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Abstract 
Many advantages have been given for using formal specifications in the design and im­
plementation of communication systems. Performance is usually not among them. It is 
commonly believed that code generated by an automatic tool from a formal specification 
is inherently slower than code implemented manually. This paper gives experimental evi­
dence that this contention might be false. The key idea is to integrate heuristics used by 
a human programmer when optimizing code into the code generation tool. This way, the 
tool can generate code that is competitive with code written by a human programmer, 
and even better for specifications of sufficient complexity. Experiments were conducted 
using the presentation conversion routines generated by an ASN.l compiler. The paper 
describes the design and implementation of an optimisation stage that automates the 
trade-off between code size and execution speed in these routines. For this purpose, a 
heuristic method to predict the frequency of type usage is developed, based on static 
control flow analysis of the type reference graph of an ASN.l specification. Experimental 
results show that this approach can successfully identify the most frequently used types 
in a specification. 
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1 INTRODUCTION 

Modules in a distributed system often use different representations for the same data. 
Before such data can be exchanged between the different modules, it is necessary to 
reformat the data. This operation is commonly referred to as marshalling or presentation 
conversion. 

The marshalling function has often been identified as a major performance bottleneck in 
network communication ((Huitema & Doghri, 1989), (Clark & Tennenhouse, 1990)). Our 
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measurements indicate that marshalling can reduce the throughput seen by an application 
from a 155 MBit/s ATM link by a factor of two to fifty. This is has been confirmed by 
the findings of others (e.g. (Thekkath & Levy, 1993)). 

Because individual marshalling code is required for each application, it has become 
common practice to generate this code using an automatic code generator referred to 
as stub compiler. The source language of such a tool is referred to as interface definition 
language. The marshalling code generated by these tools is often so inefficient that manual 
optimisation of time-critical sections of the code is required. 

Given that marshalling code is already automatically generated, it is interesting to 
investigate whether marshalling code can also be optimised automatically. In this paper, 
we describe the design, implementation and performance evaluation of an optimising stub 
compiler. 

The rest of this paper is structured as follows: Section 2 gives some basic definitions 
required for the understanding of the rest of the paper, and discusses related work. Section 
3 describes the design of the optimisation stage. For this, a prediction algorithm for auto­
matically finding "hot spots" is developed. Furthermore, a model for evaluating the cost 
and profit of optimisation alternatives is developed. Section 4 evaluates the performance 
of the "hot spot" prediction algorithm. Section 5 gives our conclusions. 

2 BASIC CONCEPTS AND RELATED WORK 

Marshalling fulfills roughly three different tasks: format conversion, linearisation and 
realignment. Format conversion is required to overcome differences in the data format 
(ASCII or EBCDIC character format, integer byte order, floating point formats). Lineari­
sation is required for data structures that are stored in non-contiguous memory sections, 
such as dynamically allocated tree structures. Realignment is required for the components 
of record or structure types, since different CPU's use different rules for positioning these 
fields in main memory. 

The different tasks are fulfilled by different parts of the marshalling code. Format con­
version is done by specialised algorithms that we will refer to as marshalling primitives. 
These algorithms depend on the particular conversion task at hand, and thus are best 
optimised individually. The optimisation considered in this paper concern the control 
code part of marshalling routines. This code sequences the application of the marshalling 
primitives to individual fields of a message, and also accomplishes the linearisation and 
realignment task. 

Three alternative implementation techniques are commonly used for the control code 
of marshalling routines- interpreted code, procedure-driven code (also referred to as com­
piled code) and inlined code (Chung, Lazowska, Notkin, & Zahorjan, 1989). These three 
techniques have a well-known size-speed trade-off. Interpreted code is compact, but slow, 
inlined code is fast but memory-consuming and compiled code lies somewhere in between 
these two alternatives. 

In order to determine the practical impact of the different code generation alternatives 
on communication time, we measured the execution time of a benchmark for each of the 
four type constructors av~ilable in the interface definition language ASN.1 (Steedman, 
1990). The Sequence type corresponds to a structure type in C. The Set type is a special 
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Marshalling U nmarshalling 
Interpreted Compiled Factor Interpreted Compiled Factor 

Sequence 15 Mbit/s 60 Mbit/s 4 11 Mbit/s 33 Mbit/s 3 

Set 15 Mbit/s 60 Mbit/s 4 7.5 Mbit/s 26 Mbit/s 3.5 

Choice 10 Mbit/s 24 Mbit/s 2.4 3.1 Mbit/s 18 Mbit/s 5.7 

Sequence Of 18 Mbit/s 52 Mbit/s 2.8 7 Mbit/s 11 Mbit/s 1.6 

Table 1 Impact of compiled and interpreted marshalling on throughput 

case of a structure where structure fields can be reordered before they are sent out on the 
net. The Choice type corresponds to a C union type. The Sequence Of type is equivalent 
to an array in C. In all experiments, the type definition contained ten integer values. 

Table 1 gives the throughput measured in these experiments for interpreted and com­
piled marshalling code. For each experiment, we report three values: the absolute through­
puts of interpreted and compiled code, and the factor by which interpreted code is slower 
than compiled code. The latter serves to eliminate system-dependencies inherent in the 
absolute values. All absolute numbers were measured on a Sun Spare 10, Model 40, using 
gee version 2.6.0, static linking and optimisation level 2 (02). The marshalling code was 
generated by the ASN.1 compiler Mavros (Huitema, 1991). 

From these numbers we see that the speed difference between interpreted and compiled 
marshalling code is significant. Compiled code is consistently faster than interpreted code 
by a factor of 1.6 to 5.7. Unmarshalling is always slower than marshalling due to the 
requirement for error-checking. Some of the numbers measured for interpreted code are 
not sufficient to saturate an Ethernet (10 MBit/s), and none of the alternatives can 
saturate network connections with higher throughputs such as FDDI (100 MBit/s) or the 
ATM configuration commonly used with workstations (155 MBit/s). 

We conclude that from a performance point of view the use of compiled marshalling 
code is preferable to the use of interpreted code. More importantly, the choice of the 
implementation technique for marshalling code can decide whether the installation of 
expensive high-speed network was worthwhile for speeding up a particular implementa­
tion. Installing an ATM network is of little use if the marshalling code of an application 
executes at Ethernet throughput. 

However, making marshalling code faster has the drawback of increasing its code size. 
Table 2 shows the difference in code size between interpreted and compiled marshalling 
code when generating marshalling code for four different applications whose interfaces 
are specified in ASN.l. X.400 is the e-mail protocol defined in the ISO-OSI protocol 
stack, Z39.50 is an information retrieval protocol, FTAM is the ISO-OSI protocol for file 
transfer, access and management, and X.500 is the ISO-OSI protocol defined for access 
to a directory service. The same configuration and compilers as in the throughput mea­
surements were used. The numbers include both the marshalling and the unmarshalling 



80 Part One Tools and Tool Support 

Interpreted Compiled 

X.400 9 KByte 37 KByte 

Z39.50 17 KByte 51 KByte 

FTAM 18 KByte 103 KByte 

X.500 18 KByte 137 KByte 

Total 62+8 = 70 KByte 328 KByte 

Table 2 Impact of compiled and interpreted marshalling on code size 

routines. The numbers in the "interpreter" column give the object size of the interpreter 
commands generated. The interpreter itself takes up an additional 8 KByte. 

As can be seen from the numbers in Table 2, compiled marshalling code takes up 
significantly more object code size than interpreted code. This becomes particularly clear 
when comparing the aggregate code sizes. The aggregate code size is important, since 
users generally run several different network applications in the background while using 
"local" applications such as word processors. 

With current stub compilers ((Zahn, Dineen, Leach, Martin, Mishkin, Pato, et al., 1990), 
(Corbin, 1990), (Huitema, 1991), (Sample, 1993), (Kessler, 1994), (O'Malley, Proebsting, 
& Montz, 1994)), the user of a stub compiler can only choose between one of the three 
points on the Space/Speed curve by setting a parameter for the implementation technique 
that the stub compiler should use when generating marshalling code. In practice, it ap­
pears more useful to enable the user to specify a bound on the maximum code size that 
should be used for marshalling code. This size may lie in between the code sizes resulting 
from using one of the three "pure" code generation techniques. The stub compiler can 
thus use more code space and thus produce faster code for meeting the user's code-size 
constraint than by simply generating interpreted code. The goal of generating execution­
time optimal code under a size constraint can be met by generating a hybrid between the 
different implementation techniques (Pittman, 1987). 

3 GENERAL MODEL FOR STUB OPTIMISATION 

3.1 Hybrid Marshalling Routines 

Many of today's stub compilers allow the user to influence the performance and the code 
size of the marshalling code for a particular application by choosing one of several code 
generation strategies such as function inline expansion for scalar types and procedural 
code or interpreted code for type definitions. However, once the user has fixed the code 
generation strategy, the stub compiler uses this strategy uniformly to generate marshalling 
code for all types in the input interface specification. 
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The realities of today's networking environments often require the implementation of 
high performance marshalling routines on a machine with memory size constraints. This 
requires a more flexible code generation strategy than available in current stub compilers. 
Instead of using the same strategy for all types, different code generation strategies should 
be used for different types, resulting in hybrid marshalling routines. 

Using a hybrid code generation strategy in a stub compiler is promising due to a general 
heuristic in computer science, the principle of locality or "80/20 rule". This principle says 
that programs spend a large part of their execution time in a small part of the program 
code (Knuth, 1971). Research on the optimisation of TCP transport protocol implementa­
tions has shown that this principle also holds for communication code: large performance 
improvements have been achieved by optimising only a small part of the implementation 
(Clark, Jacobson, Romkey, & Salwen, 1989). However, the TCP performance improve­
ments described are achieved by manual code optimisation. 

Automatic code optimisation requires a model of how optimisation decisions made by 
the compiler influence the code size and execution speed of the generated marshalling code. 
The selection of a code generation strategy for a particular type depends on all of the 
following three factors: (1) the frequency with which the type occurs at run-time, (2) the 
execution times of the marshalling routines for the different code generation alternatives 
and (3) the code size increase incurred by each of the alternatives. 

We develop the details of this model in the following sections. 

3.2 Basic Definitions 

For the following discussion, we define a generic type definition language. The language 
contains a set of scalar types such as integer or real types, and the following set of type 
constructors: (1) A structure defines a linear sequence of fields of usually different types. 
(2) A union defines alternatives between fields of usually different type. (3) An array 
defines a sequence of fields of the same type. 

The generation of optimised marshalling routines starts from an intermediate represen­
tation of the interface definition. We define the syntax graph of an interface specification 
to be a tuple {V, E} where Vis the set of nodes in the syntax graph for which an opti­
misation decision is required and E is a set of arcs representing the sequence in which the 
nodes occur in the interface specification. 

A syntax graph contains two different classes of nodes: type definition nodes and field 
nodes. Each definition of a constructed type in the interface specification corresponds to a 
type definition node in the syntax graph. Each type definition node has a name. Moreover, 
each type definition node is labelled by the type constructor of the type definition. 

Each field in a constructed type corresponds to a field node in the syntax graph. Field 
nodes are labelled by their class. A field node can be a constructed type (embedded type 
constructor), a reference to a pre-defined scalar type (scalar reference) or a reference to 
another type definition (type reference). 

A non-optimising stub generator will traverse the syntax graph once and generate mar­
shalling code for each node in the graph. The code generated for each node is determined 
by a fixed code template depending on the node's characteristics. For example, the code 
template for a structure type node might consist of a function call, followed by some 
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initialisation code specific to structure types, followed by a place holder for the code for 
the structure fields and terminated by procedure return code. 

An optimising stub generator must select one of several alternatives code templates for 
each node in such a way that the generated code fulfills a given optimisation criterion. The 
exact alternatives to be considered depend on the class of the node. For a type definition 
node, the compiler must decide whether interpreted or compiled code should be generated. 
For a field node, the compiler must decide whether the marshalling routine for the field 
should be written inline. 

3.3 Model Variables 

For formalising the optimisation problem occurring in the generation of hybrid marshalling 
routines, we define the following variables: S is the total size of marshalling code before 
optimisation, Sapt is the total size of marshalling code after optimisation, T is the total 
execution time of marshalling code before optimisation for a given workload and Tapt is 
the total execution time of marshalling code after optimisation for a given workload. 

The objective of optimisation is then to generate marshalling in a way that minimises 
Tapt under the constraint that Sapt does not exceed a given maximal code size. The values 
of Tapt and Sapt can be calculated using the nodes in the syntax graph. We define: 

• s; : Size of code template for node i before optimisation. 
• si-opt : Size of code template for node i after optimisation. This corresponds to the 

code duplication caused by the optimisation. 
• t; : Time for marshalling node i before optimisation. 
• ti-opt : Time for marshalling node i after optimisation. This corresponds to the overhead 

saving achieved by the optimisation. 
• f; : Execution frequency of marshalling code for node i for a given workload. 
• x; : x; = 1 if node i is optimised, 0 otherwise. 

With this, we have: 

n 

s LSi (1) 
i=l 

n 

Sopt L(X;Si-opt + (1 - x;)s;) (2) 
i=l 

n 

T 'L:!iti (3) 
i=l 

n 

Topt = L /;(x;ti-opt + (1 - x;)t;) (4) 
i=l 

The size/speed trade-off occurring when generating optimised marshalling code can be 
expressed as a 0-1 Knapsack problem (Martello & Toth, 1990). For this, each node i in 
the syntax graph is assigned a profit p; and a weight Wi as follows: 

(5) 
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(6) 

Substituting these equations into the general definition of a Knapsack problem results in 
the following optimisation problem: 

maximise: 

n 

L /j(tj- tj-opt)Xj (7) 
j=l 

subject to: 

" L_(s; - Si-opt)Xj :::; c (8) 
j=l 

It can be assumed that both the profit and the weight are positive numbers. A negative 
weight corresponds to an optimisation that does not increase the code size, and thus 
should be applied in any case. This case occurs for example when very small functions 
are written inline, since the number of instructions required for function linkage is higher 
than the number of instructions in the function body. A negative profit value corresponds 
to an optimisation that increases the execution time, which is impossible by definition. 

For solving the Knapsack problem, the stub compiler must have information on both 
profit and weight for each node. Both values must generally be estimated. One reason for 
this is that the stub compiler generates code in an application programming language. 
Thus, the final absolute code size and execution speed of the marshalling code depend on 
the machine code generated by the application language compiler. Moreover, the profit of 
an optimisation is a function of the frequency with which the optimised code is executed 
on run-time. This frequency will depend on the actual workload. Only estimates of this 
workload are available at the time the marshalling code is generated. 

3.4 Predicting Execution Frequencies 

Traditionally, execution traces have been used for finding program parts that can benefit 
from code optimisation ((Graham, Kessler, & McKusick, 1983),(Pettis & Hansen, 1990), 
(McFarling, 1991)). However, this approach makes code optimisation very time-consuming 
for the application programmer. The overhead is even higher when optimising a distributed 
program, since wo or more program modules must be optimised independently. 

Due to the practical problems with using execution traces, static control flow analysis 
has been proposed recently as an alternative approach (Ball & Larus, 1993). This work 
motivated proposals to use static control flow analysis for automatic fast path implemen­
tation in protocol code in general (Hoschka & Huitema, 1993) and to experiment with 
static predictors for marshalling code in particular (Hoschka & Huitema, 1994). 

Static control flow analysis of a syntax graph of an interface definition must determine 
two related values. For a type definition node T, we want to compute the number of times 
values of type Twill occur on run-time in order to decide whether the marshalling routine 
forT should be interpreted or compiled. For a field node f, we want to determine how 
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often I will occur on run-time in order to decide whether the marshalling routine for the 
field should be written inline or not. 

Intuitively, it seems clear that types that occur as fields of an array type will occur 
frequently, that structure fields that are marked as "optional" will not occur frequently 
and that types which are referenced frequently by other types will also occur frequently. 
In other words, the user already has given hints to the stub compiler which parts of the 
interface specification will be executed frequently, simply by the way in which the interface 
specification is written ! In the following, we will present an approach to formalise these 
intuitions and extract the frequency information from the interface specification. 

By analysing the control flow within a type definition, we can estimate the frequency 
with which each field contained in the type definition will occur in the values of the type. 
We define: 

• /; : frequency of the field node i in a given workload 
• It : frequency of the type definition node t containing field node i in a given workload 
• v; : the average number of occurrences of field i in all values of type t in a given 

workload, v; = It/ k We will refer to V; as the field frequency of i. 

For estimating v;, we use the following rules: 

• if field i is part of a union type with n elements, then v; is equal to 1/n or a user-defined 
value. 

• if field i is part of a structure type and field i is not marked as optional, then v; is equal 
to one. If field i is marked as optional, v; is equal to x, where x can be either a default 
value or a user-provided value between zero and one. As explained below, special care 
must be taken when calculating x in the case of recursive types. 

• if the origin of an arc is an array type, then the arc weight is equal to y, where y can 
be either a default value, a user-provided value or the array length of a fixed length 
array in the interface specification. 

For structure arcs that are marked as optional, we could e.g. choose a default value of 0.5 
in most cases. This means that by default there is a 50% chance that an optional field 
in a structure type will actually occur in a value of this type. The heuristic assumption 
that optional fields are infrequent is justified by the nature of protocol development and 
implementation: optional fields in an interface specification often arise due to factors such 
as staying backward compatible with a previous version of the application or resolving 
"political" conflicts within the group that develops the interface specification. In an im­
plementation of the application, only the mandatory components are guaranteed to be 
implemented. Optional components can be left out. 

Care must be taken, though, since most interface definition languages use optional fields 
for a second purpose, namely to indicate a recursive type definition. To arrive at a legal 
flow graph, it must be ensured that the flow along a recursive path is smaller than 1. 
Otherwise, the recursion would not terminate. Thus, an additional pass is required in 
the calculation of v; for distinguishing between these two different uses of the "optional" 
annotation by detecting loops in the type reference graph. 

Note that we allow for user-defined values to replace the heuristic predictions for fields 
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in union types, optional fields and array types. This way, the user can replace heuristic 
predictions by estimates of his own. This is usually only required for the types that 
represent message specifications. Pre-defined values can also be used by a general protocol 
compiler to communicate frequency predictions derived from a protocol control How graph 
to the code generator for marshalling stubs. 

A second level of control How is defined by the references between type definitions in an 
interface specification. We define the type reference graph of an interface specification as 
a tuple {V', (E', w)}, where V' corresponds to the set of all type definition nodes in the 
interface specification's syntax graph. E' is computed by locating all field nodes in the 
syntax graph that are type reference nodes, and adding an arc from the type definition 
node containing the type reference node to the type definition node that is referenced. 
w is an arc weight that corresponds to the value of v; of the field node at which the arc 
starts. 

The type reference graph can be interpreted as a Markov model. Type nodes correspond 
to the states of the Markov model, and arc weights to the transition probabilities between 
the states. Following an approach proposed in (Ramamoorthy, 1965), the graph can be 
mapped onto a set of linear equations that represents the equations for determining the 
visit counts of the nodes. This system can be solved to compute the frequency of each type 
definition node. By multiplying this frequency with the v; for each field, the frequency of 
the field nodes can be determined. 

3.5 Trading Off Interpretation and Compilation 

Due to space restrictions, we can only discuss automatic ways for an optimal trade-off 
between interpretation and compilation in this paper. The exact semantics of "interpreted 
code" and "compiled code" may vary from implementation to implementation. Generally, 
with interpreted code, the syntax graph of the interface specification is mapped onto a 
sequence of commands. With compiled code, the syntax graph is mapped onto a sequence 
of instructions in the application programming language. 

The problem of deciding between interpreted and compiled code generation can be 
modelled as a Knapsack problem. The items to be included in the Knapsack are all type 
constructors in the syntax graph. In the following, we give general formulas for calculating 
the execution time and the code size before and after optimisation. From these formulas, 
the local profit and weight for each optimisation can be derived. 

If a type constructor node is interpreted, one interpreter command is generated for the 
type constructor and one for each field node of the type constructor. Thus, for structure 
and union types, 1 + n commands are required, where n is the number of field nodes in 
the type constructor. Array types require two commands, one for the type constructor 
and one for the array element type. We assume that all commands have the same size, 
and define a to be the size of interpreter command. 

If compiled code is generated for a type constructor, the code templates of the con­
structor and all its fields are written to the marshalling code. The size of a code template 
depends on the label of a node. For example, different templates will be used for structure 
types and choice types. We define S(l) to be the size of code template for node with 
Iabell, and l(j) to be the label for node j. Table 3.5 shows the resulting size estimation 
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Type constructor node k 

structure (1 + n)a s(struct) + L: s(l(j)) 

union (1 + n)a s(union) + L: s(l(j)) 

array 2a s(array) + s(l(j)) 

Table 3 Formulas for estimating size of interpreted and compiled marshalling code 

formulas for all three type constructors. The index variable j in the sums runs over the 
fields of each type constructor. 

If a type constructor node is interpreted, the execution of each command incurs a certain 
interpretation overhead that depends on the exact implementation strategy chosen for the 
interpreter. Moreover, time is required for executing the code for marshalling the type 
constructor and each of its fields. 

We define I to be the interpretation overhead per command and t;(l) to be the execution 
time required for interpreted marshalling a node with Iabell. 

For a structure type, the marshalling code for the structure type constructor and all of 
the structure fields will be executed. For a union type, the marshalling code for the union 
type constructor and one of the union components will be executed. The average time 
for a union type constructor cannot be calculated without reference to the frequency of 
execution of each union component for a given workload. We define c = !;/ fJ where /; is 
the frequency of the union constructor node i and fj is the frequency for each component 
j of i in a given workload. 

Similarly, for a variable length array with field node j the exact execution time cannot be 
calculated without knowing how many array elements occur in the workload, i.e. without 
knowing fj . For a fixed length array, /; is equal to the array length. 

If a type constructor node is compiled, the execution time will be equal to the execution 
time for the code template for the type constructor plus the execution time for the fields. 
We define tc(l) to be the execution time required for compiled marshalling a node with 
Iabell, and l(j) to be the label for node j. 

Table 4 shows the resulting time estimation formulas for all three type constructors. 
The index variable j in the sums runs over the fields of each type constructor. 

In practice, not all the variables in the model have to be measured for a given stub 
compiler. For instance, in many cases the size of a code template will be related to its ex­
ecution time. This assumes that all calls to the code template will execute all instructions 
in the template, or at least that all calls spend the same fraction of time in the code tem­
plate. In this case, it may be sufficient to only measure the size of the code template, and 
take it as an estimate for the execution time t. Moreover, if the compiled code is derived 
in a systematic way from the interpreted code as described in (Pagan, 1988), the code 
templates used for scalar types in the compiled code and in the interpreter are identical. 

For solving the 0-1 Knapsack problem, we use an approximate algorithm which has 
the advantage over exact algorithms that it is easy to implement. Moreover, investing 
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Type constructor node k tk tkopt 

structure (1 + n)I + t;(struct) +I: t;(l(j)) tc(struct) +I: tc(l(j)) 

union 2/ + t;(union) + L;ct;(l(j)) tc(union) + L;ctc(l(j)) 

array 2/ + t;(array) + /jt;(l(j)) tc(array) + !Jtc(l(j)) 

Table 4 Formulas for estimating time of interpreted and compiled marshalling code 

much effort into making the Knapsack solution found by the algorithm accurate seems 
inappropriate, given that the values for weights and profits are also only approximations. 

First, items are sorted by their profit/weight ratio or profit per unit weight, i.e. so that 

(9) 

Then, items are consecutively inserted into the Knapsack in the order of this list, until 
the first item s is encountered that does not fit. 

We use a heuristic for improving this solution which is to continue going through the 
list items following the critical item and including each item that fits into the residual 
Knapsack capacity. This algorithm is known as Greedy algorithm for finding a solution to 
the Knapsack problem (Martello & Toth, 1990). 

4 PERFORMANCE EVALUATION 

4.1 Measuring Locality 

It is intuitively clear that some of the messages and types in the interface definitions of 
distributed applications will be used more frequently than others. This is because they 
accomplish the "real work" of the application. What remains to be shown is that this 
locality can be exploited to arrive at fast and compact marshalling routines. This is 
not immediately clear, since it might be the case that nearly all types of the interface 
specification are used in the most frequently used messages. In this case, many types of 
the interface specification would have to be optimised, and the difference in code size 
between full optimisation and optimisation taking into account the locality of interface 
usage would be negligible. Ideally, we should find that by using our optimiser we arrive at 
marshalling code that is nearly as fast as fully optimised code, but requires only a small 
fraction of the size of fully optimised code. 

For evaluating the impact of locality on the code size and the execution time, we 
repeated the experiment used for validating the accuracy of the size estimate for compiled 
code. In these experiments, we used varying values for the compiler switch c, which is 
defined as the ratio between the optimised code produced by the compiler and the code 
size when maximal optimisation is used, i.e.: c = lOOSopd Smax Figure 1 shows the results 
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Figure 1 Locality in X.400-Pl (left) and Z39.50 (right) benchmarks 

of these experiments for the X.400 Pl and the Z39.50 benchmark. On the x-axis, we give 
the size measured for each value of c. On the y-axis, we give the number of calls to the 
interpreter that are eliminated by generating compiled code. This serves as an estimate 
for the time saving achieved by the optimisation. 

For both benchmarks the locality in the message use impacts code size and execution 
time. When 25% of the maximal code size for compiled code is invested, 68% of the 
interpreter calls can be eliminated in the case of X.400, and 55% of the interpreter calls 
can be eliminated for Z39.50. Investing 50% of the maximal code size eliminates 94% of 
the calls in X.400, and 87% of the calls in Z39.50. The maximal code size measured for 
these benchmarks is relatively low. However, it should be remembered that the numbers 
reported in these measurements are for two applications only. The object code size required 
for the full set of Mavros-generated routines can reach up to 1.5 MB when running X.500, 
FTAM, Z39.50 and X.400 in parallel on a Spare system. 

4.2 Validating Automatic Frequency Prediction 

We compare the manual frequency estimates with the performance of three different 
prediction heuristics: 

• Type reference heuristic: Using this heuristic, the number of times a type T is refer­
enced by another type is used for predicting T's frequency. For this purpose, the field 
frequency of all optional fields and the length of all array types is set to one. 

• Optional heuristic: This heuristic refines the type reference heuristic by taking into 
account that types referenced by optional fields will occur less frequently than types 
referenced by non-optional fields. Using this heuristic, the field coefficient for optional 
type references is set to a value lower than one. In our experiment, we use the value 
0.5. All array types are assumed to have a length of one. 

• Array heuristic: This heuristic assumes that the array fields dominate the distribution 
of fields. 

Therefore, the length of arrays is set to a value higher than one. In our experiment, we 
use the value two. 
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Figure 2 compares the results of the manual frequency prediction with each of the 
prediction heuristics in turn for the X.400 benchmark. We start with analysing the global 
quality of the heuristic predictions when compared to the manual prediction. By looking 
first at the most frequently used types to the left of the graphs, we see that in all heuristics 
the most frequently used two types are predicted with excellent accuracy. For the types 
that are never used that show up to the right of the figures, all prediction heuristics have 
an error, since they cannot predict that a type's frequency will be equal to zero. 

The most severe error is introduced by the array heuristic. With this heuristic, a type 
that is never used in practice is put into the top 20% of the most frequently used types. 
This is because the experiment with the array heuristic did not take into account optional 
field references. Setting the coefficient for type references in optional fields to a lower value 
alleviates this problem. In contrast, repeating the experiment with an optional coefficient 
of 0.5 and an average array length of 5 had the effect that the type in question was 
predicted to be the most frequently used type in the X.400 specification. 

This shows that at least for X.400 Pl the assumption that many types will be transmit­
ted as fields of an array does not hold. This is in contrast to standard hypotheses used in 
general program optimisation, which concentrates on loops, i.e. components in the control 
flow graph that are used repeatedly such as arrays. In X.400, the definition of an array 
type does not necessarily mean that an array will actually be transmitted. Array types 
are used rather to indicate that the arity of a field can be bigger than one, even when it 
is equal to one in most practical cases. 

Using these experimental results, we can estimate the efficiency of the optimised code. 
The interesting question is how many of the values that occur on run-time are mar­
shalled by optimised code. Assume that optimised code is generated for 20% of the type 
specifications in X.400. From Figure 1 we can calculate that in this case between 61.5% 
(Type reference heuristic and Optional heuristic) and 57% (Array heuristic) of the types 
occurring dynamically would be marshalled by optimised code. 

The excellent prediction results for type frequencies in X.400 Pl are due to the fact that 
electronic mail envelopes contain a "central" data type, i.e. the e-mail address. Addresses 
are contained in many places of the envelope: in the sender field, in the recipient field 
and in the array tracing the message's route through the e-mail transmission system. 
Consequently, the types making up the address fields are referenced by many other types. 

Remember that the speedup achieved by optimising the marshalling code for a partic­
ular type definition is a product of the frequency of use and the complexity of the control 
flow through the type definition. Thus, if for example X.400 e-mail addresses would consist 
of a single integer type, the speedup of using the predicted frequency to guide the appli­
cation of optimisations would be low. However, complex end user-oriented applications 
where the size of marshalling routines becomes problematic generally often also have com­
plex "central" data types. Examples of such types are the "record" type used in Z.39.50 
for transmitting the results of a query, and the "directory name" type used in X.500 for 
transmitting the results of a directory lookup. We also applied static frequency prediction 
to X.500 and Z39.50, and found that the "central" data structure always ended up in the 
top 20% of the most frequent types. 
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Figure 2 Experimental results of comparing prediction heuristics (X.400 Pl benchmark) 

5 CONCLUSIONS 

The results presented in this paper support the following three key insights: 

• Marshalling code exhibits locality. For many applications, a large fraction of the speedup 
achieved by fully optimising the marshalling code can be achieved by optimising only 
a subset of the types in the interface specification. The reason for this is that some of 
the types defined in an interface specification are used far more frequently than others. 

• Locality can be detected by static control flow analysis. The number of times that a 
particular type in an interface specification will be used on run-time can be determined 
by mapping the type reference graph of the interface specification onto a system of 
control flow equations. Used in conjunction with a set of simple heuristics, the solution 
of these equations gives the frequency of each type in the interface with very good 
accuracy. 

• The size-speed trade-off can be solved using a Knapsack optimisation model. The prob­
lem of selecting the subset of types of an interface specification that should be optimised 
given a constraint on the maximal size of the marshalling code can be modelled as a 
classical optimisation problem (Knapsack problem). 

An experimental evaluation of this approach on a set of benchmarks for trading off in­
terpreted and compiled code showed that by investing 25% of the code size required by 
fully optimised code, 55% to 68% of the interpreter calls could be eliminated. Increasing 
the code size investment to 50% of the maximal code size resulted in saving 87% to 94% 
of all interpreter calls. 

Our results on the optimisation of marshalling routines point to several interesting 
areas for future research: the development of distributed system benchmarks and the 
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application of control flow graph analysis to general protocol automata specified in a 
formal description language. 

One of the main difficulties we faced in our work was finding benchmarks that are 
suitable for evaluating our proposed optimisation techniques. There is a pressing need for 
defining benchmark distributed applications that can gain a similar widespread acceptance 
as the SPECmarks for non- distributed applications. This would facilitate immensely the 
further investigations into compiler optimisation techniques for distributed software. 

The idea of using control flow analysis for finding points of locality in an interface 
specification can be extended to the analysis of a full protocol automaton. This is because 
from the point of view of compiler construction, a protocol automaton is nothing else but a 
control flow graph. Automating this optimisation is particularly interesting if the protocol 
automaton is itself derived automatically by a tool. This can be done starting from a 
high-level specification of the synchronisation requirements of a distributed application in 
a formal description language such as Estelle (Budowski & Dembinski, 1988), SDL (Belina 
& Hogrefe, 1989) or Esterel (Berry & Gonthier, 1992). Work in this direction has been 
started (Castelluccia & Hoschka, 1995). 

In summary, the work presented has shown that it is possible to automate the op­
timisation of marshalling code, and has pointed out ways for automating general com­
munication code. It was found that adding an optimisation stage to an automatic code 
generator of communication software is worthwhile, and adds considerable leverage to the 
optimisations implemented in standard application language compilers. This is because 
an optimiser implemented in a stub generator has access to the domain- specific semantic 
information expressed in the special-purpose languages used to formally specify the com­
munication software. Therefore, a stub compiler can make more informed optimisations 
based on domain-specific heuristics than a compiler for a general-purpose language. 
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