a
global open system. Therefore, it has a hierarchical structure which contains the name of the
global system as the root of the naming tree and the identifiers of the subordinated entities as
the nodes. The constructs are used for the defmtion of the classes' properties. The supporting
productions, if available, allow a more detailled specification of one of the constructs.
Furthermore, a construct permits referencing to other templates.

Data types are required for the transmission of management information by a management
protocol. Therefore, several template structures enable the reference to a module of another
specification language, Abstract Syntax Notation One (ASN.l).

266 Part Six Case Studies II

The Common Management Information Service (CMIS) offers several functions for
handling MOs. For example, these functions allow changing of attributes' values, creation or
deletion of MOs, etc. The CMIS functions and their parameters are mapped to the Common
Management Information Protocol (CMIP) which enables the transmission of management
information between two management processes. Fig. 5 shows some parameter fields of the
action and event-report operation in CMIP. Action enables the execution of a resource-specific
function described on a MO by the action template. The function is identified by the field action
type, their parameters are contained in action information and action reply. Event-report is used
for the transmission of notifications specified by a notification template of a MO. The handling
of the function in the management protocol is analogous to action.

The ODP-RM defines several requirements that specification languages have to fulfill. Most
of them are taken from object -oriented languages. Fig. 6 shows a comparison between the most
important concepts of ODP and their equivalents in GDMO.

Reqwrements of ODP Available technique m GDMO
Objects Managed Objects
Templates Managed Object Class Template
Types and Classes Managed Object Class
Subtyping and Subclassing Indirectly available
[ncremcntal Inheritance DERIVED FROM
CompoS! liOn Containment Relauon

Figure 6 Comparison of ODP requirements concerning specification languages with GDMO

In ODP all entities are modelled as objects. An object is characterized by its behaviour, its
state and its relationship to other objects. The concepts of behaviour, state and relationship to
other objects are interrelated. For example, the actual state of an object is determined by its
behaviour and the influences of other objects. An object is described by its template which
specifies features like operations or data types. Similar objects can be described by the same
template. An object is of a certain type, if it posseses the properties described by this type. All
objects of a common type build a set, called class.

The concept of a 'type' and a 'class' are equivalent. Moreover, objects need not be similar to
be of the same type. This fact implies a hierarchy called subtyping or subclassing. One type is a
subtype of another one exactly if, for all objects, satisfaction of the first type implies
satisfaction of the second type. Thus, the predicates of the first type build a subset of those of
the second one. Another hierarchy is the incremental inheritance. Inheritance means that one
template can derive elements from another template. Incremental inheritance enables the
modification of these elements which can be of any kind, for example including, deleting or
manipulating properties. In some cases the incremental inheritance may be equivalent to the
concept of subtyping but in general these two hierarchies are not the same thing. With the
concept of composition and decompostion it is possible to put together several objects into a
bigger unit or to divide them into smaller ones.

4 SPECIFYING SERVICES OFFERS

In the following, a GDMO specification of the MO classes ServiceOf fer is given. Fig.
7 shows the corresponding MO class templates. Generally, a class can inherit its properties
from several classes. ServiceOffer has a package providing attributes, notifications, and
actions concerning the mentioned state. CHARACTERIZED BY enables the establishment of
one or several packages. In this case, the corresponding package shall be instantiated only in
the specified class, not in its subclasses.

An exporter which offers several services has to advertise them to make them available in an
ODP-environment. For this purpose, the exporter has to place an associated service offer in the

An object-oriented description of services in a distributed system 267

service directory of the trader. This is done by the operation export which has to be
performed on a MO of the MO class. Service. This o~ration has to. be extended with
parameters which put together the service offer.If the executiOn of the service was successful,
the exporter gets an offer identifier as a confirmation of export, otherwise an error code is
returned. Furthermore, the exporter has the ability to remove the service offer by the operation
withdraw or to manipulate it by replace.

Servic.Offer DNAGBD OB.JBCT CLASS
DERIVED FROM ODPTop;
CHARACTERI ZED BY

staticProperties PACKAGE
ATTRIBUTES Interfaceid GET-REPLACE,

Interface GET- REPLACE,
Serviceinterfaceid GET-REPLACE,
ServiceOfferid GET-REPLACE,
Contextid GET-REPLACE,
ServiceTypeDescription ADD-REMOVE,
ServiceProperties ADD-REMOVE,
ServiceOfferProperties ADD-REMOVE,

REGI STERED AS { . . . }

dynamicProperties PACKAGE
ATTRIBUTES operationalState GET,

usageS tate GET,
administrativeState GET;

REGISTERED AS { ... }

ServiceOfferAction PACKAGE
ACTIONS replace, withdraw;

REGISTERED AS { .. . }

REGISTERED AS { ... }

Figure 7 Specification of the MO class service offer
Import operations are realized by a formal language called Service Request Description

Language (SRDL) [PoMK 94]. Interpreting the service request is equivalent to reading the
attributes of a Managed Object. This is done by the operation get. get requires an invoke
identifier, the object class, and a corresponding object instance. It returns the invoke identifier.
This identifier is used to evaluate the formal semantics of the sear ch and select operations.

6 CONCLUSIONS

It has been shown that Open Distributed Processing has a greater functionality than the
management theory requires it. However, it is possible to explain all properties of ODP with
constructs of the management service. The result of this paper is the possibility of a formal
description of ODP service trading architectures. Further work should consider the structure of
a service in more detail.

Another possibility to enhance this formal model arises from the value-added service of
service combining [PoHe 94] . By sequential performance of several services it could be
possible to get a new service which has the requested interface type or properties. This
possiblity should be included into the SRDL and studied from the management point of view.

268 Parl Six Case Studies II

Currently, the ODP Working Group of our Computer Science Department is busy with
implementing this language in order to support the ANSA ware trading realization. Based on
tools supporting BNFs we have implemented a syntax checker for that language and are now
working on the interface between the service directory and the processing of that language.
Thus, one or more services can be searched or selected by specifying the conditions which are
important for the user of distributed environments. So far, the ANSA ware trader considers
only the static service properties. Further work has to be done to include the dynamic service
properties into the formal GDMO description presented here, in order to manage service
trading.

REFERENCES

[BeRa 91]

[Dr92]

[MaBI92]

Bearman, M.; Raymond, K.: Federating Traders: An ODP Adventure. In: IFIP Workshop on
Open Distributed Processing, Berlin 1991, North Holland

Dreo, G. et al: Using the OS! management information model for ODP. In: Open Distributed
Processing, Elsevier Science Publishers B.V., North Holland, 1992

Macartney, A. J.; Blair, G.S.: Flexible Trading in distributed multimedia systems. In: Computer
Networks and ISDN Systems 25 (1992) 145-157, Elsevier Science Publishers B.V., North
Holland, 1992

[ODP P1-4] ISOIIEC JTCI/SC21/WG 7 N885(preliminary): Basic Reference Model of Open Distributed

[ODPTr]

[OSIMF]

Processing- Part 1:4, 1995

ISOIIEC JTCI/SC21 N8409: Working Document- ODP Trading Function Jul. 1994

ISO/IEC 7498-4: Information Processing Systems - Open Systems Interconnection - Basic
Reference Model- Part4: Management framework, 1989

[OSI MI] ISOIIEC JTCI/SC21 DIS 10165-1: Information Technology- Open Systems Interconnection­
Structure of Management Information- Part 1: Management Information Model, Nov. 1991

[OSI MO] ISOIIEC JTCI/SC21 DIS 10165-4: Information Technology - Open Systems Interconnection -
Structure of Management Information - Part 4: Guidelines for the Dejinitons of Managed Objects,
Nov. 1991

[OSI SM] ISOIIEC JTC 1/SC 21 DIS 10164-2: Information Technology- Open Systems Interconnection­
Systems Management- Part 2: State Management Function, Oct. 1991

[Pa 91] Park, H. J. et al: Configuration management of object groups. In: The Australian Computer
Journal, Vol. 23, No.4, Dezember 1991

[PMK 94] Popien, C.; Kuepper, A.; Meyer, B.: A Formal Description of Open Distributed Processing
(ODP) Trading Vol.2, No.4, 1994, pp. 383-400

[PoHe 94] Popien, C.; Heineken, M.: Trading Enhancement by Service Combination in ODP. In:
Proceedings of the IFIP International Conference on Open Distributed Processing. North Holland
Amsterdam London New York 1994 pp. 384- 387

[PoKM 94] Popien, C.; Kuepper, A.; Meyer, B.: Service Mangement - The new answer of ODP
Requirements. In: Proceedings of the IFIP International Conference on Open Distributed
Processing. North Holland Amsterdam London New York 1994, pp. 408- 411

[PoKu 94] Popien, C.; Kuepper, A.: A Concept for an ODP Service Management. In: IEEE/IFIP 1994
Network Operations and Management Symposium, Hyatt Orlando, Kissimmee, Florida, Febr. 14-
17, 1994

[PoMe 93] Popien, C.; Meyer, B.: Federating ODP Traders: An X.500 Approach. In: Proceedings of the
IEEE International Conference on Communications ICC'93, May 1993, Geneva, Switzerland, pp.
313-318

[RPB 93] Roos, J.; Putter, P.; Bekker, C.: Modelling Management Policy using Enriched Managed
Objects. Proceedings of IFIP International Symposium on Integrated Network Management.
North Holland 1993, pp. 207- 215

[SI90] Sloman, M.: Management for Open Distributed Processing. Second IEEE Workshop on Future
Trends of Distributed Computing Systems, IEEE Comp. Soc. Press, New York 1990

