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Abstract 
This paper presents an automated transition from OMT* (a formal variant of OMT) towards SDL. 
This work is a partial result from a larger research effort proposing an integrated methodology 
and toolset based on the combination of Object-Orientation and Formal-Description Techniques. 
In this project OMT is used as the systems requirements analysis technique and OMT* for for 
System Design, while SDL (Specification Description Language) is targeted for the design phase. 
The transition from OMT to OMT* is manual process described by a set of guidelines (Holz et 
al. 1995) We developed a transformational semantic for OMT*, i.e. a set of transformation rules 
mapping OMT* constructs to SDL constructs. The translation from OMT* to SDL preserves the 
logical structure of the specification. This way it is possible to preserve the efforts done in the analysis 
phase and to make a smooth transition towards design. 
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1 INTRODUCTION 

1.1 The INSYDE Project 

The INSYDE (INtegrated methods for evolving SYstem DEsign, INSYDE 1994) methodology is a 
set of techniques and tools to enable the evolving co-design of hybrid systems. A hybrid system 
is one which contains significant hardware and software components. As the complexity of such 
systems is constantly increasing, the development of large systems requires a consistent and integrated 
methodology for proceeding from analysis to implementation. The INSYDE project will produce a 
prototype methodology and toolset based on the combination of Object-Orientation and Formal­
Description Techniques and covers the development lifecycle from Systems Requirements Analysis 
over System Design to Detailed Design and Validation in an integrated way. 
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The INSYDE project is an EU ESPRIT III funded project. The consortium consists of Alcatel Bell 
Telephone (Belgium), Dublin City University (Ireland), Humboldt Universitiit zu Berlin (Germany), 
Intracom S.A. (Greece), Verilog S.A. (France) and Vrije Universiteit Brussel (Belgium). 

The INSYDE methodology integrates the object-oriented analysis methodology OMT (Object 
Modeling Technique, Rumbaugh 1991) with two domain specific formal description techniques, 
namely SDL '88 (CCITT, 1988) and VHDL (Navabi, 1993). OMT is used as the system require­
ments analysis technique and also as the technique for the initial design stages. This allows the 
methodology to provide mechanisms for combining the individual design techniques (OMT, SDL, 
VHDL), maintaining the consistency of partial models at the detailed design stage and co-simulating 
the formal description to validate the hybrid system against the system specification. The relative 
strengths of each design technique (SDL for asynchronous communication systems, VHDL for syn­
chronous reactive systems) can thus be exploited in an optimal way. 

Our Lab for System and Software Engineering (LaSSE) does research in the field of telecommu­
nication systems. Therefor we focus on the use of SDL in the INSYDE methodology, SDL being a 
widely used specification standard and very well suited for our purpose. 

In this paper we limit the scope to the translation of OMT to SDL. This transition happens 
partially manually and partially automatically as explained below. This transJation is important and 
interesting because there is a strong need for an automatic reuse of analysis information into software 
specification languages like SDL. An automatic translation encourages the developer to make a more 
thorough system design model. Moreover, the structure of the resulting SDL model will be like the 
structure of the OMT model, resulting in system that is easier to maintain. 

1.2 OMT* 

In our methodology the analysis is done in OMT, using the full richness of OMT as defined by 
Rumbaugh et al. (1991). Constructs such as classes or associations can have different semantics 
depending on their context, which is useful during the requirement analysis phase. 

While OMT is a good analysis methodology, the informal nature of OMT makes an automatic 
translation to SDL infeasible. In our methodology the analysis document is manually prepared for 
translation during system design. During this phase subsystems are identified, communication is 
formalized and information is ordered. To describe these aspects we developed a new language OMT* 
(formal definition in Wasowski, 1995), aimed to meet the requirements of system design. In our 
methodology OMT* is close to both OMT and SDL . 

• OMT* is close to OMT because they use the same syntactic structures and because the semantics 
of OMT* are compatible with Rumbaugh, i.e. the semantics of OMT* do not conflict with OMT. 
OMT* differs from OMT in that it contains a number of syntactical constraints and in that 
the possible interpretations of an OMT construct are reduced and clearly described. Detailed 
guidelines of how to make the transition from OMT to OMT* can be found in the INSYDE 
application guidelines (Holz et al. 1996). Also a brief overview of the methodology is available in 
(Sinclair et al., 1995) . 

• OMT* is close to SDL because there is automatic translation and because OMT* and SDL have 
corresponding structure and semantics. The generated SDL is readable and contains enough detail 
to be a good framework as a starting point for detailed design. 
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1.3 Quick Preview of the Translation from OMT* to SDL 

In this paper, we describe the transformation of OMT* to SDL by defining a transformational 
semantics for OMT*. These semantics consists of a set of translation rules for the object model and 
the dynamic model. We do not use the functional model of OMT, because this model does not give 
much additional information over the object and dynamic models to generate SDL. 

The translation rules for OMT* are based on the availability and the semantics of constructs in 
both OMT and SDL. Figure 1 shows how some of the OMT constructs are mapped on SDL constructs. 
For example the basic building blocks in OMT are classes while in SDL they are the system, blocks 
and processes. So it is a natural choice to map a class on either a system, block and/or process. In 
the same way the structuring mechanism of OMT is aggregation while in SDL this is done by nesting 
of blocks. Finally the expression of relationships between classes is done by associations in OMT and 
with communication paths in SDL. 

Semantics OMT* SDL 

Basic Building Block Class System, Block, Process 

Structuring (Subsystems) Aggregation Nested Blocks 

Relationship between classes Association Communication 

Figure 1 Mapping of object model of OMT* constructs on SDL 

We have a similar table for the translation of the dynamic model of OMT*, see figure 2. In OMT* 
the behaviour of a class is expressed by a state diagram. This state diagram is translated as a SDL 
process specification. It is straightforward to translate state and state transitions to the equivalent 
constructs in SDL. Entry and exit actions are translated as actions on the transition to and from 
that state respectively. Internal transitions are translated as transition with itself as destination. 

OMT* SDL 

Activity Process or Part of Process 

State State 

State transition State Transition 

Entry/Exit Actions Actions on State Transition 

Internal Transitions State Transition to Self 

Figure 2 Mapping of dynamic model of OMT* on SDL 

As some OMT constructs can take several possible translations, local translation of each construct 
in the OMT model by a corresponding construct in SDL is not possible. We need global information 
of the model to make the correct translation. In an extra phase before the translation (sections 3 
and 5) we gather this information. 
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1.4 Structure of the paper 

In the next section we will start with a short overview of OMT* to introduce the concepts used 
in the translation. In section three we will describe how we prepare the translation of the object 
model followed in section four by the translation rules for the object model. Section five describes 
the preparation of the translation for the dynamic model and section six gives the translation rules 
for the dynamic model. 

Within this paper we use only tiny OMT and SDL examples to clarify some concepts. The INSYDE 
methodology and the translation of OMT* to SDL has been successfully tested is an industrial case 
studies of a Video-on-Demand server system (Peeters et al. 1995). 

We assume that the reader is acquainted with both OMT and SDL. 

2 OVERVIEW OF OMT* 

This section gives a short overview of OMT*. This language is used as a system design language 
between the analysis in OMT and the detailed design in SDL. OMT* has a syntax which is very 
similar to OMT but it has well defined semantics defined by its translation towards SDL. 

2.1 Object model 

An OMT* specification is entered through the object model. The dynamic model is accessed through 
the object diagram. The classes in the object diagram contain pointers to the different state diagrams 
in the dynamic model. ' 

The syntax of OMT* contains a number of restrictions as opposed to OMT, because some con­
structs in OMT have an ambiguous semantics or are very difficult to translate into SDL. More 
specifically, the object model is restricted to object diagrams that 

• do not contain multiple inheritance 
• contain only binary associations, 
• do not contain general constraint expressions, 
• do not contain discriminator or restrictor rules. 

These restrictions are only valid during system design. The analysis is done in full 
OMT, without these constraints. There are detailed guidelines available how to manually 
translate OMT into OMT* in (Holz et al. 1996), available at the World Wide Web at 
.. http://www.compapp.dcu.ie/gclynch/papers.html ... In general we could say that most changes 
needed to get OMT* are rather intuitive for somebody that is acquainted with the translation rules 
to SDL. 

Model definition. An OMT* model contains a list of classes and a list of associations. Figure 3 
shows the model of a Movie-Box containing three classes. The classes Control and Motor do have 
pointers to a state diagrams shown below. 

Class definition. An OMT* class is a six-tupple (id,V,O,sn,G,d) where id denotes the name of the 
class, V denotes the set of attributes, 0 denotes the possible input events and functions defined, 
sn is the name of the superclass, G is the set of components and d is the state diagram, describing 
the dynamic behavior of this class. In our example (figure 3) the six-tupple describing class motor is 
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Figure 3 Simplifi~d Model of a Movie-Box in OMT* 

(moior, {speed}, {switch}, f, 0, E), where speed and switch are references to the specific attribute and 
operation respectively. 

Attributes and operations. An attribute has a name, a type and, optionally, a default value, In 
OMT* types are only names. It is thus impossible to check whether a value is of a certain type or 
not, 

An operation either is an input event or a function. Apart from the fact that an operation can 
have a result type, input events and functions differ in the following: 

• An input event is used to initiate a state transition within the state diagram of its class. It cannot 
be used to change or retrieve the contents of an attribute. It is our intention that an input event 
can be described within the dynamic modeL The parameters passed to an input event can then 
be used by passing them to a function activation . 

• A function is used to do some calculations on the given parameters and on the attributes of an 
object. As a result, a value can be returned to the "caller" and the values of some attributes of 
the function's object can be changed. 

Aggregations and associations, Unlike in OMT, aggregations and associations in OMT* are de· 
scribed differently. This is because the semantic differences are strong enough to separate those two 
concepts, Aggregations are used to model the "part-whole" relationships within the real world or to 
model subsystem relations. Associations denote communication between objects. 

In OMT* an association is a unbounded construct, described as a seven·tupple (id,lc,rc,lm,rm,lr,rr) 
where id denotes the name of the association, lc and rc are the names of the classes that are con· 
nected by this association, 1m and rm denote the multiplicities and lr and rr denote the roles. 
In our example (figure 3) the seven·tupple of the association command could be described as 
(command, Control, Motor, 1, 1, f, f). 

In OMT* an aggregation is part of the specification of a class. An aggregate tupple contains a 
component id, the aggregate multiplicity and the component multiplicity. We limit the aggregate 
multiplicity to the values 1 and {O,l}, mainly because in SDL is strictly hierarchical, i.e., a process 
can never be in two disjunct blocks at the same time. The set of aggregates (G) of the MovieBox 
class is {(Control, 1, 1), (Motor, 1, 1)}. 

2.2 Dynalllic Model 

States Diagram. A state diagram in OMT* describes the control aspects of one specific class. 
It contains the possible states of an object, describes how input events are used to initiate state 
transitions and describes when and how functions are activated. 

A state diagram consists of a number of state definitions (in figure 4, the states idle and play) 
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and exactly one initial lambda transition (in figure 4, the transition going from. to idle). This 
initial lambda transition is fired on creation of the object. The state diagrams of OMT* are currently 
restricted to state diagrams that 

1. do not contain concurrent sub-state diagrams, 
2. do not contain any splitting/synchronization of control, 
3. contain exactly one initial lambda transition. 

Each of these restriction can be worked around: restriction 1 by using two classes, restriction 2 by 
using extra synchronization events and restriction 3 by introducing an extra state. All other features 
of OMT state diagrams, like nested state-diagrams, activities and entry and exit actions, are fully 
supported in OMT*. 

States. A state is defined by its state name, which must be unique within the state diagram. It 
optionally contains a number of entry actions, exit actions and an activity. 

I Mit~_J 
. incspeed 

e-'_A>( t--~' playing 

I, idle l~a~ldO: show 
'-.--- stpp 

~ .. cs.peed 
~or.1 

Figure 4 Dynamic Model of the Control class of figure 3. 

Actions in the states and on the transitions are used to compute values, assign values to attributes 
and generate output events. Entry and exit actions, like in OMT, are executed on entering and 
leaving the state respectively. 

While in OMT activities are poorly defined, in OMT* three kinds of activities are defined: substate­
diagrams, continuous activities and time consuming activities. An activity of a state always starts 
when the state is entered and ends when the activity is finished or when a state is left. 

• A substate-diagram is a complete state diagram, with states and transitions, embedded in a 
state. There is no limitation in the nesting of substate-diagrams. During the translation to SDL, 
substate-diagrams are flattened. 

• A continuous activity is a simple activity that is automatically terminated when leaving the state. 
A continuous activity consists of a name from which a placeholder for an entry and exit action 
is generated. The entry action should start up the activity as a side effect, while the exit action 
should stop the activity. In figure 4, show is an continuous activity because show is not defined 
as an operation in the Control class. The translation of show is shown in figure 9. 

• A time consuming ending activity calls a function. Executing this function may take time and 
cannot be interrupted. After the activity has finished, the state is left by firing a lambda transition. 

State Transitions. State transitions allow performing actions or activities reacting on incoming 
events. Three kinds of transitions exists: external transitions, external lambda transitions and internal 
transitions. 
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An external transition consists of the name of the destination state, a list of input events, a 
condition and an action list. 

An external lambda transition is exactly like a normal external transition except that the former 
does not have an input event nor a condition associated with it. If combined with an ending activity, 
the lambda transition is fired when the activity is finished. 

An internal transition differs from an external transition in that it has no destination state name, 
since both the source and destination state are the state in which the transition is defined. Firing an 
internal transition does not cause the state to be left, as a consequence, the entry and exit actions 
are not executed. 

Within the abstract syntax a terminal state is denoted by defining an empty destination state 
name in an external (lambda) transition. As a consequence the terminal state (graphically a dot 
within a circle) cannot have a name. 

Actions list. An action list consists of several actions. An action list may contain any combination 
of assignments, output events and function calls. 

A function is called or an event is sent by specifying the function name or the input event name and 
giving expressions for every formal parameter in the definition of the function or event. An output 
event optionally takes a receiver, with specifies to which class the event is sent. 

3 PREPARING THE OBJECT MODEL TRANSLATION 

A primary requirement for the transformation of the OMT* object model to SDL, is that the resulting 
SDL specifications should match the logical structure of the OMT* specification as much as possible. 
This is mainly because the generated specifications will be further refined by human developers. 
Therefore, they must be able to recognize the logical structure defined within the original OMT* 
specification. Concretely, this implies that in case of a trade off between completeness and readability, 
readability should be favored as much as possible. 

Before translating an OMT* object model we will first remove inheritance using some flattening 
functions. This is necessary because SDL'88 does not contain the notion of inheritance. Afterwards 
we build a kind of an annotated aggregation tree. This step facilitates the translation process con­
siderably, because the aggregation structure is not available as such in the OMT* abstract syntax, 
where all classes are defined on the same level. As a last step before the translation all associations 
have to be rerouted because of the translation of aggregation into subblocks. 

3.1 Removing inheritance 

To flatten the inheritance structure we first have to introduce an auxiliary function Subtree. This 
function returns the set of classes that are in the aggregation tree for a given class. 

Definition 31 (Subtree(c)) Let c = (id, V, 0, S, G, d) E <class>. 
Then Subtree( c) = {c} U UgEAggregates(c) Subtree(g) 

Using this function we can flatten every OMT* class with the following flattening functions. 

Definition 32 (Flattening-functions) Let m = (id,C,A) E <model>,whereC C <class>. Let c = 
(id, V, 0, s, G, d) E C, and let E E <inputevent dcl> and F E <function del> such that ° = E U F 
Define then 
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• Attributes(c) = V U {v E Attributes(s) I v (j. V} 
• Events(c) = E U {e E Events(s) I e (j. E} 
• Functions(c) = F U {J E Functions(s) I f (j. F} 
• Operations(c) = Events(c) U Functions(c) 
• Components(c) = G U {g E Components(s) I 9 (j. G} 
• Associations(c) = {a E A lie E Subtree(c) or rc E Subtree(c)} 

3.2 Building the aggregation tree 

The aggregation tree is built by adding a path to every class. This path consists of an ordered list 
with the names of all classes which connect the given class with a top node. Therefore we will first 
introduce the function TopClasses. This function returns the set of all classes in a given model m 
that are on top of the aggregation trees (they are no part of the set of aggregations of any class in 
the model). 

Definition 33 (TopClasses(m)) Let m = (id, C, A) E <model> be an OMT* model such that 
C = {CI, ... ,cd, A = {al, ... ,al}, then 
TopClasses(m) = C \ UXEC Aggregates(x) 

If the model contains only one topclass, this class is translated into SDt as the system. Otherwise 
a new system class is added to the model, see figure 5. The system class for a model m is constructed 
by taking all TopClasses as components, but no attributes, operations or state diagram. Because of 
this definition there will always be only one topclass. 

Definition 34 (Paths) A path is a n-tuple (PI, . .. ,Pn) such that PI E TopClasses and Vi, 1 < i :S 
n : Pi+1 E Aggregates(pi). The set of all paths is called "Paths". 

Because of the construction of a system class, the paths of all classes in a model will start with 
the system class, since it is the only TopClass in the model. For example, in figure 5 Class C has as 
path (System, A, C). 

Definition 35 (ExpandedClasses(m)) Let m = (id,C,A) E <model> be an OMT* model 
then ExpandedClasses(m) = { (id, Attributes(c), Operations(c), superclass, Aggregations(c),Path) 
I Path = (PI,· .. ,Pn) E Paths such that Pn = c E C} 

In other words expanded classes is the set of all classes after flattening inheritance and extended 
with path information. This path is then used to reroute associations, see below. 

3.3 Annotate the associations 

Since we translate aggregation into sub blocks we have to reroute an association to the environment 
of the enclosing block before we are able to connect it. Therefore we define functions to split the 
associations into partial-associations and complete-associations, see figure 5. A partial-association 
denotes a connection between a block and its environment and a complete-association is a connection 
at the lowest level were we can connect the two parts of an association. 

The following rules define the partial associations and the complete associations. 
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Figure 5 Translation of the OMT* structure and the associations towards SDL 

Definition 36 (Partial-association{c)) 
Let a = (id,lc,rc,im,rm,ir,rr) E Associations(c), 

let pic = (pic!, ... ,pic".) = path(lc),prc = (prc!, ... ,prCn) = path(rc), and 
let commonp = (Cl, ... ,cp),such that Vi ~ p : e; = pic; = prc; 

Then 
Partial-associations( c) = 

{a E Associations(c) ICE (plcp+l,'" ,plcm ) or 
c E (prcp+!, ... ,prcn )} 

A complete associations is added when a class is the "deepest" class in the common part of the 
paths of the left and right class of an association. In order to store which components must be 
connected, the functions return a set of 3-tuples. For example, in figure 5 the System gets two 
complete association because the paths for A and D and for C and E come together in System. The 
classes to be connected are A and D in both cases. 

Definition 37 (Complete-association(c)} 
Let a = (id,lc,rc,lm,rm,lr,rr) E Associations(c), 

let pic = (pic!, ... ,plcm ) = path(lc),prc = (prc!, ... ,prcn ) = path(rc), and 
let commonp = (Cl, ... , Cp), such that Vi(i ~ p)e; = pic; = prc; 

Then 
Complete-associations( c) = 

{(a, tic, trc) I a E Associations(c) and c = plcp = prcp and 
tic = plcp+l and trc = prcp+d 

In addition we use a function Local-Signals(c} to gather the necessary signal declarations in a 
given class. The gathering of declarations are defined by three rules. A signal is declared in a given 
class if 

• The class itself uses the signal. 
• Or two components of the class use the same signal. 
• And signal is not already declared in one of its aggregates (recursive definition). 
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4 TRANSLATION RULES FOR THE OBJECT MODEL 

An OMT* model is translated into an SDL system containing the SDL translations for the classes 
and associations defined within the model. 

Translation rule 41 (sdl-module) Let m (id, C, A) E < model> be an GMT* model. 
Let system (id, V, G,sc, G,sd,path) be the expanded-system-class of m as defined in 
section 3.2, and {toP_ecl,"" top_ecd the expanded classes of Components (system), and 
{ecI, ... , ecd = ExpandedClasses(m) \ Components(system), and{ sal, .. . , san} =Complete­
Associations(m), and{ eVI!" ., evm} = Local-Signals(system) 

Then sdl-module( m) is constructed by 

system <id> ; 
signal sdl-event-declaration( eVI), ... , sdl-event-declaration( evm); 
<sdl-class (top_ecl»; /* system blocks*/ 

<sdl-class (top_eck»; 
<sdl-CompleteAssociation (sal»; /* channels */ 

<sdl-CompleteAssociation (san»; 
endsystem <id>; 
<sdl-class (ecI»; /* referenced blocks*/ 

<sdl-class (eCk) > ; 

Classes An OMT class definition c is translated to SOL as a block containing: 

• A subblock containing the behaviour and data of c. This includes the attributes, operations and 
state diagram of c. This is a leaf block. If c does not have any components, the surrounding 
subblock is skipped . 

• A sub block for every component class p in the aggregation tree of c, generated by calling 
sdl-class(p) recursively. 

Translation rule 42 (sdl-class(c) 
Let c = (id, V, G, sc, G, sd) be an GMT* class, such that attributes( c) {VI, ... , vd, 

operations( c) = {Ol, . .. ,od, PartialAssociations( c) = {pal, ... ,pam}, CompleteAssociations( c) = 
{cal, . .. ,can}, and Components( c) = {gl,' .. , gq} . Local-Signals( c) = {evI, . .. ,evp } 

Then sdl-class( c) is constructed by 

block <id> ; 
substructure 

/* Signals Definitions*/ 
signal sdl-event-declaration(evl,"" evp ); 

/* Components */ 
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Figure 6 Translation of the Object Model of the Movie-Box 

block <gl> referenced; 

block <gq> referenced; 

block <id>-intern ; /* skipped if q=O (no components) */ 
process <id>-process ; 

del <sdl-attribute(vI,' .. , Vk» 
<sdl-operation( 01, ... , oil> 
/* no signal routes */ 
<sdl-state-diagram(sd, attributes(c))> ; /* optional */ 

endprocess <id>-process ; 
end block <id>-intern /* skipped if q=O */ 

<sdl-PartiaIAssociations (c, pal, ... ,pam»; /* channels */ 
<sdl-CompleteAssociations (cal,"" can»; /* channels */ 

endsubstructure 
end block <id>; 

Associations. Associations are translated to channels connecting the blocks associated with its left 
and right classes. To calculate the events sent between two classes we use the function between. This 
is the intersection between the events sent by its first argument and the events declared within its 
second argument. 

Translation rule 43 (sdl-CompleteAssociation) 
If ca = (a, tic, trc) where a = (id, lc, rc, 1m, I'm, 11',1'1') E <Associations> and tic, trc E < class>. 
Then sdl-CompleteAssociation( ca) is constructed by 

channel <id> 
from <Ie> to <rc> 

with <between(lc,rc» 
from <re> to <lc> 

with <between(rc, Ie» ; 
endchannel <id> 
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PartialAssociations are translated in a similar way, it differs only in that a partial association goes 
to the environment (ENV) instead of to a class. 

Attributes and operations. An attribute is translated into an SDL declaration of the correct type 
and initial value, e.g. Speed in figure 6. A function is translated into a skeleton of an SDL procedure. 
Th return type of the function is translated as an in/out parameter of the procedure. 

5 PREPARING THE TRANSLATION FOR THE DYNAMIC MODEL 

An OMT* state diagram will be translated into an SDL state diagram. For each state within the 
OMT* state diagram one state within the SDL state diagram is introduced. As SDL, however, does 
not distinguish between internal and standard transitions, caution is needed in the translation of 
entry and exit actions. This is solved by executing an entry action only on external transitions, 
before the SDL state is entered. 

Figure 7 Example of a Nested Statediagram. 

The most difficult part is however the translation of substate diagrams. The substates need a copy 
of the transitions of their superstates, but these transitions need to be expanded with additional exit 
actions for the substate. Also, the destination of a transition should be changed to the initial state of 
the substate diagram of the destination state. Therefore we expand the states with path information 
which allows us to build all transitions. 

5.1 Building the Substate Tree. 

As with expanded classes, we expand all states with path information, so that each state exactly 
knows in which substates it is defined. In following definitions we use two functions: Substates(state) 
returns the substates of a given state and TreeSubStates(state) which is like Substates but include 
the substate of the substates and so on. 

Definition 51 (StatePaths) A statepath is an n-tuple (S1' ... , sn), such that for each i E {I, ... , n­
I} holds Si+1 E Substates( Si) . 

Definition 52 (ExpandedState(sd) Let sd = (i,S) E <state-diagram>, where i ist the ini­
tial state and S is the set of states of sd. Then ExpandedStates( sd) is the set of all tuples 
(id, entry, exit, activity, transitions, Path) where exists a Path = (S1, ... , sn) E StatePaths, such 
that 

- S1 E S 
- Sn = (id, entry, exit, activity, transitions) E TreeSubStates(S)} 
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In other words, ExpandedStates gathers all the states in a statediagram, including substates, and 
appends path information to each state. In the example in figure 7, state A has path (A), state B 
has path (A,B), state C has path (A,C), etc. So Band C inherit all transitions from A. 

5.2 Copying and Rerouting Transitions. 

The function ExpandedTransitions calculates all the transitions for a specific (sub )state, given its 
path. The algorithm is based on the fact thanhe base-state is the last element in the path and the 
state from which the transitions are copied is the first element. In each recursive step all transitions 
from the top state are copied and extended with the exit actions of all states on the path and 
the initial actions for entering the destination state. The set of transitions is then extended by a 
recursive call with a shorter path, i.e. the first element is removed. In this way the target state gets 
the transitions of all its superstates. 

event3/acti0n6. 
actiorr3. action9, 

actiontO, action12 

flwml3/BCIionB. 
action3,acliM9. 

ac!ion10,action12 

Figure 8 Flattening in OMT* of the Nested Statediagram Example. 

The function Expanded Transitions calculates all transisitions of a state, given its path. But because 
of the complexity and size of the function definition, we only show here the result after applying the 
flattening functions to the example in figure 7. The flattened statediagram is shown in figure 8. 

Notice that the state transition with event3, previously going to state D, is now going to state E 
immediately because state E is the initial substate of D. For the same reason, state B is now the 
initial state of the statediagram. 

Notice also that event3 is now present in states A, Band C, but that the transition starting in 
state· A calls less exit actions than the transition starting from Band C. Therefor it is not possible, 
in general, to assign the same transition to a state and its substates. 

6 TRANSLATION RULES FOR THE DYNAMIC MODEL 

Given the expanded states and expanded transitions, the translation is straightforward. No environ­
ment information is needed, because each OMT* construct can be translated in the same order as it 
appears in the syntax tree. Notice that the state-diagram is flattened, so all states are on the same 
level. Figure 9 shows the translation of the state diagram of the control class (figure 4). 

Translation rule 61 (sdl-state-diagram(sd)) Let sd = (i, S) E <state diagram>, where i = 
(dest,E,actions) E <initial lambda transition>, let dES: name(dest) = d, d is then the initial 
state of sd (al, . .. , ak) = initial- actions(sd) {Sl, ... , Sk} = expanded - states(TreeSubStates(S)). 
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Figure 9 Translation of the Dynamic Model of the Control 

Then sdl-state-diagmm( sd) is constructed by 

start; 
sdl-action-list( all ... sdl-action-list( ak) 
nextstate <name(sub - dest(d))> j* stop if d = t *j 

<sdl-state( SI) > 

<sdl-state( Sk» 

6.1 States 
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An OMT* state is simply translated as an SDL state containing all Expanded-Transition on the path 
of the state and all internal transitions of the state, see figure 8 and figure 9. 

Translation rule 62 (sdl-state(s)) 
Let s (id,e,x,activity,T,path) E <expanded-state>, where id E <name>, 

e E < entry action list>, x E < exit action list>, activity E < activity>, (t I, ... , tm ) 

ExpandedTransitions(path), (i I , ... , in) = I nternalTransitions(path - states(path)), and path is 
a statepath. 

Then sdl-state( s) is constructed by 

state <id> ,-
<sdl-external-tmnsition( tr) > ... < sdl-external-tmnsition( tm ) > 
< sdl-internal-tmnsition( ir) > ... < sdl-internal-tmnsition( in) > 

endstate <id> ; 

6.2 Thansitions 

When performing an external transitions, all the entry actions and exit actions that were calculated 
in the expanded transitions should be executed. The following rule also applies to lambda transitions. 

Translation rule 63 (sdl-external-tmnsition(t) Let t = (dest, event, cond, exit, action, entry) E 
< expanded-tmnsition> , where dest E t( < destination state name» event E t( < input event> ), 
cond E e( <boolean expression», and action = (aI, .. . , ak), al...k E <action-list>. 
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Then sdl-external-tmnsition( t) is constructed by 

input <sdl-input-event(event»; /* Skipped if event = E */ 
provided <sdl-expression(cond»; /* Skipped if cond = E and event =f E */ 

/* provided true if event = cond = E * 
<sdl-action-list( ad> ; 

<sdl-action-list( ak» ; 
nextstate dest; 

Internal transitions are translated like external transitions, except that an internal transition only 
contains one action list and that nextstate is set to "-" to return to the same state at the end of the 
transition. Note also that for internal transitions there must always be an event, i.e. an empty event 
is not allowed, so the "input" line is never skipped. 

6.3 Actions 

An action-list is of course translated as a list of actions. There are three kind of actions: function-call, 
output event and assignment. For each kind there is a different translation rule, described below. 

• function-call, let f = (junc,arg) E <function call> 
call <func> «sdl-expression( argl », ... , <sdl-expression( argk»); 

• output-event, let e = (event, arg) E <output event> 
output <event> «sdl-expression( argl) >, ... , < sdl-expression( argk) > ); 

• assignment, let a = (attr,expr) E <assignment> 
attr:= sdl-expression(expr); 

7 CONCLUSION 

We present an automated transition from OMT* to SDL. OMT has been chosen for its wide spread 
use in system engineering and for its integration of static and dynamic information. SDL on the 
other hand, is very well suited for the design of highly interactive systems in a formal way. In the 
development of large complex systems which involves many people, it is important to have a smooth 
transition from analysis to design while preserving as much information as possible. In order to allow 
such a transition we developed OMT*. 

OMT* is used as a system design language. The transition from an OMT requirement analysis 
to an OMT* system design model requires manual design decisions. Detailed guidelines about this 
transition are available in (Holz et al. 1996). OMT* is a subset of OMT, but OMT* contains as many 
constructs of OMT as possible. The semantics of OMT* are well defined with a transformational 
semantics to SDL'88. 

OMT*, and the translation to SDL, should not be seen as a way to design and implement an 
arbitrary system modeled in OMT. Instead, OMT and OMT* should be seen as a front-end to the 
design of a system that is being designed in SDL anyway. We state that OMT provides the right 
abstraction level for requirements analysis and that OMT* successfully couples the object-oriented 
modeling technique (OMT) with the software description language (SDL). We do know of some 
companies (Alcatel Mobile and IskratTEL) that already use both OMT for analysis and SDL for 
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design in the development of very large telecommunication systems. Of course, those companies could 
get immediate benefit from our methodology. 

Future plans on OMT* include a translation towards SDL'92. This version of SDL has object 
capabilities and allows probably a better translation in that it preserves more information expressed 
by the system design model such as aggregation and inheritance. 

Apart from SDL, other languages can be generated starting from OMT. In the INSYDE project 
(INSYDE, 1994) SDL and VHDL are generated for hybrid systems co-design. A translation for the 
object model into Z is given in (Abowd, 1993). A formal semantics in terms of algebras has been 
defined for the object model in (Bourdeau, 1995). The programming techniques group at CERN 
(Aimar et aI., 1993) describe a configurable code generator for 00 methodologies. However, most of 
these proposals support only the translation of the object model of OMT, while we also integrated 
a thorough translation for the dynamic model. This aspect is very important in the domain of 
telecommunication. 
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