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Abstract: The actor model is a natural starting point for a semantic theory that treats both 
heterogeneity and modularity (encapsulation and composability) in open distributed systems. 
This paper begins with some simple examples of actor systems that illustrate the essential fea­
tures of actor based computation, and the interactions and combinations of components these 
systems. We then present a semantic theory that models these features. A notion of abstract 
actor structure (AAS) is introduced that characterizes the minimal semantic requirements for an 
actor language and allows for components to be defined using multiple languages. We model com­
ponents as collections of actors accessed via a specified subset called receptionists. A transition 
system semantics for components is derived from the local rules for behavior of individual actors 
given in an AAS. This semantics accounts for both internal computation and interaction of a 
component with its environment. We abstract away from details of internal computation to de­
fine a notion of interaction semantics. This allows us to reason about equivalence of actor system 
components considered as black boxes. An algebra of interaction sets corresponding to the algebra 
of components is defined, verifying that the interaction semantics compositional. This provides 
a basis for modular reasoning about construction and transformation of components specified as 
abstract actor systems. 

1. Introduction 

We are interested in developing tools for reasoning about components of open distributed 
systems. This includes behavior specification; equivalence of components; interactions of 
components with their environment; and composition of components and their specifica­
tions. The modern computing environment is becoming increasingly open and distributed. 
The main characteristics of an open distributed system are that such systems allow the 
addition of new components, the replacement of existing components, and changes in inter­
connections between components, largely without disturbing the functioning of the system. 
Open distributed systems require a discipline in which a component may not have any di­
rect control over other components with which it is connected. Instead, the behavior of a 
component is locally determined by its initial state and the history of its interactions with 
the environment. Moreover, interactions between components may occur only through 
their interfaces. Thus, the internal state of a component must only be accessible through 
operations provided by the interface. 

The actor model of computation [6, 1, 2] has a built-in notion of local component 
and interface, and thus it is a natural model to use as a basis for a theory of open dis­
tributed computation. Actors are independent computational agents that interact solely 
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via message passing. An actor can create other actors; send messages; and modify its own 
local state. An actor can only send messages to its acquaintances - actors whose addresses 
it was given upon creation, or received in a message, or actors it created. Actor seman­
tics requires computations to be fair. We take two views of actors: as individuals and as 
elements of components. Individual actors provide units of encapsulation and integrity. 
Collecting actors into components provides for composability and coordination. Individual 
actors are described in terms of local transitions. Components are described in terms of 
interactions with their environment. 

In [3] a higher-order actor language was defined, notions of program equivalence were 
studied, and methods were developed for establishing program equivalence. In this paper 
we abstract away from a specific choice of programming language and focus on the inter­
actions of components. For this purpose we introduce abstract actor structures (AASs). 
An AAS provides an abstract set of actor state descriptions and functions that determine 
the local transitions of individual actors. This specializes and refines the two-level actor 
systems of [9].· Using techniques of concurrent rewriting semantics [7] the semantics of 
components is derived from the local semantics of individual actors. We note that the 
language and semantics of [3] can be easily reformulated in the AAS/rewriting framework. 

The remainder of this paper is organized as follows. §2 presents a series of examples to 
illustrate the main concepts. In §3 abstract actor structures are presented. In §4 an algebra 
of actor components is defined, a computational semantics is given, and the interaction 
semantics of actor components is obtained by forgetting details of internal computations. 
In §5 an algebra. of component behaviors is defined and correspondence to the component 
algebra. is shown. This provides a method for computing the interaction semantics of 
compositions from that of the parts. §6 discusses related and future work. 

2. Examples 

In this section we give a series of examples that illustrate the main features of actor compu­
tation and the two complementary views: individual actors and components. A component 
is a collection of actors together with a. designated subset, called the receptionists, that 
form the interface to the outside world. We indicate how local behavior of an individual ac­
tor is specified, and how the behavior of a. component is derived from the local behaviors of 
the individual actors of the component. We also illustrate the construction of components 
from smaller parts. 

2.1. Timer 

The first example we consider is a timer. We write ( T ( n )) c to indicate a timer actor with 
address c. The state of this actor, T(n), indicates that the current elapsed time is n. The 
timer can tick (time passes) evolving to an actor with state T(n + 1). This is expressed 
by the local transition: 

(T(n+l)), 
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The timer can also answer requests for the current elapsed time. This is expressed by a 
local transition involving the timer and a request message, c <1 time( x). 

(T(n))c a(c,~(x)) (T(n))c 
c<Jtime(x) x<ln 

A component consisting of a single timer ( T(n)) c with receptionist c can receive messages 
from actors in its external environment 

(T(n))c (T(n))c 
C<IV 

and send messages to actors in its external environment. 

(T(n))c 
X <IV 

ou~v) 
(T(n))c 

Input and output interactions can occur asynchronously with internal activity, 

(T(n))c 
c <1 time(x) 
(T(n+1))c 

in(c~e(y)) 
c<Jtime(y) 
(T(n+1))c 
c<ltime(x) 

and messages are not necessarily delivered to the target actor in the same order that they 
arrive at the component. 

c <1 time(x) 
(T(n+1))c 
c <1 time(y) 

a(c,~(y)) 
(T(n+1))c 
c<Jtime(x) 
y<1n+ 1 

x <In+ 1 
(T(n+1))c 

The piles of actors and messages making up the configuration of a component are really 
multisets, also written linearly as lists with separating commas. Being multisets the order 
of elements of the list does not matter. 

The interaction semantics of a component is the set of sequences of input/output 
interactions in which it might participate. This is completely determined by the local 
behaviors of the constituent actors (and the collection of messages initially present). The 
interaction semantics of a timer, I( ( T(n)) c), is the set of sequences of elements in(c <1 v ), 
out(x <1 n') satisfying the following three conditions: (1) for each request, in(c <1 time(x)) 
(x =/=c), there is a corresponding reply, out(x <1 n'), for some n 1 ~ n; (2) each output is a 
reply to some earlier request; and (3) inputs not of the form in( c <1 time(x)) are ignored. 
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2.2. Staged Calculation of a Function 

Let ¢be a function with domain W. We let (fun) a denote a </J-compnter- an actor that 
accepts requests to compute ¢( w) for w E W, and carries out the computation in stages. 
funx(x,init(w)) is the initial stage of a </J-computer responding to a request req(x,w). 
At stage funx(x,s) where sis not final, a </l-computer can do some increment of work, 
progressing to stage funx(x, next(s )). If s is final, the result, answer(s ), can be sent to x. 
The local behavior of a ¢-computer is given by the following transitions. 

a(a,raq(x,w)) 
(fun)a, a<lreq(x,w) ~ (funx(x,init(v)))a if wE W 

(funx(x,s))a { (funx(x,next(s)))a 
(fun)a, x<lu 

s not final 
s final with answer( s) = u 

We assume that the computation always terminates for w E W. Thus the interaction 
semantics of a <jl-computer component, I( (fun) a), consists of sequences of inputs to a and 
outputs to requestors such that there is exactly one output, x <1 ¢(w), corresponding to 
each valid input, a <l req(x, w) with wE W. Ill-formed inputs are ignored. 

2.3. Dispatching 

We want to build a component, Dispatch(a)[d], with receptionist d and external acquain­
tances a = [a1 , ... , ak] that dispatches each incoming message to d to some 'randomly' 
selected element of a. Individual actors are deterministic, so how can we do this? One 
way is to define a pre-dispatcher, (dis(a,z))a, that asks a timer, z, for elapsed time and 
uses the reply to determine which actor to select for each incoming message. To separate 
timer replies from incoming requests, a helper actor is created for each incoming message. 
The helper's job is to receive the timer reply and to do the actual message dispatch. The 
pre-dispatcher dis and the helper sel are specified as follows. 

(dis(a,z))d, d<lv a~) ((dis(a,z))d, (sel(a,v)h, z<ltime(b)) fd 

(sel(a, v)h, b <l n 
a(b,n) 
--+ (?h, ai <l v where i = nmodk 

In the first rule b is a new actor address (from the point of view of the component), and the 
restriction,- r d, indicates that only d can receive messages from the external environment. 
In particular, b is not visible externally until its address is explicitly exported. The? state 
of b after doing the dispatch is a sink state that can not create any new actors or send any 
messages. Now the desired dispatcher can be constructed by composing a pre-dispatcher 
(dis(a,z))d with a timer (T(n))c. In order to make the connection we first rename z to 
c. To hide the timer we restrict the visible actors to d. 

Dispatch(a)[d] ~ ((dis(a,z))~z>-+c}, (T(O))c) fd=((dis(a,c))d, CT(O))c) fd 

The interaction semantics of Dispatch(a)[d] consists of sequences of inputs to d and out­
puts to an element of a such that there is exactly one output for each input and that the 
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corresponding inputs and outputs have the same message contents. We will see later how 
to compute this from the interaction semantics of the two subcomponents. 

i 
Two components are said to be interaction equivalent, written C0 ~ C1 , if they 

have the same interaction semantics. We justify omitting the timer parameter from the 
parameters of the dispatcher component by the following equivalence. 

(Dl) ((dis(a,c:))d,(T(O))c)fd ~ ((dis(a,c))d,CT(n))c)fd for nENat 

One use of a dispatcher might be for a form of load balancing. This is accom­
plished by composing the dispatcher with a collection of actors having the same be­
havior. For example, let a = [a1 , ... , ak] be a list of distinct actor addresses, and let 

Fun[a] ~ (fun) a, , ... , (fun) a• be a component consisting of k copies of (fun) a. Be­
havioral correctness of this load balancing transformation is expressed by the following 
interaction equivalence: 

i 
(D2) (Dispatch( a, c)[d], Fun[a]) r d ~ (fun)d 

Note that without the assumption of termination for the computation of 4>( w) the equiv­
alence would not hold. 

3. Abstract Actor Structures 

In this section we define the notion of abstract actor structure. To make the ideas more 
concrete we interleave definitions with discussion showing how various aspects of the ex­
amples of §2 are expressed in the AAS framework. 

An abstract actor structure (AAS) is a structure of the form 

<A, V,S; End, Deliv,#new, Ex, acq, :> 

where A is a countable set of actor addresses, Vis a set of values that can be communicated 
between actors, and S is a set of actor states. The set of values includes the set of actor 
addresses. Actor states are intended to carry information traditionally contained in the 
script (methods) and acquaintances (instance variables), as well as the local message queue 
and the current processing state. We let a range over A, v range over V, s range overS, 
using the convention that "x range over X" means that the meta-variable x and decorated 
variants such as x', x 0 , •. . range over the set X. (s) a is an actor with address, a, in state, 
s. a <1 v is a message with target, a, and contents, v. 

End ( s) is a predicate on actor states that holds if the state, s, is enabled for message 
delivery. If sis enabled for delivery, then Deliv(s, v) is an actor state in which, intuitively, 
a message with contents v has been added to the local message queue. Since new actors 
may be created and the addresses of these new actors can only be determined at 'runtime' 
we formulate local semantics, Ex( (s) a), as a function from lists of distinct actor addresses 
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to simple actor system fragments - multisets of actors and messages in which no two 
actor occurrences have the same address. #new(s) is the number of new actors that will 
be created by actor a in states executing a step and Ex((s)a)([a1 , .•• a#new(s)]) is the 
fragment produced. This fragment contains the actor with address a, possibly with a 
modified state, and an actor with address a; for 1 :S i :S #new(s). It may also contain 
messages to new actors or to actors previously known by a in state s. For an idle actor, 
(s)., we have #new(5) = 0 and Ex((s).)([]) = (s) •. 

Timer states and steps We assume that the set of values contains numbers and 
requests time(x) for x EA. Our presentation of the local semantics of a timer combined 
the delivery and processing of messages. The AAS framework separates these aspects of 
actor computation. To account for this we introduce auxiliary states Tt(n,x) to represent 
the state of a timer that has received a request, time(x), but has not yet processed it. 
T(n) is enabled for message delivery, while Tt(n,x) is not. Thus, for n E Nat, x E A 

#new(T(n)) = #new(Tt(n,x)) = 0 

{ Tt(n x) 
Deliv(T(n),v) = T(n)' 

if v = time(x) 
otherwise 

Ex((T(n))c)([]) = (T(n+ 1))c Ex((Tt(n,x))c)([]) = (T(n))c, x <In 

Both ( T ( n + 1)) c and ( T ( n)) c , x <1 n are simple fragments with actor domain { c}. The 
latter is the union of two 'atomic' fragments, one an actor, the other a message. 

Since states and values are abstract entities, a means of determining the actor ad­
dresses occurring in a state or value is needed. This is met by the acquaintance function, 
acq, which gives the (finite) set of actor addresses occurring in a state or value. Returning 
to the timer example we have acq(time(x)) = acq( Tt(x, n)) = {x} for x E A and n E Nat. 

Actor addresses can not be explicitly created by actors, and the semantics can not 
depend on the particular choice of addresses of a group of actors. A renaming mechanism 
is used to formulate this requirement. We let p range over bijections on A (renamings). 
For any such p, p is a renaming function on states and values that agrees with p on actor 
addresses. Renaming is extended naturally to structures built from addresses, states, and 
values. For example, if p(c) =a and p(x) = y then P(time(x)) = time(y), P(c<1time(x)) = 
a <1 time(y), and p( ( Tt(n, x)) c) = ( Tt(n, y)) •. We also require the renaming mechanism 
to commute with function composition: p0o)1 = Po o Pi. 

An AAS must obey the fundamental acquaintance laws of actors (4, 5]. In particular, 
the axioms (AR) and (Ex) below must hold in an AAS. It is easy to check that the timer 
specified above satisfies these axioms . 

Acquaintance and Renaming Axioms (AR) 

(i) acq(p(x))=p(acq(x)) for xESUV 

(ii) acq(Deliv(s, v)) <; acq(v) U acq(s) if End(s) 

(iii) p(Deliv(s,v)) = Deliv(P(s),P(v)) if End(s) 
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(iv) EncJ(s) # EncJ(p(s)) 

(v) #new(s) = #new(p(s)) 

Part Four Actors 

(vi) (\fa E acq(x))(p(a) =a) =? P(x) = x for xES U V 

(i) and (iii) say that renaming commutes with the delivery and acquaintance functions. (ii) 
says that acquaintances of an actor in state, s, after delivery of a message with contents, 
v, are among the acquaintances of s and of v. (iv) and (v) say that renaming does not 
change enabledness or the number of actors that will be created upon execution. (vi) says 
that if a renaming fixes the acquaintances of an object then applying it does not change 
the object. (vi) together with the composition property of the renaming mechanism imply 
that two renamings that agree on the acquaintances of an object have the same result 
when applied to the object, and that pis a bijection on S U V. 

Execution axioms (Ex) If a is a list of #new( s) distinct actor addresses disjoint from 
a, acq(s), then Ex((s)a)(a) =sF for some fragment, sF, such that 

(i) adom(sF) ={a} u a the set of addresses of actors occurring in sF 

(ii) (s')a• E sF=? acq(s') t;;; acq(s) U adom(sF) 

(iii) a' <1 v' E sF =? {a'} U acq(v') t;;; acq(s) U adom(sF) 

(iv) Ex(p((s)a))(p(a)) = p(sF) 

(ii) says that any acquaintance of an actor after executing a step or of a newly created 
actor either was an acquaintance of the actor before the step is taken, or is one of the newly 
created actors. (iii) says that the targets and contents of newly sent messages are similarly 
constrained. (iv) says that executing a step commutes with renaming- that is, the local 
semantics is uniformly parameterized by the set of locally occurring actor addresses. 

In the remainder of this paper we let AAS be a fixed but unspecified abstract actor 
structure. For purposes of the examples, we assume that the set of values includes Nat, 
the natural numbers, and that A is disjoint from Nat. 

4. Actor System Components 

An abstract actor structure allows one to specify the behavior of individual actors. Now 
we show how individual actors can be combined to form components and how the local 
semantics of individual actors determines the semantics of components. Our treatment is 
guided by ideas from rewriting logic [7]. Here we merely present the resulting labelled tran­
sition system that serves as the operational semantics. Details of the full rewriting logic 
presentation will appear elsewhere. The actor semantics has two aspects: internal transi­
tions and interaction steps. Internal transitions are combinations of execution and message 
delivery steps. Interaction steps model a components interaction with its environment by 
exchange of messages. 
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4.1. The Actor Component Algebra 

Actor system components, C E Cmpt, are multisets of actors, (s)a, messages, a <l v, 
and restricted components, C f R where R is a finite set of actor addresses. (Note that 
simple fragments are a special case.) The receptionists, recep(C), of a component are 
the actors defined in the component that are externally visible. The externals, extrn( C), 
of a component are the addresses of actors occurring as acquaintances of actor states, 
message targets, or message contents, but not defined in the component. Thus recep (C) n 
extrn( C) = 0. 

Definition (Cmpt, recep, extrn): 

(mt) o E Cmpt, 

recep(o) = extrn(o) = 0 

(act) (s)a E Cmpt, 

recep((s)a) ={a} and extrn((s)a) = acq(s)- {a} 

(msg) a <l v E Cmpt, 

recep(a <l v) = 0 and extrn(a <l v) = acq(v) U {a} 

(mun) Co, C1 E Cmpt if recep( Co) n recep( Cl) = 0, 
recep(Co, C1) = recep(Co) U recep(C1) 

extrn( C0 , C1) = extm( Co) U extrn( Cl)- recep( C0 , C1 

(rstr) C f R E Cmpt if R ~ recep(C), 

recep( C f R) = R and extrn( C f R) = extrn( C) 

Some example calculations of receptionists and externals are: 

recep((dis(a,c))d, (T(n))c) = {d,c} 

recep(((dis(a,c))d, CT(n))c) f d)= {d} 

extrn((dis(ii,c))d, (T(n))c) = ii 

extm(((dis(a,c))d, (T(n))c) f d)= a 

To simplify the transition rules we define a structural equivalence relation on components. 

Definition (Structural equivalence): C ~ C' is the least congruence on Cmpt 
satisfying the the multiset union axioms (_, _ is associative, commutative, with identity 
o) and the following (where in each case it is implicitly assumed that both sides of the 
equivalence is well-formed ) 

(top) 

(erase) 

(alpha) 

C ~ C f recep( C) 

(Co f Ro , Ct) f R 

C f R ~ p(C) f R 

(Co, C1)f R if (recep( Co)- Ro) n extrn( Ct) = 0 

if p is the identity on R and extrn( C) 



162 Part Four Actors 

Examples of Structural Equivalence We can use the structural equivalence rules to 
justify the following equations for components taken from our examples. 

(1) (T(n))c ~ ( T(n)) c f c by (top) 

(2) (((dis(il,c))d, CT(n))c) f d, F(O:)) f d 

((dis(il,c))d, (T(n))c, F(O:)) f d 

((dis(b,c))d, (T(n))c, F(b)) fd 
by (erase) 

by (alpha) 

Note that each component C has a structurally equivalent flat form, (a, J.t) f R where a 
is the multiset of actors defined in C, and 11- is the multiset of messages occurring in C. 

4.2. Internal Computation 

Definition (Internal transitions): The internal transition relation r : C ===? C' is 
defined by the following rules: 

(exe) (s). ===? Ex((s).)(O:) fa 

(del) (s).,a<lv==?(Deliv(s,v)). if ET!d(s) 

(id) 

(cmps) 

(mun) 

(rep) 

C==?C 

Co ==* C2 if Co ==* C1 and C1 ==* C2 

Co , C1 ===? C~ , C{ if Ci ===? Cj for j < 2 

C f R ===? C' f R if C ===? C' 

The use of fa in the (exe) rule ensures that internal transitions do no change the set of 
receptionists. Combined with the (out) rule below, newly created actors become visible 
outside a component only when their addresses are explicitly sent out in a message. 

4.3. Computational Semantics 

Definition (Interaction steps): 
following forms. 

Interaction steps, 1 : C ===? C' are of one of the 

(silent) { ) : C ===? C' if r: C ===? C' 

(in) in(a<lv):C==?C,a<lv if aErecep(C) 

(out) out(a<lv):(C,a<lv)fR==?CfRUX 

if a¢ recep(C), and X= (acq(v) n recep(C))- R 

X is the newly exported receptionists. 1 

1 In the formulation of the input and output transitions we could easily allow concurrent (asynchronous) 
internal transitions to happen. This would not change the interaction semantics, and so we have chosen 
to use the simpler form here. 
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The computational behavior of a component is its set of fair computation paths. 

Definition (Computation Paths, Path( C)): A computation path, 1r is an infinite 
sequence of interaction steps n( i) = 'ti : Ci ==* C{ such that Ci+l ~ C{ for i E Nat. For 
technical reasons, we require that a path not use up the address space- there is a countable 
subset of A not occurring as a receptionist or external actor in the path. Path( C) is the 
set of computation paths leading from C -- computations paths, n, as above such that 
C ~Co. 

Definition (Enabledness, Firing): An actor in Cis always enabled (since an execu­
tion step is always possible). A message is enabled in C if its target is external, or if its 
target is internal and in a state that is enabled for delivery. An enabled actor is said to fire 
in an interaction step if an execution step for that actor occurs in the step. An enabled 
message is said to fire in an interaction step if a delivery or output step for that message 
occurs. 

Definition (Observational Fairness, OFair( C)): A path, n, is observationally fair if 
an actor or message that becomes enabled at any stage Ci, either fires in some succeeding 
step or at some later stage it becomes permanently disabled. OFair( C) is the subset of 
paths in Path( C) that are observationally fair. 

The reader may wonder why we call this observational fairness. There is a small 
subtlety having to do with the fact that we can not in general refer unambiguously to 
internal actors that are not receptionists, since the addresses are hidden and the actors 
may float around in the multiset (although in the examples we have considered this is 
not a problem). There are a number of ways to solve this problem. One is to first define 
computation at a less abstract level, omitting the structural equivalence rule (alpha). 
Having defined fairness of paths in this setting, we can reintroduce the alpha rule and use 
the induced notion of fairness. Details are omitted to saved space (and spare the reader). 

4.4. Interaction semantics 

The interaction semantics of a component hides the details of internal computation, re­
placing (fair) computation paths by interaction paths. An interaction path contains initial 
receptionist and external address sets together with an infinite sequence of interactions -
silent, input, or output. In particular, component configurations can not be observed. 

Definition (Interactions): The set of interactions, fact, is the set of transition labels, 
( ), in( a <l v ), and out( a <l v ). Iact 00 = [Nat --+ !act] is the set of interaction sequences. 
We let 1 range over !act and (range over !act=. An interaction path is a triple (R, E, () 
where ( E !act"" and R, E E Pw[A] (finite subsets of A) with R n E = 0. 

Definition (Interaction Semantics): The interaction semantics of a component, 
I( C) is the abstraction of its fair computation paths. 

I( C)= {c2i(n) In E OFair(C)} 

The map, c2i, from computation paths to interactions paths, IS defined as follows. If 
7r =hi: ci ==* c: I i E Nat] and ((i) = 'Yi fori E Nat, then 
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c2i(n) = (recep( Co), extrn( Co),(). 

Definition (Interaction Equivalence): Two components are interaction equivalent 
just if they have the same interaction semantics. 

i 
Lemma (Congruence): "" is a congruence with respect to the component operations: 

(mun) Co ~ C1 => (C, Co) ~ (C, C!) 
i i 

(rep) Co ~ C1 => Co r R ~ C1 r R 

4.5. Timer interaction semantics 

We now give a more precise characterization of the timer interaction semantics, and 
indicate how it is derived from the definitions. First observe that the internal computations 
are of the form: 

where M1 has the form {c<Jtime(x;) 11 ~ i ~ l}, Mz has the form {x; <ln; ~~ 1 ~ i ~ l}, 
and n ~ n; ~ n + j for j,l E Nat. 

Now, note that in any fair computation path, any message that is input will eventually 
be delivered, since the timer never becomes permanently disabled for message delivery. 
Thus, for every input of the form in(c <l time(x) ), to the timer ( T(n)) c, a message x <l n' 
for some n' ;::: n will be generated, and by fairness each such message will eventually be 
output. Thus I( ( T { n)) c) is the set of interaction paths ( { c}, 0, () such that no actors are 
exported (thus all inputs are to c), and there is a bijection F from indices of inputs of the 
form in{ c <l time( x)) in ( to indices of outputs in ( such that 

(F.l) if ((i) = in(c <Jtime(x )), then F(i) > i (requests arrive before replies are sent) 
and ((F(i)) = out(x <l n') for some n1 ;::: n 

(F.2) if p-1(i1) > i 0 , ((F(io)) = out(xo <lno), ((F(il)) = out(x1 <ln!), then n1;::: no. 

Clause (F.2) says that if the output at i0 is of the form out(xo <l no) and the output, 
out(x1 <l n!), at i1 is a reply to a request that arrived after the output at io, then the time 
reported at i1 is at least as big at that reported at io. 

A simple consequence of the above characterization is that if ( { c }, 0, () E I{ ( T(n)) c), 
such that ({2i) = in(c <l time( xi)) and ((2i + 1) = out{x; <l time(n;)) fori E Nat (i.e. the 
interaction appears synchronized,) then n; ~ ni+1 fori E Nat. 
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5. Compositionality 

We have observed that interaction equivalence is a congruence on the component al­
gebra, thus we can think of the component operations acting on interaction equivalence 
classes. To show that interaction semantics is compositional, we need to define correspond­
ing operations on sets of interaction paths. Here we focus on the composition operation. 
We first define the receptionists and externals effective at each stage of an interaction 
path in terms of the actors exported and imported by previous interactions. Then we 
define a composability relation on interaction paths and the composition operation on 
composables. Finally we define composition for sets of interaction paths and show the cor­
respondence with composition of components. We illustrate compositionality by inferring 
the interaction semantics of the dispatcher from the semantics of its parts. 

5.1. Composing Sets of Interaction Paths 

Definition (Exports/Imports of interactions): For R,E E Pw[A] with RnE = 0, 
we define the exports, Export(R, E, !') and imports, lmport(R, E, /') of an interaction, J', 
relative to receptionists, R, and externals, E, as follows. 

Export(R, E, ( ) ) = lmport(R, E, ( ) ) = 0 

Export(R, E, in( a <1 v )) = /mport(out(a <1 v )) = 0 

lmport(R, E, in( a <1 v)) = Export(R, E, out(a <1 v )) = acq( v)- (RUE) 

Definition (Accumulated receptionists and externals): For ( E /act 00 and R, E E 
Pw[A] with Rn E = 0, we define the accumulated receptionists recep((R,E,(),i) and 
externals extrn((R, E, (), i) at stage i, by induction on i as follows: 

recep((R,E,(),O) = R and extrn((R,E,(),O) = E 

recep((R, E, (), i + 1) = 

recep((R, E, (), i) U Export( recep((R, E, (), i), extrn((R, E, (), i), ((i)) 

extrn((R,E,(),i + 1) = 

extrn((R, E, (), i) U Import( recep((R, E, (), i), extrn((R, E, (), i), ((i)) 

Lemma (ipath.acq): 
acquaintance laws. 

If 7r is a computation path, then c2i(7r) satisfies the following 

(i) if ((i) =in( a <1 v), then a E recep((R,E,(),i) 

(o) if ((i) =out( a <1 v), then a E extrn((R, E, (), i) 

Definition (Composition oflnteraction Paths): Two interaction paths (Ro, E0 , ( 0 ), 

(R1, E1, (1 ) are composable, written (Ro, Eo, (0 ) # (R1, E1, ( 1 ), with composition (R, E, () = 
(Ro, Eo, (o) II (R1, E1, (!)provided R = Ro U R1, E =Eo U E1- R, and fori E Nat the 
following hold: 
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(r.r) recep((Ro, Eo, (o), i) n recep((R1, E1, (J), i) = 0 

(r.e) (recep((R, E, (), i + 1)- recep((R, E, (), i))- extrn(R, E, (, i) = 0 

and for a E A, v E V, (is defined by: 

(tau) if(0 (i) = ()and (1 (i) = (),then ((i) = ( ). 

(out.O) if (0 (i) = out(a <l v), then either 

o a if recep((R1 ,E1 ,(1 ),i), (1 (i) = (),and ((i) = out(a <l v), or 

o a E recep((R1 ,E1,(1 ),i), ( 1 (i) = in(a <Jv), and ((i) = ( ). 

(out.l) (out.O) with 0,1 interchanged 

(in.O) if ( 0 (i) = in( a <J v ), then either 

o (I(i) = (),a E recep(R,E,(),i), and ((i) = in(a <lv), or 

o ( 1 (i) =out( a <J v), and ((i) = ( ). 

(in.l) (in.O) with 0,1 interchanged 

The clau~es (r.r) and (r.e) en~ure that receptionist addresses from the two components do 
not conflict with one another or with external addresses. The condition, a E recep ( (R, E, (), i), 
in the first case of (in.O) is needed to insure that composition obeys the acquaintance laws. 
It could fail, even thought the components are interaction paths, since an address exported 
by a component will not be exported by the composition if all exporting outputs are to 
the partner component. 

Lemma (compose.isem): If (R0 , E0 , ( 0 ) # (R 1 , E1, (I), (Rj, Ej, (j) E I( Cj) for j < 2, 
and (R,E, () = (Ro, Eo,(o) II (R1, E1, (I), then (R, E, () E I( Co, CJ). 

Proof (sketch): The proof relies on properties of the a corresponding algebra of com-
putation paths alluded to in the proof sketch of the theorem below. 0 

Definition (Composing Interaction sets): Let Pj be sets of interaction paths for 
j < 2. The composition of Po and P1 is defined by 

Po II P1 = {(Ro, Eo, (o) II (RJ, E~, (I) I (Ro, Eo, (o) E Po /1 (R1, E1, (J) E P1 /1 

(Ro, Eo, (o) # (R1, E1, (I)} 

Theorem (Composing Paths): Let C0 , C1 be composable components. Then 

I( Co) II I( C!) =I( Co, CI) 

Proof (sketch): We define composability and composition for computation paths and 
sets of computation paths in a similar manner. \Ve also define decomposition for com­
putation paths. Both composition and decomposition preserve fairness and composition 
of computational behaviors is the behavior of the composition. These properties together 
with the connection between computation paths and interaction paths suffice. 0 
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5.2. The Dispatcher Construction 

We now show how to compose the interaction semantics of a pre-dispatcher with that 
of a timer to obtain the interaction semantics of a dispatcher. First we characterize the 
interaction semantics of a pre-dispatcher. I( (dis( a, z )) d) is the set of interaction paths 
( { d}, {a, z}, () such that for some Y c A - { d, z, a} the following hold: 

(1) if ((i) = in(x <1 v), then x E {d} U Y, and if ((i) = out(x <1 v), then x E {z,a}; 

(2) There is a bijection, G, from indices of inputs in (toY, a bijection, H, from indices 
of inputs in ( to indices of outputs in ( with target z, and an injection, F, from 
indices of outputs with target in a to indices of inputs with target in y such that if 
((i) = out(aj <1 v), with aj E a, and ((F(i)) = in(y <1 v'), withy E Y, G(i') = y, then 

o v 1 E Nat and j = v 1 mod k 

o ((i') = in(d <1 v and ((H(i')) = out(z <1 time(y) 

o i > F(i) > H(i') > i' 

G associates each input with the helper created to accept the reply from the timer, and H 
associates each input with the corresponding request sent to the timer. F associates each 
output to an element of a with the reply from the timer that triggers that output. Since 
in an arbitrary environment we can't guarantee that z really is a timer, there may be no 
inputs to the helper, or there may be several, and some of the inputs may not be numbers. 
Thus F is only an injection, not a bijection. I((dis(a,c))d) is just I((dis(a,z))d) with 
z replaced by c. 

To compute the interaction paths of the composition 

Dispatch(a)[d] = ((dis(a,z))d, (T(n))c) r d 

we compute the interactions of (dis(a,c))d, (T(n))c that have no external inputs to 
c. That is, we consider composable pairs of interaction paths such that all inputs to 
the timer component are matched by outputs from the dispatcher fragment. Since the 
exports from the pre-dispatcher occur only due to outputs to c, no newly created actor 
addresses will be exported from the composition. Thus all inputs to newly created ac­
tors must be matched by an output from the timer. This means each output to c by the 
pre-dispatcher has a unique corresponding input to the associated helper. Furthermore, 
each pre-dispatcher interaction meeting these requirements gives rise to an associated com­
position interaction by omitting the outputs to c and the inputs to auxiliary actors. To 
summarize ({d},a,() E I(Dispatch(a)[d]) just if there is some (d for the (dis(a,c))d 
component such that the injection F is a bijection and ( is the subsequence of inputs to d 
and outputs to a. Note that this gives rise to a bijection >-j.G(tgt((d(F(j)))) from outputs 
to inputs. Thus I(Dispatch(a)[d]) is the set of interaction paths ({d},{a},() such that 
the following hold: 

(1.i) no actors are exported, hence all inputs are to d, 

(l.o) each output is of the form out(aj <1 v) for some aj E a 
(2) There is a bijection, F, from indices of outputs to indices of inputs such that if 

((i) = out(aj <1 v), then i > F(i), and ((F(i)) = in(d <1 v). 
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5.3. Checking Equivalence Claims 

We indicate how the equivalence claims at the end of §2 can be justified. 

Lemma (Dl): 

Proof: This follows easily from the form of the characterization. D 

Lemma (D2): (Dispatch(a)[d], Fun[a]) f d ~ Fun[d] 

Proof : We must show that the two components have the same sets of interaction 
paths. Interaction paths of (Dispatch(a)[d], Fun[a]) f d are composites of paths (d of 
Dispatch(a)[d] and (J of Fun[a] such that the outputs of (d match the inputs of (f. For 
any path (d of Dispatch( a) [d] there is a matching path (J of Fun[a]. Let H be the bijection 
from inputs of (d to outputs, restricted to well-formed inputs for Fun[d] and let G be the 
bijection from well-formed inputs of (J to outputs. The composition (d II (J has a bijection 
from well-formed inputs to outputs given by Go H. This bijection satisfies the conditions 
for a path of Fun[d]. Furthermore any path of Fun[d] can be decomposed into a com posable 
pair of paths as above. D 

6. Discussion 

The algebra. of components is suggestive of the algebra of ?r-calculus processes [8]. Indeed, 
the parallel composition and renaming operations are quite similar. Our restridion oper­
ator is dual to the n-calculus hiding operator making explicit what is visible rather that 
what is to be hidden. Also interactions are similar to actions. However the underlying 
semantics is rather different. In our model addresses (names) refer to actors with state, 
not to stateless channels, interaction is asynchronous, and computations are required to be 
fair. Another difference is our use of interaction equivalence rather than more traditional 
notions such as forms of bisimulation or failure sets. Direct comparison with notions of 
equivalence based on bisimilarity is not easy, as they usually do not account for fairness. 
This is a topic for future work. We note that the bisimulation defined in the obvious way 
is unsound for interaction semantics. 

An important next step is to consider larger examples, especially examples coming 
from real systems. What kinds of properties are of interest to system developers and users? 
The fact that in the simple examples, a characterization of the interaction semantics of 
composites can be derived from the characterizations of the components is encouraging. 
But, we need to develop high level abstractions and structured characterizations as well 
as scalable methods for composing them. Another direction for future work is to develop 
a specification language and corresponding reasoning principles (proof rules). 

Models such as event structures or pomsets are closer in spirit and level of abstrac­
tion to our interaction semantics. These models make the causal ordering between events 
explicit whereas this information is implicit in the structure of sets of interaction paths. 
Another direction for future work is to characterize the structure of those sets of interac­
tion paths that are reasonable candidates for the semantics of components. This probably 
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means making the ordering information explicit using ideas from the work on event dia­
gram [5]. 

Acknowledgements. The author would like to thank Jose Meseguer and her col­
laborators in actor research, Gul Agha, Ian Mason, and Scott Smith for many fruitful 
discussions, and two anonymous referees for helpful criticisms of an earlier draft. She 
would also like to thank Egidio Astesiano, Gianna Reggio, and Renata Romano for point­
ing out several corrections to an earlier version. This research was partially supported 
by ARPA grant NAVY N00014-94-1-0775, ONR grant N00014-94-1-0857, and NSF grant 
CCR-9312580. 

7. References 

(1) G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 
Cambridge, Mass., 1986. 

(2) G. Agha. Concurrent object-oriented programming. Communications of the ACM, 33(9):125-
141, September 1990. 

(3) G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation, 
199? to appear. 

(4) Henry G. Baker and Carl Hewitt. Laws for communicating parallel processes. In IFIP Congress, 
pages 987-992. IFIP, August 1977. 

(5) W. D. Clinger. Foundations of actor semantics. AI-TR- 633, MIT Artificial Intelligence 
Laboratory, May 1981. 

(6] C. Hewitt. Viewing control structures as patterns of passing messages. Journal of Artificial 
Intelligence, 8 (3) :323-364, 1977. 

(7) J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Com­
puter Science, 96(1):73-155, 1992. 

(8) R. Milner, J. G. Parrow, and D. J. Walker. A calculus of mobile processes, Parts I and II. 
Technical Report ECS-LFCS-89-85, -86, Edinburgh University, 1989. 

(9) N. Venkatasubramanian and C. L. Talcott. Reasoning about Meta Level Activities in Open 
Distributed Systems. In Principles of Distributed Computation, 1995. 


