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Abstract 
In order to facilitate better Information Systems Development (ISD), Method Engineering 
technqiues and tools are needed that support flexible creation, modification, and reuse of ISD 
methods and tools for use on specific problem domains. A metamodelling notation is needed for 
specifying and integrating different design notations. MetaCASE support is required for 
building, reusing and evolving tools for these design notations. Process modelling tools for 
both the coordination of these design notation tools and the evolution of software processes are 
also needed. We describe our work on developing an integrated environment which supports 
metamodelling, metaCASE and flexible software process modelling, and illustrate its use for 
supporting Method Engineering. 

Keywords 
Method engineering, metamodelling, metaCASE, software process modelling 

1 INTRODUCTION 

Information Systems Development (ISD) methodologies are generally assumed to be situation­
independent. However, there are a multitude of different development methods and techniques 
that each have various advantages and disadvantages, some of which relate to the problem 
domain or the development context. A stream of research has developed investigating the 
possibility to choose, tailor, or engineer the development method accordingly. Kumar and 
Welke (Kumar, 1992) coined the term methodology engineering and postulated this new field, 
i.e. engineering a new ISD methodology by composing it from various techniques in order to 
address problems in a particular domain. Vessey and Glass (Vessey, 1994) noted that, in any 
case, system developers adapt and modify the methods that they use to the situation and their 
preferences. Recently, Harmsen and Brinkkemper (1995) found that due to the increasing 
complexity of Information Systems, development teams often require methods tailored to a 
particular system development situation, which they term Situational Method Engineering. 
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Developers may need to create a new method from scratch, modify (e.g. incrementally improve 
or tailor) an existing method, or reuse parts of various methods and techniques and recombine 
them into a new method, or any combination of the above. Developers may even need to 
modify and adapt the development method while the development process is ongoing. Our goal 
is to support this flexible sort of situational method engineering. In order to facilitate this, 
developers need flexible support for: 

Design notation metamodelling and notation integration. This allows developers to specify 
data models for the design notations they wish to use for development of a system, and in 
the case of multiple design notations, to specify common information that will be shared 
between the notations. Developers should be able to reuse all or parts of existing notations, 
and be able to integrate different notations when one notation best supports modelling part 
of the problem domain, and another notation is better suited to another. 
Tool construction facilities. These are used to build or modify CASE tools to support the 
various design notations to be used. This includes the ability to keep information shared by 
different design notations consistent i.e. to keep different notation repository information 
consistent under change. Developers also need to specify the editors and rendering of 
notation data models they desire. 
Software process modelling and work coordination. Process modelling specifies which 
notations and tools will be used for different aspects of the system under development. 
Work coordination support is needed to coordinate tool usage. Evolution and reuse of 
process models allows developers to improve their development processes from one 
project to another. Modelling the Method Engineering process itself provides a meta­
process level which helps to improve Method Engineering on subsequent projects. 

Ideally a Method Engineering environment should support all of these activities in an integrated 
fashion. Developers should be able to define and/or reuse software processes either for 
developing a new system or for modifying an existing system and its existing descriptions. 
They should be able to tailor existing design notations in either case. CASE tools supporting the 
required notations should be built using the notation metamodels as repository specifications, 
and common information in different tool repositories should be kept consistent. Developers 
should be able to flexibly define and revise software processes during system development, and 
be able to reuse these models on new projects. 

Our approach is to combine techniques and tools from three distinct, yet related, areas of our 
recent research. We have developed the CoCoA meta-modelling notation (Venable 1993, 
Venable 1995) and have used this for design notation metamodelling and integration (Grundy, 
1995a, Grundy, 1995b, Venable, 1995). We have developed the MViews framework for 
constructing CASE tools and integrated Information Systems Engineering Environments 
(ISEEs) (Grundy, 1993, Grundy, 1995a) and used this to develop ISEEs which support 
multiple design notations [Grundy95a, Grundy95b]. Recently we have been developing a tool 
for the coordination of work in CSCW systems (Grundy, 1995c), which also supports flexible 
software process modelling. This paper describes our current work developing an integrated 
environment for the definition, construction and coordination of ISEEs using these techniques. 

2 RELATED RESEARCH 

Current approaches to notation integration, CASE and metaCASE, and method engineering 
support tools, go some way to addressing the Method Engineering aims from Section 1, but do 
not completely satisfy them. Some work has been done on the static integration of notations. 
Venable (1993) has performed detailed analyses and integrations of both data flow models and 
conceptual data models. Campbell and Halpin (1994) have analysed levels of abstraction for 
conceptual schemas. Falkenberg and Oei (1994) have proposed a metamodel hierarchy. 
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Wieringa (1995) has compared lSD, ER modelling and DFD modelling. Data modelling has 
been used to compare different notations (Nuseibeh, 1992) and support methodology 
engineering (Heym, 1992). Process-modelling has also been applied to compare and integrate 
notations (Song, 1992). 

Integrated ISEEs (or Integrated CASE tools and programming environments) allow designers 
to analyse, design, and implement Information Systems from within one environment, 
providing a consistent user interace and consistent repository (data dictionary). They help to 
minimise inconsistencies that can arise when using several separate tools for information 
systems development (Wasserman, 1987, Reiss, 1990). These ICASE environments allow 
developers to analyse and design software using a variety of different notations, with limited 
inter-notation consistency. Such tools do not generally support complex mappings between the 
design notations, such as propagating an ER relationship addition to a corresponding OOAID or 
NIAM diagram. As an example, Software thru Pictures™ (Wasserman, 1987) uses a single 
metamodel repository for all notation diagrams, although it only supports basic forms of 
intemotation consistency. The implementation of these environments is generally not sufficient 
to allow different design notations to be effectively integrated, and consistency between design 
and implementation code is often not maintained (Meyers, 1991). For example, MethodMaker 
from Mark V Systems (Mark, 1995a) allows new notations and methods to be built, but 
provides very limited inter-notation consistency management facilities. FIELD (Reiss, 1990) 
and Dora (Ratcliffe, 1992) provide abstractions for keeping multiple tools and textual and 
graphical views consistent under change. They do not, however, provide any mechanism for 
propagating changes between views which can not be directly applied by the environment, such 
as ER relationship changes to NIAM or OOAID relationship changes. Thus changes which can 
not be automatically translated to another notation are not supported. 

Process-centred environments utilise information about software processes to enforce or 
guide development. Examples include Marvel (Barghouti, 1992), CPCE (Lonchamp, 1995), 
and ConversationBuilder (Kaplan, 1992). These environments usually provide low-level text­
based descriptions of work rationale, and often do not effectively handle restructuring of 
development processes while in use (Swenson, 1993). ProcessMaker (Mark, 1995b) supports 
the definition and use of multiple process diagrams, but only supports limited integration and no 
event handling for I-CASE tools. Computer-Aided Method Engineering (CAME) tools, such as 
Decamerone (Harmsen, 1995) and Method Base (Saeki, 1993), provide support for configuring 
development processes and tools to a particular application, but often utilise complex textual 
specifications, and don't facilitate coordination of different notation tools during development. 

3 THE COCOA META-MODELLING LANGUAGE 

3.1 CoCoA 

We have been using the CoCoA conceptual data modeling language (Venable, 1993) as a meta­
model for modelling Information System Modelling Languages (ISMLs). CoCoA is designed to 
support modelling of complex problem domains and extends existing Entity Relationship (ER) 
models. Figure 1 depicts the seven main CoCoA abstractions. Entities are the things in a 
problem domain and attributes describe and/or identify them (Figure 1 (a)). Named 
relationships have the semantics of ER relationships, and are composed of named roles, played 
by entities. Cardinality constraints are indicated with each role (Figure 1 (b)). CoCoA supports 
generalization and specialization, and where specialization is based on a partitioning attribute, 
that attribute is shown (Figure 1 (c)). CoCoA extends other ER models by the implicit use of 
categories, allowing the entity planing a role in a named elationship to be one of one or more 
enity types, shown by connecting more than one entity (type) to the same role (Figure 1 (d)). 
CoCoA derives its name from a fifth data modelling concept, that of Complex Covering 
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Aggregation. Covering aggregation distinguishes the aggregation of entities into composite 
entities from the aggregation of attributes into entities. Complex covering aggregation is 
distinguished from simple covering aggregation in that aggregation of named relationships into 
the composite entity is allowed (Figure 1 (e)). CoCoA supports aliases, which are useful for 
model integration, showing old local names together with standardized names for synonyms 
(Figure 1 (f)). Derived concepts (attributes, entities, named relationships, or covering 
aggregation relationships) are annotated with a ,*, (Figure 1 (g)). 
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Figure 1 The CoCoA model notation. 

3.2 MetaModelling with CoCoA 

Figure 2 Metamodel of core ER concepts. 

We have used CoCoA to derive conceptual data models for the ER, NIAM, DFD, STD and 
OOAID design notations. As an example, the data model describing the fundamental 
abstractions of ER models is shown in Figure 2. Enities are named and have zero or more 
named attributes. Relationships are named and have two or more named roles. Roles link 
entities and relationships and may include a maximum cardinality. Extensions to this basic ER 
schema include provision for entity subtyping, optional and mandatory roles, and distinguished 
key attributes of entities (Venable, 1993). 
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Figure 3 shows NIAM's main abstractions. A NIAM entity is named and may have a reference, 
made by one or more named labels. Fact types are named and have one or more roles. The 
"derived" attribute of the fact type entity is marked as derived (by the asterisk) because its value 
is true if it is related to a derivation rule. Roles link entities to facts, and are named. Nested fact 
types are both entities and facts, i.e. they have roles but also behave as entities, being linked to 
zero or more facts via further roles. A CoCoA model of other NIAM constraints is omitted for 
brevity, but can be found in (Venable, 1993). NIAM derivation rules are not specified further 
because they are not fully specified by Nijssen and Halpin (1989). Other notation meta-models 
can be found in (Venable, 1993, Grundy, 1995a). 

Figure 3 Metamodel of core NIAM concepts. 

3.3 Notation MetaModel Integration with CoCoA 

Figure 4 An integrated conceptual data model. 
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We have developed integrated data models which capture the overlaps between ER, EER, 
OMT's object model, and NIAM. Figure 4 shows a partial metamodel integrating the entity and 
attribute data modelling aspects of ER, EER, NIAM, and OMT. The ER and OMT models 
differentiate between entities and attributes, whereas NIAM integrates these concepts into a 
general entity type. The main difference between the OMT and ER conceptual data models is 
OMT's support for class methods. The overlaps between the notations are indicated by covering 
aggregation showing the composition of each data model from the integrated data model entities 
and relationships. Further discussion of these and of relationship type classifications is in 
(Venable, 1993). 

4 THE MVIEWS FRAMEWORK 

4.1 MViews 

Our design notation environments are implemented as a collection of Snart classes, specialised 
from the MViews framework (Grundy, 1993). MViews supports the construction of new 
ISEEs by providing a general model for defining software system data structures and tool 
views, with a flexible mechanism for propagating changes between software components, 
views and distinct software development tools. Figure 5 shows an example of the structure of 
SPE, an ISEE for object-oriented software development. ISEE data is described as components 
with attributes, linked by a variety of relationships. Multiple views are supported by 
representing each view as a graph linked to the base software system graph structure. Each 
view is rendered and edited in either a graphical or textual form. Distinct environment tools can 
be interfaced at the view level (as editors), via external view translators, or multiple base layers 
may be connected via inter-view relationships, as described in (Grundy, 1994). 

When a software or view component is updated, a change description is generated. This is of 
the form UpdateKind(UpdatedCampanent, ... UpdateKind-specific Values ... ). For example, an attribute 
update on CampI of attribute Name is represented as: update(Compl, Name, OldValue, NewValue). 
All basic graph editing operations generate change descriptions and pass them to the 
propagation system. Change descriptions are propagated to all related components that are 
dependent upon the updated component's state. Dependents interpret these change descriptions 
and possibly modify their own state, producing further change descriptions. This change 
description mechanism supports a diverse range of software development environment 
facilities, including semantic attribute recalculation, multiple views of a component, flexible, bi­
directional textual and graphical view consistency management, a generic undo/redo 
mechanism, and component "modification history" information (Grundy, 1995d). New 
environments are constructed by reusing abstractions provided by an object-oriented 
framework, and ISEE developers specialise MViews classes to define software components, 
views and editing tools. A persistent object store is used to store component and view data. 

MViews environments support version control and collaborative facilities via the C-MViews 
extensions to MViews (Grundy, 1995d). Version revision, alternates and merging are 
supported by having change descriptions cached in a number of version records for components 
and views. Merging of alternate versions is carried out by sucessively reapplying one alternate's 
change descriptions to the other alternate component. Any merge conflicts (structural or 
semantic) are presented to the merging user. Semi-synchronous and synchronous editors are 
provided for views by propagating change descriptions on a view to other users' environments 
as they occur. With semi-synchronous editing, these change descriptions are presented to 
collaborating users, who may then choose to incorporate them into their own view alternatives. 
For synchronous editing, a central server "owns" the shared view, and all edits must be sent to 
this server for actioning and propagation to other users. Fine-grained view component locking 
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is maintained by the server to ensure no simultaneous component update is permitted by 
multiple users. 
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4.2 Notation Integration with MViews 
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In addition to SPE, we have developed several other ISEEs using MViews. MViewsER 
provides integrated Entity-Relationship diagrams and textual relational schema. MViewsER has 
been integrated with SPE to produce OOEER, an integrated environment for OOAJD and EER 
modelling (Grundy, 1995a). MViewsNIAM provides NIAM modelling views, and has been 
inegrated with MViewsER to produce NIAMER (Venable, 1995). MViewsDP provides a 
graphical drag-and-drop interface builder for dialog boxes, with the dialog interface and 
validation rules being defined in textual views (Grundy, 1995d). EPE is an environment for 
constructing EXPRESS specifications and corresponding EXPRESS-G diagrams (Amor, 
1995a). C-SPE and C-MViews provide collaborative, integrated software development support 
via synchronous, semi-synchronous and asynchronous editing (Grundy, 1995e). 

Figure 6 shows a screen dump from OOEER. The OOAJD views are kept consistent with all 
changes to the EER views, and vice-versa, even when a direct translation is not possible by the 
environment. The dialog shown holds change descriptions (the "modification history") for the 
customer OOA class. The change descriptions highlighted by '~' were actually made to the EER 
view (diagram) and automatically translated into OOAJD view updates (where possible) by 
OOEER. Unhighlighted items were made by the designer to the OOA view to fully implement 
"indirect" translations that could only partially by implemented by OOEER. 
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Figure 6 Integrated OOAID and EER views in OOEER with bi-directional consistency. 

The OOEER integration was achieved by adding an additional data dictionary graph level 
below the data dictionaries of the SPE and MViewsER tools, This layer is responsible for 
translating, where possible, between the different notations and notifying tools where automatic 
translations are not possible, Neither SPE nor MViewsER required any significant change to 
achieve this integration, Figure 7 shows an example of the structure of OOEER, Figure 7 
illustrates this integration process. When an SPE view is edited (1), the modification is 
translated into SPE repository updates (2), generating change descriptions. The inter-repository 
relationships are sent change descriptions, and respond to these by updating the integrated 
repository (3), When the integrated repository components change, the inter-repository 
relationships to MViewsER's repository components translate the integrated repository 
components change descriptions into updates on MViewsER repository components (4), 
Indirect mapping changes are defaulted where possible and change descriptions displayed in 
views, Both SPE and MViewsER keep their multiple views consistent (5 and 6), 

5 THE SERENDIPITY PROCESS MODELLING TOOL 

ISEEs should support the coordination of cooperative work activities that is inherent within ISD 
(Krant, 1995). Therefore, CSCW features are needed in ISEEs. An ISEE should support users 
in collaboratively planning and executing work activities, as well as in being informed about 
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and maintaining their awareness of relevant work by others, the contexts in which those other 
users' work is carried out, and the rationale for the decisions they have made. In particular, 
support is needed for defining activities to be done (plans), coordinating the planning activity 
itself (meta-plans), and restructuring the history of work done to more effectively convey intent 
("rewriting history"). Unfortunately most existing workflow systems are inadequate for real­
world applications due to many exceptions to the workflows and their inability to adapt to 
changing work processes (Swenson, 1993). Similarly, must existing process modelling tools 
utilise either complex, textual specifications which are inaccessible to many end-users, or do not 
support facilities for integration and event handling with existing tools. 

We have developed Serendipity, a process modelling, enactment and work planning 
environment, which also supports flexible event handling mechanisms, group communication, 
and group awareness facilities (Grundy, 1996). Fig. 8 shows a Serendipity process model for 
updating a software system ("ml:modify system-process"). The notation is an adaptation and 
extension of Swenson's Visual Planning Language (Swenson, 1993), which does not support 
artefact, tool or role modelling, nor arbitrary event handling mechanisms. 
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Figure 7 Integrating SPE and MViewsER using an integrated data model. 

Stages describe steps in the process of modifying a software system, with each stage containing 
a unique id, the role which will carry out the stage, and the name o,f the stage. Enactment event 
flows link stages. If labelled, the label is the finishing state of the stage the flow is from (e.g. 
"finished design"). The shadowing of the "m1.2:implement changes" stage indicates that 
multiple implementers can work on this stage (i.e. the stage has multiple subprocess 
enactments). Other items include start stages, finish stages, AND stages, and OR stages (empty 
round circle). Underlined stage IDs/roles mark presence of a subprocess model, for example 
"ml.l:plan changes-subprocess" is a subprocess for "ml.l:design changes". The italicised 
"check out design" stages in this subprocess model indicate stages reused from a template 
process model. 
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Figure 8 Software process model views and dialogs in Serendipity. 

Serendipity supports artefact, tool and role modelling for processes, as in "ml:modell-roles", 
which shows a different perspective of "m 1 :modell-process". Usage connections indicate how 
stages, artefacts, tools and roles are used. Optional annotations indicate: whether data is created 
(C), accessed (A), updated (U), or deleted (D); whether a stage must use only the tools, 
artefacts or roles defined C..J); and whether a stage cannot use a particular tool, artefact or role 
(..,). If a stage is linked to another stage by a usage flow, ""',, specifies the stage may be enacted 
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when the other stage is enacted, while "-," specifies the stages can not be enacted at the same 
time. 
In addition to specifying the static usages and enactment event flows between process model 
stages, Serendipity supportsjilters and actions, which process arbitrary enactment and work 
artefact modification events. View "ml.3:done testing" shows an example of enactment event 
filtering. The filters "Made Current" and "finished testing" determine if "m1.3:check changes" 
has been made the current enacted stage or has been finished. If so, then if the "m 1.2:implement 
changes" process has not completed (determined by filter "Not Complete"), the role associated 
with this stage is notified of testing being started or completed. 

Stages are enacted for a project, highlighted by colour and shading, as shown in Figure 8. 
The shaded stage with a bold border ("ml.1.8:fix design") is the current enacted stage for the 
user i.e. their current work context. As a stage completes in a given finishing state, event flows 
with this state name (or no name) activate to enact linked stages. Enactments of stages are 
recorded, as are process model changes, and all enacted stages for a user can be shown in a "to­
do" list dialog. 

6 AN INTEGRATED METHOD ENGINEERING APPROACH 
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Figure 9 The method engineering process with our integrated tools. 

We are currently building an MViews-based environment for CoCoA modelling, which will 
form the basis of an integrated environment for Method Engineering with our tools. Figure 9 
shows how this tool will be used to generate MViews framework classes for specifying new or 
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modified tool repositories and views. Developers will augment these specifications with 
appropriate editor configurations and notation renderings, and any additional consistency 
management techniques not generated from the CoCoA metamodels. As our Serendipity work 
coordination tool can be used with any MViews environments, developers will then be able to 
specify appropriate plans (i.e. process models) for different systems under construction. This 
may include enabling usage of certain tools and artefacts for certain parts of the new system 
development or to particular groups of developers. Once these plans have been created, 
developers can later abstract these plans to form policies and reuse their policy process models 
for subsequent systems, and thus incrementally refine these process models. CoCoA models 
and MViews environments and tools can also be created and/or modified from one project to the 
next to build up appropriate tools for each system development. 

5.1 CoCoA Metamodelling of Notations 

The first step (#1 in Figure 9) is to build up CoCoA metamodels of the desired design notations 
to be used on a new system development. This might include the reuse of previous CoCoA 
models, the combination of parts of one metamodel with another, or the development of new 
metamodels which are problem-specific. In previous metamodelling with CoCoA, we have 
used a drawing editor to produce these metamodels (Grundy, 1995a, Venable, 1995). We are 
currently implementing an MViews tool for CoCoA modelling which will be used to construct 
new CoCoA models, and will include multiple views of CoCoA models and libraries of views 
and models to assist in model reuse. 

As an example, we have recently integrated our NIAMER (supporting NIAM and ER views) 
and OOEER (supporting OOA and EER views) environments with the MViewsDP form/report 
designer by hand. Using our CoCoA modelling tool instead, integration of these tools would 
initially begin using our integrated CoCoAIMViews environment to metamodel each notation 
that is to be used on a development project. 

5.2 Conceptual Notation Integration with CoCoA 

Integrating <Ufferent design notations with CoCoA involves either the definition of integrated 
models or specifying links between components of one model and related components in 
another model (Grundy, 1995a, Venable, 1995). In addition, dynamic mappings must be 
specified between these notation components i.e. what happens to related components when a 
component instance is changed. For example, in OOEER, if an ER relationship is added 
between two entities, a default association relationship is added between the corresponding two 
object/classes in the OOA model (Grundy, 1995a). Our MViews editor for CoCoA will support 
both the static integration and/or linking of notation components, and the specification of 
dynamic mappings between notation components. Static integration is a straightforward view 
integration, supported by aspects of the CoCoA data modelling language. We are currently 
adapting a view mapping language (Amor, 1995b) which will allow us to declaratively specify 
the dynamic notation mappings in this tool. In previous notation integration we have informally 
specified these dynamic mappings using English and informal diagrams, but this is not 
sufficient to generate intemotation relationships for MViews tool integration. 

In our integrated ISEE, integration of OOEER, NIAMER, and MViewsDP was implemented 
by adding inter-repository relationships between repositories, in addition to the hierarchial 
repository relationships used in NIAMER and OOEER. Appropriate links were specified 
between the components of the CoCoA metamodels for each notation and then dynamic 
mappings were defined between related components. In future environment integration, this 
will all be carried our within our CoCoA modelling tool. 
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5.3 MViews Tool Generation from CoCoA Models 

CoCoA models have been used as the specifications for MViews tool repositories in our 
previous notation integration work (Grundy, 1995a, Grundy, 1995b, Venable, 1995). 
However, MViews repository and view information has been hand-generated from these 
models. We are extending our CoCoA modelling tool to generate class interfaces and method 
code directly from different notation and integrated notation metamodels. Quite a large amount 
of MViews framework code can be generated in this way: previous development of MViews 
environments has shown over 60% of the code relates to defining class structures which 
represent repository and view data, and method code to link these data items in appropriate 
ways. All of this code can be generated from CoCoA metamodels by our modelling 
environment. Internotation relationships and a large amount of consistency management code 
can also be generated in this way, from the static integration and the specification of dynamic 
mappings in our CoCoA editor, even in some cases the user interface. 

For example, if two constructs in two notations are represented by the same entity type in the 
integrated CoCoA model, a change to one of them in one view results in the same change in the 
second view/notation. In this case, the user of the second view need only be notified of the 
change and the repositories updated. Similarly, if the construct changed in one view is a 
subtype of a construct in another view, changing an instance of the first construct will require 
the same change on the supertype construct (as long as it has the required attributes). In either 
of these cases, code for handling the propagation of these changes (including the receiving 
view's user interface) can be generated automatically. However, the reverse is not true (i.e. we 
cannot generate the code for propagation of a change to a construct that is the supertype of a 
construct in another view which needs to be updated). 

5.4 MViews Tool Refinement and Integration 

While repository and view structures (and some semantic values) can be generated directly from 
CoCoA metamodels, extra code needs to be written by developers to appropriately configure 
editors and specify some consistency management code which can not be automaticlly 
generated. We are allowing developers to further specialise classes generated from our CoCoA 
modelling tool to define editing mechanisms and internotation consistency management code 
which can not be specified in a declarative way. For example, developers will specify default 
techniques for keeping data in different notations consistent declaratively, but may then want to 
define complex consistency management techniques operationally (i.e. using MViews code). 
An example from NIAMER is when a NIAM entity is added. Since, in the integrated CoCoA 
model, a NIAM entity is a supertype of both the EER attribute and entity, it could be mapped to 
either. NIAMER defaults the automatic translation to adding an entity and allows users of the 
integrated environment to modify the ER entity to an attribute if desired. This default code could 
also be generated, but might be incorrect if the default should have been to add an attribute 
instead. In that case, a developer would need to rewrite a small amount of MViews code. 
Alternatively, other user interfaces might be desired, such as preseting the user with a menu to 
add either an entity or an attribute to the EER view, adding reconciliation of the change to a to­
do list, or simply suggesting a change. We are currently looking at ways to declaratively specify 
the desired behaviour with annotations to the CoCoA models. Our approach allowing 
developers to make these alterations by further specialising the generated classes, which avoids 
the problem of when the CoCoA models are modified and classes regenerated. The further 
specialised classes are not lost when this regeneration occurs. 

Of course, we also need to code the rendering of the notation on the user's screen. This is 
currently done by hand, but within the MViews library framework. We are looking at how this 
might be done declaratively with annotations to the CoCoA metamodel, then generating the 
rendering code. 
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5.5 Process Model Specification 

After building appropriately integrated tools, developers can then specify how these tools are to 
be used on the particular system under construction. Serendipity allows developers to specify 
which tools and work artefacts are used for different plan stages and hence which tools/artefacts 
can be used for a particular software process. Serendipity process models can guide developers 
i.e. suggest which tools are appropriate for different development tasks. They can also be used 
to suggest or to enforce the use of specific tools, so, for example, a project manager may 
specify one development group uses OOAJD modelling while another uses ERJDFD modelling. 
As these tools have integrated repositories (via OOEER), the designs produced by each group 
are still integrated and kept consistent. 

In a collaborative, integrated ISEE, users must be informed of changes to work and plan 
artefacts that are relevant to them and they are currently interested in (Grundy, 1995c). Some 
changes a developer makes are directly relevant to their collaborators, such as renaming or 
deleting entities and attributes, and collaborators should be informed of these immediately. 
Other changes, such as the addition of new entities, relationships, attributes or forms and 
reports can be sent for later perusal, as they have more limited effects on collaborators' work. 
Low-level changes, such as the implementation of procedures, forms or reports not affecting a 
collaborator's work need not be presented. Collaborators can see from plan histories and 
various active stages the kinds of activities another developer is doing, and may choose to view 
these changes or modified artefacts on-demand, using any of the informing mechanisms 
described above. 

In most CSCW environments, only artefact-level information about changes is presented to 
collaborators, either directly updating their work artefact views or using version control 
facilities to indicate changes made by other users. Serendipity provides collaborating users not 
only with change descriptions describing actual work (or plan) artefact changes, but also with 
extra information about the work context in which the changes were carried out. Examples of 
this work coordination can be found in (Grundy, 1995c, Grundy, 1996). 

5.6 Tool/Process Refinement and Reuse 

Serendipity views assist in Situational Method Engineering (Harmsen, 1994) by allowing 
developers to incrementally refine their development methodology, processes and work plans. 
As process stages record information about the tools to use, artefacts to modify/produce, 
subsequent stages, and also may be exploded into more detailed plans, they facilitate the 
engineering of software processes in a manner similar to Method Engineering tools. Our 
approach has some advantages over comparable notations, such as MEL (Harmsen, 1995), in 
that its visual nature is more accessible to developers for visualising and modifying plans than 
the textual notations of other approaches. As Serendipity models were designed for general 
work process modelling, its high-level nature allows developers to more readily understand and 
modify process descriptions than text-based process-centred environments or method­
engineering tools. It also allows users to modify their process and work plans while a model is 
in use. Finally, Serendipity allows users to restructure copies of processes and plan histories 
after completion so that new, improved process model templates can be developed for later 
reuse. 

Our integrated, collaborative ISEE supports collaborative planning via collaborative editors for 
Serendipity views, and allowing other Serendipity views to act as meta-process views. 
Collaborating developers share software process views and can collaborate on modifying these 
models. The use of these shared models for work context capture and presentation, and 
specifying interest in changes, allows Serendipity to be used for work coordination, 
collaborative planning, recording development histories, and method engineering. Figure 10 
shows an example of process improvement with Serendipity. The process model is extended to 
include a "m1.5:check design" stage, to be carried out before coding starts. Coder "john'''s 
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work plan is also extended by adding 'm1.2.II:modify branch table'. This handles an 
exception to the work plan due to the addition of the "address" table. Such changes could be 
made before, during or after the model and plan are used. 
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Figure 10 Process and plan improvement example. 

Our integrated ISEE allows different tools to be used on the same problem domain, with tool 
data being kept consistent under change and the tools sharing a consistent user interface. 
Serendipity allows software processes to be reconfigured during development to better suit a 
particular development project. Software process models thus evolved can be reused in 
subsequent development by saving them as reusable templates. The specification of artefacts, 
roles, CASE tools and interest obligations for plan stages gives our integrated environment 
similar method engineering capabilities to method engineering tools. In addition, it supports 
work coordination. Our CoCoA/MViews environment can itself make use of Serendipity views 
to model, plan and coordinate the Method Engineering process itself. This allows the Method 
Engineering process to be refined over several projects, in addition to the refinement of the 
integrated design notation tools. 

7 SUMMARY AND FUTURE RESEARCH 

We have described our recent work on developing a metamodelling language, CoCoA, notation 
integration using CoCoA, the construction of integrated Information Systems Engineering 
Environments based on CoCoA metamodels using MViews, and the development of a work 
coordination and software process modelling tool, using an extended form of the Visual 
Planning Language. Used in conjunction, these tools allow system developers to model and 
integrated different design notations and to construct integrated tools and environments 
supporting these notations. Developers can plan and coordinate the use of different tools within 
this environment using our Serendipity tool. 
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We are currently implementing an MViews environment for CoCoA which will support 
notation metamodelling and notation integration. MViews classes to implement an integrated 
environment will be generated from these metamodels, together with internotation relationships 
and consistency management support. Serendipity will be used to coordinate the use of these 
integrated environments for different system developments, and will be used by the 
CoCoAlMViews environment itself to plan, coordinate and refine the Method Engineering 
process itself. We are also engaged in further research to enhance and add to the CSCW 
features of our environments and to consider ways to utilise declarative annotations to the 
CoCoA models to further improve the CoCoAlMViews environment's code generation 
capabilities. 
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