
31
From LOTOS to Petri Nets through
!expansion

D. Larrabeiti, J. Quemada, S. Pavon
Technical University of Madrid
Department of Telematic Engineering, ETSIT
Ciudad Universitaria s/n, 28040 Madrid, Spain
email: { dlarra, j quemada, spavon }@di t. upm. es

Abstract
The interleaved expansion presented in [QLP93] is a method to compute and represent the
global events of a system preserving parallelism. As a side effect, this method provides
important advantages in the technology of translation from LOTOS to Petri nets over
static (direct) transformations and opens a simple process algebra form of representation
for an important class of Petri nets. This work presents an algorithm that maps ITcalulus
elements into labeled Petri nets and gives a comprehensive overview of different aspects of
the translation from LOTOS to Petri nets using this intermediate form of representation.

Keywords
FDT-based system and protocol engineering, LOTOS, Petri nets, Extensions of FDTs

1 INTRODUCTION

Many approaches exist searching for efficient execution models for LOTOS [IS089] both
for automatic derivation of prototypes and for symbolic validation. The most straightfor­
ward is the EFSM obtained by expansion tools [QPF89]. However, although the analysis
and execution of an EFSM is far less complex than any equivalent representation on con­
current models, in practice EFSMs of most real systems have a size too big to be used in
verification or as run-time engine models for prototypes. This problem has opened several
paradigms around EFSM exploration - mainly classical testing and on-the-fly methods of
verification - and about EFSM representation - namely reduction theory, compositional
minimization, compressed representation of EFSMs such as BDDs, etc-.

At the other end of the rope of execution models, there is LOTOS itself. In between,
there is a variety of forms of representation product of transformational approaches which
attempt to reduce the complexity of LOTOS at compilation-time. Examples of these
forms of representation and execution, to cite but a few contrasted with known tools,
are: execution kernels based on native LOTOS [MS92], communicating state machines
[Kar88], locally expanded processes [Kre94], etc.

R. Gotzhein et al. (eds.), Formal Description Techniques IX
© IFIP International Federation for Information Processing 1996

486 Part Eight Extensions of FDTs and Semantical Foundations

One of these alternative models can be Petri nets due to its well-known properties
and the nice trade-off between compactness and complexity they provide. In fact, the
corresponding Petri net representation of a LOTOS specification usually has a reasonable
size, quite close to the original specification, and it includes all global events of the system.
Furthermore, it is well known the feasibility of prototype execution on Petri nets e.g.
[LDdlP+93].

From the protocol design viewpoint, the automatic translation from LOTOS to Petri
nets is specially interesting in multi-FDT design environments where both description
techniques must cooperate so as to take advantage of the specific good feature of each
technique most suitable at each stage of the design process. This is particularly im­
portant in a top-down design methodology with Petri nets based prototypes as target
[LDdlP+93]. By this way, one can take advantage of the high level design features of LO­
TOS -compositionality, abstraction, correctness preserving transformations, .. - in a first
phase, and then benefit from the lower level properties of Petri nets, mainly executabil­
ity, making use of a wide range of available PN tools, and even apply true concurrency
semantics

However, the technology of execution of LOTOS specifications on net-based models
seems to go behind LOTOS-based prototype execution, due to considerable constraints
in the domain of the transformation (mainly, static control constraints) and the static
nature of existing translations [ML89] [GS90] [SV95].

In [QLP93] it was pointed out the strong relationship between IT calculus and Petri nets.
Furthermore, ITcalculus can be considered as a process algebra representation of a large
family of Petri nets. In the following sections, the most complex aspects of the translation
from LOTOS to Petri nets are presented and how this operation can be simplified by using
the interleaved expansion as a previous step. The added-value of using the interleaved
expansion for LOTOS to Petri net translation is the dynamic nature of this transformation
which presents several advantages over existing works, as discussed in section 5.

2 LOTOS AND PETRI NETS

No strict equivalence between Petri nets and LOTOS models exist. It is only possible
to translate a subset of LOTOS expressions into a certain class of Petri nets, although
most practical specifications with a bounded number of processes and events fall in this
category. The type of semantics adopted is not relevant as long as all the parallelism of
the original specification is thoroughly preserved. Anyway, a vast work exists on Petri
nets using interleaving semantics e.g. [Rei85] [Rei87] [Roz87], especially on reachability
analysis.

It is known that the description of concurrency in LOTOS presents a certain resem­
blance with the one of the Petri nets refered above. AND-nodes in Petri nets (transition
with several input arcs) have their counterparts in LOTOS synchronizations, LOTOS
choice can be expressed as OR-nodes (places with several output arcs), etc. The main
difference is that Petri nets display the global events of the system, not explicit in LO­
TOS. In this sense, LOTOS provides a higher level of abstraction -may be closer to the
way the designer structures and implements his concurrent systems- and allows to design
separately each concurrent thread and use multiway rendez-vous as interprocess commu-

From LOTOS to Petri Nets through !expansion 487

LPN(B2)

Figure 1 LOTOS, ITcalculus, !expansion , Petri Nets

nication mechanism. Furthermore, LOTOS potentially allows a richer variety of types of
process interactions. On the other hand, the classic procedure to obtain the global events
of a LOTOS specification is by means of the application of the Expansion Theorem, which
most times is an unfeasible path in practice.

There are a few factors which determine the quality of a translation from LOTOS to
Petri nets and the scope of LOTOS specifications which can be converted. T hese are:
l.Preservation of Parallelism, 2.Gate relabeling, 3.Process instantiation and recursion,
4.Data types and 5.Disabling. We shall review these items in detail in section 5 in order
to compare results with previous works.

From the previous discussion, it can be drawn that it should not be difficult to find a
translation from LOTOS to Petri nets but for the fact that a lot of information about the
global events of the specification is "hidden" by the LOTOS semantics. Figure 1 describes
the approach proposed in this work, in which a LOTOS behaviour B1 is transformed by
the interleaved expansion into an equivalent iexpanded form B2 which can be mapped
onto a Petri net LPN more easily since B2 contains all the dynamic semantics informa­
tion required for this purpose. Section 3 give a description of the domain of the latter
transformation before defining function LPN(B) itself in section 4.

3 INTERLEAVED EXPANSION

3.1 Concept

The Interleaved Expansion [QLP93] - abbreviated !expansion - is a transformation that
takes as input a LOTOS behaviour and yields an equivalent (strong bisimulation) be­
haviour expression in a new calculus called IT calculus (centre of figure 1) . We shall call
this resultant expression the iexpanded form of the original specification.

The most interesting property of the iexpansion is it s ability to factor out and isolate
the interleaving zones of a LOTOS behaviour, avoiding the application of those rules of
the Expansion Theorem of LOT OS (IS089] which provoke state or transition explosion:
namely those that derive interleaving actions in parallel operators or actions from the first
operand of disabling operators.

The purpose of the interleaved expansion is the computation of all the global events
of a system and represent them once, jointly with the inter-event relation (precedence,
conflict, disabling, ..). Thus, it is not a classical expansion in the sense that it does not
construct an EFSM in which states are explicit and one system event is represented by
as many transitions as states can trigger it. However, it has many common features with

488 Part Eight Extensions of FDTs and Semantical Foundations

expansions due to its dynamic nature: all synchronizations are computed and the data
value exchanged in them is replaced in the subsequent behaviour to compute next syn­
chronizations, predicates get evaluated, hiding and gate relabeling are removed, it accepts
parameterization, etc. Only parallelism is preserved, like in Petri nets or event structures,
but following an approach based on extending LOTOS, therefore taking advantage of the
efficiency of these true concurrency forms of representation from the LOTOS standpoint.

The representation of the output of the iexpansion in the process algebra domain is
possible thanks to ITcalculus. ITcalculus is a subset of LOTOS enriched with three new
elements that jointly allow to preserve independence of processes, to do without non­
interleaving parallel operators and to express a multievent precedence relation.

These elements are IT operator, continuations and terminations. The intuition behind
these elements is the following. A LOTOS expression can be expressed as an ITcalculus
expression headed by an IT operator IT(B, Cs). Its first operand, B, is the active be­
haviour which may derive either normal actions or terminations, that are special events
filtered out by the IT operator and whose only utility is enabling real actions from the
continuations. The second operand,Cs = UeEC < c >Be, the continuation set, is a set of
behaviours labeled with the names of the terminations < c > which must be offered in the
active behaviour in order to enable its attached behaviour Be. This idea is illustrated by
the following simple example.

Example 31 Let B =a; d; stopj[d]jb; d; stopj[d]jc; d; stop. The execution of events a, b
and c is independent, but all of them must precede d. This can be expressed in IT calculus
as

Iexpansion(B) = B1 =IT(a; 1jjjb; 2jjjc; 3, { < 1, 2, 3> d; stop})
where 1, 2, 3 are terminations used to label the local states whose composition enables a

synchronized action. This can also be read as our system has an active behaviour in which
three independent events can be executed concurrently; if the system evolved to a state in
which there were three processes in a local state < 1, 2, 3 > then d would be enabled, and
the involved behaviours would become stop. Any order of execution leads to the state in

which d is enabled.e.g. B1 ~ IT(1jjj2jjj3, { < 1, 2, 3 > d; stop}) --i... stop
The number of terminations labeling the continuation denotes the cardinality of the

synchronization. 0

3.2 Notation

The symbols used to represent universal sets and variables over their sets and their ele­
ments are the following:

• N is the set of natural numbers.
I, .J, K, M, N C N arbitrary index sets.
i,j,k,l EN indexes.

• B superset of behaviour expressions.
BwTos and Bn respectively denote the universe of LOTOS and IT calculus expressions
when it is necessary to make such distinction. The syntax and semantics of these
expressions are defined in section 3.3.
B, Bn, B', Bn', B" E Bare variables over behaviour expressions

From LOTOS to Petri Nets through /expansion 489

e T C N is the alphabet of terminations.
c, c', Ci E P(T) are finite termination sets.
C, C', Cn, ... C P(T) sets of termination sets.
n, m, n', ni, mi, .. E T are variables ranging over termination labels. In IT calculus, the
terms termination and termination label can be used indistinctly.

e £ is the vocabulary of non-termination event names.
A, A', An C £ will represent finite gate sets.
g,g',gn E £,gate names, visible event labels. They stand for alphanumeric strings of
finite length.

• W = £ U T alphabet of event labels (terminations and non-terminations)
W, W', Wn stand for event labels sets.
w, w', .. , Wn E Ware event labels.

• Cs, Cs1, Cs2 C P(T) x B continuation sets.
Each continuation is characterised by its first component: a termination set, that labels
the continuation. i.e. VCs E B, V(ch B1), (c2, B2) E Cs : c1 = c2 => B1 = B2.
The sin tax chosen for the pairs (c, B) in IT calculus is < c >Be. Therefore, the continu­
ation sets are represented : Cs = UeEC < c > Be.

e LiE! Bi is used as a generalised choice operator. LiE{Ln} Bi = B1 [] ... [] Bn.
Note that LiE{} Bi = stop.

• L(B) is the set of visible event names of a behaviour B. L: B-+ £
T(B) is the set of terminations of B. T: B-+ T

e P superset of Petri net places.
P, P', P n stand for event place sets.
p, p', Pn E P represent places and t, t', tn Petri net transitions.
et represents the set of input places to a transition t. te is the output place set of t.

3.3 ITcalculus

For the sake of clarity in the presentation, we shall consider only the ITcalculus image of
LOTOS without data types and disabling. The inclusion of these elements would simply
add extra verbosity and a little more complexity in the calculus, without any new concepts
in exchange. These elements are reviewed in section 4.

Definition 1 Syntax of ITcalculus . Table 1 summarizes the syntax of !Tcalculus.
The first part of this table is practically common to the language accepted as input for the
iexpansion. The second part contains the three new elements: terminations, continuation
set and IT operator.

0

Note that only interleaving rules of LOTOS parallel operators are present (A4.1, A4.2)
since the iexpansion computes all the synchronizations of the specification. IT calculus ex­
pressions resulting from the iexpansion have the additional syntactical constraint that i)
terminations only appear in behaviour expressions that are arguments of an IT operator
and ii) continuation sets can only be the second operand of an IT operator. The inter­
leaved expansion produces a single IT operator which heads the iexpanded form. That is,
Iexpansion(B) = IT(B1, Cs).

490 Part Eight Extensions of FDTs and Semantical Foundations

Operator Syntax L(B) T(B)

Inaction stop {} {}
Action Prefix g;B L(B) u {g} T(B)
Choice B1[]Bz L(BI) U L(Bz) T(B1) U T(Bz)
Parallel B1IIIBz L(B1) U L(Bz) T(B1) U T(Bz)
Process Instantiation proc_name[gl] L(B)

where
process proc_name[gl] :june:=
B

endproc

Termination n {} {n}
Continuation Set { <cl>Bci , .. ,<cn>Bcn} UcE{ c1 .. cn} L(Bc) UcE{CJ .en} T(Bc)
IT IT(B, Cs) L(B) u L(Cs) {}

Table 1 Syntax of ITcalculus

Definition 2 IT calculus semantics is defined as a LTS (Labeled Transition System)
which is obtained by the application of the inference rules listed in table 2 to an IT calculus
behaviour expression. 0

Rule A5.2 formalizes the concepts introduced in section 3.1. Terminations labeled by
natural numbers n1, .. ,ni identify local states which enable real transitions present in a
set of behaviours labeled < n1, .. , lli >. Since terminations only appear within an IT, the
transition system will never have terminations as transitions, because A5.2 filters them
out. After a transition has been triggered out of a continuation, the remainder of the
active behaviour still interleaves.

Example 32 Let B = a;y;d;stop I [y] I b;y;z;e;stop I [z] I c;z;f;stop

its interleaved expansion yields
B'= IT(a;llllb;2lllc;3, { <1,2>y;(d;stoplll4), <3,4>z;(e;stoplllf;stop)}

The behaviour following an action of a continuation contains the resumption of all
interrupted processes. The escape through a continuation does not affect the processes

that do not take part in the synchronization. Thus e.g. B' ~ IT(d; stoplll4lll c; 3,{ .. })

0

3.4 Interleaved Expansion

This work only defines ITcalculus. We shall assume that there exists a transformation
which generates the iexpanded form of any LOTOS behaviour expression and hence is
capable of removing all operators not defined in IT calculus from the original specification
(hiding,relabeling,let,synchronizations,etc.). The reader is referred to [QLP93] for a de­
tailed definition of the interleaved expansion for a subset of basic LOTOS and to [Lar96]
for a definition for full LOTOS.

From LOTOS to Petri Nets through /expansion 491

Action prefix Al g; B -.£.. B

Termination A2 n ~ stop

Choice B1
w B I Bz

w Bl
A3.1

_____, l A3.2
_____,

2
B10B2 ~ B1 1 B10B2 ~ B/

Bl
w Bl Bz

w Bl
A4.1

_____, l A4.2
_____,

2
B1IIIB2

w
B1 1IIIB2

w
B1IIIB21 _____, B1IIIB2 _____, Parallel

IT A5.1
B __.£., B I

A5.2

Table 2 LTS(B). Transition System of ITcalculus.

As shown intuitively in the examples, what the interleaved expansion does is pruning
the original behaviour and setting on it terminations to tag local states enabling synchro­
nized events. These references allow to index and build the continuations that contains
the events resultant from each synchronization. This procedure is repeated in every new
continuation until all synchronizations are contained in the global continuation set.

3.5 Duplicate behaviour detection

According to all previous works it can be claimed that the most difficult issue to deal with
- and thereby important- in the translation from LOTOS to Petri nets is the conversion
of recursion. Therefore, it is worth explaining how the interleaved expansion deals with
this problem.

The compositionality of LOTOS makes it possible to speak about processes and pro­
cesses made up by the composition of processes. One way to formalise and refer to each
possible composition of processes in a LOTOS specification is by means of the concept
of synchronization context. From a generic context we can obtain information such as:
synchronization set, gate relabeling function, hiding set, values of variables, etc. In par­
ticular, for the definition of interleaved expansion for the subset of LOTOS chosen is

492 Part Eight Extensions of FDTs and Semantical Foundations

enough to know the structure of parallels of the context. We shall call this information
synchronization context and it will allow us to identify and refer to different zones in the
structures of processes in the specification. In order to formalise this in a simple way we
shall define the following concepts:

Definition 3 Parameterized behaviour expressions . Let C be the superset of be­
haviour expressions resultant of extending BLOTOS with free variables over BLoTOS· Ex­
pressions in C will be called parameterized behaviour expressions. C[p1 , •. , Pn] E C stands
for a behaviour expression parameterized by variables p1 , .. , Pn· 0

Definition 4 Context. Two types of parameterized behaviour expressions are of par­
ticular interest: the ones with only one parameter, also known as LOTOS contexts [IS089],
and the subset of these which presents only one occurrence of its parameter, which will
be denoted by C11 . We shall use the term context to refer to expressions C[p] E C11 . 0

Definition 5 Void Context. Let p be a variable p E Cu; we say that C[p] =pis the
void context or identity context. 0

As mentioned before, we shall use contexts to identify different zones in the dynamic
structure of parallel operators in the specification. Thus, C[p] = p, the void context, iden­
tifies the global process defined by the specification; C[p] = stopi[A]Ip represents the syn­
chronization context that characterizes the right operand of paralleli[A]I, etc.

Each synchronization context defines a local state subspace in which it is possible to
perform a duplicate behaviour detection, etc. Note that no difference is made between the
contexts of B2 and B4 in Bli[Al]I((B21[A2]1B3)[](B41[A2]1Bs)) (or likewise between B3 and
Bs)

The procedure to deal with recursive LOTOS behaviours is analogous to the one used
in the normal expansion. In outline, the expansion stores global states visited in depth­
first order after having been compared -syntactical comparison of behaviours except for
variable renaming- with the ones already visited [Pav90J. When a duplicate state is found,
its expanded behaviour -whose expansion may not be complete- is reused using the basic
mechanism provided by LOTOS for reutilization: process instantiation and definition.

In the interleaved expansion, that method is essentially valid, but within synchronization
contexts instead of in a single global state space. This means that the detection of duplicate
behaviours is performed in disjoint sets of compound states (ranging from compound states
made up by one process (local states), a subset of processes, to all of them (global states)).

As the space necessary to perform a duplicate behaviour detection is proportional to
the number of behaviours stored, the memory consumption depends upon the degree
of interleaving in the specification. If the specification is a strongly interleaved one, the
memory used should match the sum of sizes of each process local state space, much less
than the size of the global state space, proportional to the product.

A natural question arisen is, what happens with identical compound states but in
different synchronization contexts ? The answer is that omitting the detection of this
kind of recursion does not influence whether the iexpansion is terminating or not. Indeed,
the behavioural causes for non-expandibility are: unbounded unguarded recursions and
unbounded dynamic composition of processes. The former hinder the computation of a

From LOTOS to Petri Nets through /expansion

(a)

of optional detection if bounded recursion

of optional detection

of compulsory detection

(b) (c)

Figure 2 Types of duplicate behaviours detection according to their contexts

493

state in any expansion; the latter obstruct terminateness of state exploration algorithms
and are always due to recursions through different synchronization contexts.

Figure 2 shows symbolically the different types of recursion identified according with its
incidence in the terminateness of the expansion and iexpansion w.r.t. the parallel operator
(a), disabling (b) and enabling (c). Shaded zones represent different synchronization con­
texts. The current definition and implementation of the interleaved expansion presented
here does not detect potentially divergent recursions (depicted in continuous trace). The
synchronization constraints and data values will determine dynamically whether the re­
cursion actually causes infiniteness or not.

In outline, the consequences of not detecting duplicate behaviours in disjoint contexts
are
• either it does not affect the termination of the algorithm(although in some cases can

be optionally performed to improve performance), or the behaviour is divergent and
hence the expansion is not possible anyway.

• independence of code among processes is achieved. Each concurrent thread gets its own
subset of processes. This enables an homogeneous translation from IT calculus to Petri
nets, just by replacing process instantiations with the Petri net equivalent of its process
definition, preventing different tokens from sharing places.

4 FROM ITCALCULUS TO PETRI NETS

Once defined ITcalculus and described the way the interleaved expansion deals with re­
cursion, the translation of a LOTOS specification to a Pet ri net can be notably simplified
if performed on its iexpanded form and, it can provide less redundant nets. All transitions
in the iexpanded form are already computed without expansion and all of them are actual
transitions, not potential transitions like in a static translation. There are less elements
to be translated: hiding, relabeling, enabling, synchronization, local definition, gate sum­
expression, par-expression and most guards, predicates and value choices are resolved in
an iexpanded form. Finally, an important subject stated in section 3.5, recursions are
computed over disjoint contexts, and thus resultant nets will be contact-free and one-safe
with little effort.

494 Part Eight Extensions of FDTs and Semantical Foundations

4.1 Translation

Let us give a brief definition of a translation from ITcalculus (without disabling and
data types) to Petri nets. The class of Petri nets chosen as target for the translation are
contact-free one-safe Petri nets, where arc weights are binary and places have one token
utmost. Each token will represent a concurrent thread. Petri net transitions will be labeled
with the event names from an alphabet £ in order to yield a labeled reachability graph
using interleaving semantics, which should be equivalent to the LTS generated by the
LOTOS expression. Places originated by terminations are labeled with the corresponding
termination identifier (in fact, local states), but this labeling can be removed at the end.

Definition 6 Labeled Petri Net is a graph with two types of nodes alternated: places
-which may have associated one token- and transitions, which may be labeled. It is rep­
resented by a tuple LPN =< P, T, F, Po, LT, Lp > where

• P C P is a non-empty finite set of places.
• T is a finite set of transitions.
• F ~ (P x T)U(T x P) is the set of arcs.
• Po ~ P is the set of initially marked places.
• LT : T -• £ is a function to label transitions.
• Lp : P -> ./If is a function to label places.

Its semantics is defined by
LT(t)

et ~Po ===? < P, T,F, Po, LT, Lp >---+ < P, T, F, (Po- et)Ut•, LT, Lp > 0

We do accept the case of a net with an empty set of transitions to represent the LOTOS
behaviour stop. Other authors [ML89] translate stop as a net transition, what hinders
a natural interpretation of the equivalence B[]stop = stop (B would be disabled by an
inexistent transition).

The translation ITcalculus to Petri nets is defined by function LPN table 3 case AO.

The equivalent Petri net of a subexpression of an iexpanded form headed by any operator
is constructed by composition of the subnets of its operands. AI through A 7 in table 3
define the translation of each operator.

Definition 7

e Let Place be an arbitrary injective function that assigns a different place to each
behaviour in a given synchronization context (definition 4):
Place : Cn x Bn ---+ P

e Let Trans be an arbitrary injective function that assigns a different transition to each
behaviour in a given synchronization context:
Trans : C11 x Bn ---+ T 0

On Recursive behaviours
An implementation of function PN should interpret case A 7 (table 3) as a rule that only
applies if PN(C[x],proc_name[gl]) has not yet been computed. Otherwise, the algorithm
would not finish on recursive behaviours. This would imply adding a new parameter

From LOTOS to Petri Nets through /expansion

AO LPN(B)

Al PN(C[x], stop)

A2 PN(C[x], e; B')

A5 PN(C[x], n)

= PN(x, B)=< P, T, F, Po, LT, Lp >, x E C11

= < {p},{},{},{p},{},{}>
where p = Place(C[x], stop)

= < {p}UP',{t}UT',FUF',{p},(t,Label(e))ULT,L~ >
if Label(e) f- 6
where
t = Trans(C[x], e; B')
p = Place(C[x], e; B')
PN(C[x], B') =< P', T', F', P~, LT, L~ >
F = {(p, t)UUp,EP~ {(t, p;)}}

= < P1UP2, T1UT2, F1UF2, PrnUPo2, LT1ULT2, Lp1ULp2 >
where
PN(C[xJIIIstop, B1) =< P1, T1, F1, Po1, LT1, Lp1 >
PN(stopiiiC[x], B2) =< P2, T2, F2, Po2, LT2, Lp2 >

= < P, T, F, P 0 , LT1ULT2, Lp1ULp2ULp12 >
where
PN(C[x],Bl) =< P1,T1,F1,P01 ,LT1,Lpl >
PN(C[x],B2) =< P2,T2,F2,Po2,LT2,LP2 >
Po= {p;j E P I (i,j) E Po1 >< Po2 II p;j tf_ P1UP2}
P = (P1- Po1)U(P2- Po2)UPo
T = TIUT2
F = (F1- Fol)U(F2- Fo2)UF12
Fo1 = {(p, t) E F1 I p E Pod
Fo2 = {(p, t) E F2 I p E Po2}
F12 = {(pu, t) ~Pox T I (i, t) E F01 v (j, t) E Fo2l
Lp12 = {(P;j, n) ~Pox N I (i,j) E Po1 x Po2 II

((i,n)ELPl V (j,n)ELp2)}

= < {p},{},{},{p},{},(p,n)>
where p = Place(C[x], n)

A6 PN(C[x],IT(B!,UeEC <c>Be) = < P,TlUUcECTe,FlUUeF~,Pol,LTlUUeECLTe,LP >
where

A 7 PN(C[x], proc_name[gl])

P = P!Ue((Pe- {poc})UP~cJ
Lp = Lp]UUeECLPe
PN(C[x],BJ) =< P!,T!,Fl,Po1,LT1,LP1 >
and, for each c = {nt, ... , nm}
PN(C[x], Be)=< Pe, Te, Fe, {Poe}, LTe, Lpe >
since Be = L:i gi; Bi
P~e = {p E P1UeECPe I Lp(p) E c}
Toe= Poe•
Foe= {Poe} X Toe= {(p, t) E FeiP =Poe}
F~ =(Fe- Foe)U(P~e x Toe)

= PN(C[x], B)
where process proc_name [gl]:func:= B endproc

Table 3 Equivalent Petri net of an ITcalculus expression B

495

A2 PN(C[x], e; B') A2 PN(C[x], e; B')

A2 PN(C[x], e; B') A2 PN(C[x], e; B')

496 Part Eight Extensions of FDTs and Semantical Foundations

(a)

']r
I_ r~ •,

\,

\ J \ \
{ <1,2> \ .. I / ~- . ~,\, · .. }

II~ i \ Ir \
):./'-~ IIJI re?

3 -··

(b)

Figure 3 Example of translation

(c)

keeping the set of visited process instantiations and their equivalent subnets to be returned
instead of being recomputed.

Note that the way in which the detection of duplicate behaviours is performed during
the iexpansion ensures that there are not instantiations of the same process in different
synchronization contexts, and the ones within the same synchronization context are nec­
essarily in choice. This, jointly with the definition of the function employed to generate
places Place(), means that all processes will have disjoint place sets and hence, the nets
are contact-free. Since there can only be one token per synchronization context and re­
cursion can only occur within the same synchronization context, the whole net has to be
one-safe.

Example 41 The following specification describes a system composed of two link layer
protocol entities communicated by an unreliable physical medium. The communication

is simplex and no error recovery protocol is implemented. Actions send and rec are
abbreviations of link layer primitives link_data_request and link_data_indication
respectively. The same holds for the physical layer pdus s and r.

specification system[send,s,r,rec] :noexit
behaviour
Entity[send,s] l[s] I Medium[s,r] l[r]l Entity[r,rec]

where
process Entity[a,b] :noexit:=a;b;Entity[a,b] endproc
process Medium[s,r] :noexit:=s;(r;Medium[s,r][]i;Medium[s,r]) endproc

endspec

Figure 3.(b) shows the interleaved expanded form of the LOTOS specification (a).
IT(dpO[send] 11121113, {<1,2>s; (dpO[send] lll40i;2) , <3,4>r; (2lllrec;3)})
where process dpO[send]:noexit:=send;dpO[send] endproc

The dashed lines reveals that its topology is closely related to its equivalent Petri net
(c), output from the application of function LPN to behaviour (b). This Petri net has 5
transitions and 6 places, whereas the equivalent EFSM has 16 transitions and 8 states. 0

Another important issue to be outlined is that, as in [ML89], it is necessary that every
set of entry places Po to the subnets being composed by binary LOTOS operators holds

From LOTOS to Petri Nets through [expansion 497

Vp E Po, •p = {}, for which it is necessary a one-level unfolding of such operands to
remove such recursion. This exception is caused by the method of composition of subnets.

5 RELATED WORKS

An important result of this work is the reduction of premises to be fulfilled by a LOTOS
specification in order to be translated into a Petri net. Let us review the list of problematic
aspects and use it to contrast this approach with related works.

1. Preservation of Parallelism. [ML89] [GS90] and interleaved expansion do respect
entirely the original parallelism. However the latter yields less parameterized structures
and no impossible transitions since the iexpansion applies the necessary semantic rules
to solve parameterization and compute actual events.

2. Process instantiation. Recursion. The translation of several cases of recursive pro­
cess instantiations is the main limitation identified by [GS90] [ML89]. The problem
is that recursion is translated despite the context in which the instantiation is done.
Consequently, any case of recursion which may potentially cause divergence, although
it actually creates a bounded number of processes, will be translated into: either an
infinite net -like in a parameterized expansion-, or a token-unbounded net, which fur­
thermore, can be incorrect (e.g. synchronization cases of unbounded cardinality).
The interleaved expansion solves utterly this problem in finite cases due to the segre­
gation of state subspaces for the detection of recursion as stated in section 3.5. Prece­
dent approaches do not replace variables with values in the behaviours after each in­
stantiation and synchronization. Consequently, previous translations cannot cope with
dynamic bounded process composition (whether bounded by predicates or by synchro­
nizations).

Example 51 The following specification models a FIFO queue of size 100 in a resource
oriented style by composition of 100 processes.

specification buffer_n[input, output]:noexit
library Boolean, HaturalNumber, Data endlib
behaviour
buffer[input, output](100)
where
process buffer[input, output](n:nat):noexit:=

[n equal 1]-> buffer1[input,output]
[]

[not(n equal 1)]-> (hide min buffer1[input,m] l[m]l buffer[m,output](n-1))
where
process buffer1[input, output]:noexit:=

input ?x:data; output !x; buffer1[input, output]
endproc

endproc
endspec

Precedent works are not capable of translating this behaviour because it does not keep
static control constraints (unless we instantiate each process by hand). The interleaved

498 Part Eight Extensions of FDTs and Semantical Foundations

expansion would compose the 100 processes in parallel generating an expression without
guards, relabeling and hiding easily convertible into a Petri net. D

3. Gate relabeling. [GS90] [ML89] do not support non-statically-solvable relabeling
cases, quite a frequent case. For both transformations the relabeling function must
be bijective, whereas it is just surjective in general.
e.g. P [a, a] where process P [a, b] : noexi t: = a; stop II b; stop endproc is not sup­
ported. [ML89] interprets the process instantiation with gate relabeling as the relabeling
of the Petri net corresponding to the process definition, and halts the translation when
a previously visited instantiation is detected. Therefore, it does not support properly
recursion with relabeling
The iexpanded form has no gate relabeling (it has been solved during the interleaved
expansion), and hence there is not such a limitation.

4. Data types. Only [GS90] extends Petri nets with data types by means of a set of vari­
ables that makes up the context of the graph. Its treatment is static at translation-time:
no computation of values exchanged at synchronizations is performed, nor substitution
of exchanged data value in the subsequent behaviour. They are computed only when
the Petri net is executed (at run-time). Hence, the precomputation of synchroniza­
tion is limited to determine which events in the original specification can potentially
synchronize, not the exchanged values nor actual events.
LOTOS operators let, guard and value choice are translated into void transitions, which
implies undoing and backtracking of such transitions. This can be avoided through the
interleaved expansion since iexpanded forms with data types [Lar96] have all value
choices and guards bound to actions in the format choice vi[] [BE]-> g[BE']; B, what
enables an scheme based on tokens with a value/variable environment attached plus
conditioned transitions, or others [Rei85].

5. Disabling. There is not an element alike in Petri nets. Cited works do not extend Petri
nets with elements able to model disabling composition, what obliges to develop every
reachable state in the disabled behaviour. Since disabling is a mixed interleaving-choice
operator, the consequences of this operation are (see example 52):
• It is necessary to compute all the markings reachable by the subnet equivalent to the

first argument, i.e. computing states, operation which we try to avoid by all means.
• There is an important explosion in the number of transitions representing the same

event (and of arcs), in the order of the number of states of the first operand multiplied
by the number of first transitions of the second.

• The Petri net loses legibility and conciseness.
The only way to avoid these undesired effects is to extend Petri nets to model asym­
metric relations. Nevertheless, we have not found a proper Petri net extension prepared
to model disabling explicitly, although this extension is possible in events structures
[Lan92]. Note that Petri nets with inhibitor arcs [SV95] do not handle the mentioned
problems. IT calculus includes disabling, what can be a reason to use this model. If the
output of an ordinary net is mandatory, [ML89] is still the procedure to follow.
Example 52 Let B = (a; stop[[[b; stop)[> (c; stop[[[d; stop). Converting both operands
of the disabling into Petri nets figure 4. (a) is obtained.
The resultant global net is depicted in figure 4.(b). It has been necessary the compu­
tation of the four markings reachable by subnet a; stop[[[b; stop. D

From LOTOS to Petri Nets through /expansion 499

(b)

Figure 4 Petri nets composition with disabling

6 CONCLUSIONS AND FUTURE WORK

The transformation from LOTOS to Petri nets has practical interest as a low level base

formalism for efficient reachability analysis, as well as to exploit the extensive theory de­

veloped for Petri nets and its tools. We have defined a mapping between an iexpanded

form of a LOTOS behaviour expression and its equivalent Petri net representation. The

work has also shown the advantages provided by the application of the interleaved expan­

sion as an intermediate step in the translation from LOTOS to Petri nets over existing

transformations. Namely, reduction of redundant elements, translation of specifications

with bounded dynamic composition of processes and all cases of relabeling, and reduction

of complexity.
Conversely, the close relationship between ITcalculus and petri nets can be applied to

represent some Petri nets as expressions of a process algebra by extension of LOTOS.

Furthermore, one of the advantages of this approach is that it enables the application of a

wide range of state exploration techniques to LOTOS based on analysis of independence

of events, techniques only suitable for Petri nets (Val88) and similar models (God95) which

need as input explicit global events and the bundles of local states that enable them.

Further work should be devoted to device an extension of IT calculus to represent speci­

fications with infinite processes but bounded cardinality in synchronizations, which would

be mapped to non binary Petri nets.

REFERENCES

(God95) P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems

. An Approach to the State Explosion Problem. PhD thesis, Faculte de Sciences Ap­

pliquees, University of Liege, 1995.
(GS90) Hubert Caravel and Joseph Sifakis. Compilation and Verification of LOTOS Spec­

ifications. In Luigi Logrippo, Robert L. Probert, and Hasan Ural, editors, Protocol

Specification, Testing, and Verification X, pages 359- 376, Ottawa, Ontario (CA), June

(b)

500 Part Eight Extensions of FDTs and Semantical Foundations

1990. IFIP, Elsevier Science B.V. (North-Holland).
[IS089) ISO. Information Processing Systems - Open Systems Interconnection -LOTOS­

A Formal Description Technique Based on the Temporal Ordering of Observational Be­
haviour. IS-8807. International Standards Organization, 1989. [published 15/feb/1989).

[Kar88) Giinter Karjoth. Implementing Process Algebra Specifications by State Machines.
In Sudhir Aggarwal and Krishan Sabnani, editors, Protocol Specification, Testing, and
Verification VIII, pages 4 7-60, Atlantic City, New Jersey, USA, June 1988. IFIP, Else­
vier Science B.V. (North-Holland).

[Kre94) H. Kremer. Derivation of efficient implementations from formal descriptions - is­
sues, methods and conformance. In D. Hogrefe and S. Leue, editors, Formal Description
Techniques, VII, pages 421-436, Berna (Switzerland), 1994. IFIP, Elsevier Science B.V.
(North-Holland). Proceedings FORTE'94, 4-7 October, 1994.

[Lan92) R. Langerak. Transformations and Semantics for LOTOS. PhD thesis, Univ. of
Twente, 1992.

[Lar96) David Larrabeiti. Contribuci6n al Andlisis del Espacio de Estados de Especifica­
ciones LOTOS. PhD thesis, Technical University of Madrid, Spain, 1996.

[LDdtP+93) G. Leon, J. C. Duenas, J. A. de Ia Puente, N. Zakhama, and A. Alonso. The
IPTES Environment: Support for Incremental Heterogeneous and Distributed Proto­
typing. In Real-Time Systems. Kluwer Academic Press, may 1993.

[ML89) Saturnino Marchena and Gonzalo Leon. Transformation from LOTOS specs to
Galileo Nets. In Ken J. Turner, editor, Formal Description Techniques, I, pages 217-
230, Stirling, Scotland, UK, 1989. IFIP, North-Holland. Proc. FORTE'88, 1988.

[MS92) Jose A. Mafias and Joaquin Salvachua. A(J: A Virtual LOTOS Machine. In Gordon
Rose and Ken Parker, editors, Formal Description Techniques, IV, Sydney (AU), 1992.
IFIP, Elsevier Science B.V. (North-Holland). Proc.t FORTE'91, 19-22 November, 1991.

[Pav90) Santiago Pavon. Contribuci6n al Andlisis y Transformaci6n de Especificaciones
LOTOS. PhD thesis, Technical Univ. of Madrid, 1990.

[QLP93) J. Quemada, D. Larrabeiti, and S. Pavon. Compressed State Space Representa­
tion of LOTOS Specifications. In Ken J. Turner, editor, Formal Description Techniques,
VI, pages 19- 34, Boston, Massachussetts, EEUU, 1993. IFIP, North-Holland. Pro­
ceedings FORTE'93, 26-29 October, 1993.

[QPF89) Juan Quemada, Santiago Pavon, and Angel Fernandez. State Exploration by
Transformation with LOLA. In Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble, June 1989.

[Rei85) W. Reisig. Petri Nets, an Introduction. Springer, Berlin (DE), 1985.
[Rei87) W. Reisig. Place/Transition Systems. In Petri Nets: Central Models and Their

Properties. Advances in Petri Nets 1986., volume 254 of LNCS, pages 117-141. Springer­
Verlag, Berlin (DE), 1987.

[Roz87) G. Rozenberg. Behaviour of Elementary Petri Nets. volume 254 of LNCS, pages
60-94. Springer-Verlag, Berlin (DE), 1987.

[SV95) Riccardo Sisto and Adriano Valenzano. Mapping Petri nets with Inhibitor Arcs onto
Basic LOTOS Behaviour Expressions. IEEE Transactions on Computers., 44(12):1361-
1370, December 1995.

[Val88) Antti Valmari. State Space Generation: Efficiency and Practicality. PhD thesis,
Tampere University of Technology, Tampere, Finland, 1988.

