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Abstract 
In the telecommunication industry, the Specification and Description Language (SOL) is a 
widely accepted technique to support the software development process. While several commer­
cial SOL tools exist that focus on functional aspects, rather little research has been done concern­
ing the integration of nonfunctional aspects in the development process. 

Our research is focusing on the integration of performance aspects in the development process. 
In the paper, we give an overview on the DO-IT toolbox and describe how the toolbox can be 
applied to develop a parallel implementation of a multimedia application on top of the XTP pro­
tocol suite. The DO-IT toolbox supports the formal specification of performance requirements 
(e.g. response time and throughput) and the selection of the appropriate design and implemen­
tation decisions. 
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1 INTRODUCTION 

SDL'92 (ITU, 1993), with it's support for object orientation, supports the software engineering 
process from object-oriented design down to the generation of executable code. In conjunction 
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46 Part One Tools and Tool Support 

with Message Sequence Charts (MSCs) (ITU, 1993a), system simulation and testing are sup­
ported, too. Besides a number of proprietary tools and tools from academia, there are two main 
providers of commercial tools for SDL, namely Telelogic with SDT (Telelogic, 1995) and Ver­
ilog with GEODE (Verilog, 1994 ). The tools support formal specification, validation, simulation, 
code generation and testing. While the tools for specification, validation, simulation and testing 
are widely used, the generation of the implementation is often done manually. This is due to the 
inefficiency of the code generated by the tools. In addition, implementations generated by the 
tools typically consume considerably more memory. In contrary, the manual implementation of 
SDL specifications contradicts the intended purpose of SDL and forces intensive testing of the 
application at the implementation level in order to ensure consistency with the specification. 

A related problem is the lack of a formal approach in the system development cycle that sup­
ports non-functional requirements, e.g. performance or fault-tolerance requirements. This be­
comes even more obvious when an SDL specification is implemented on parallel systems due to 
the wide variety of design decisions that have to be met. These design decisions include (but are 
not limited to) the architecture of the parallel system, the distribution of code and data as well 
as the strategies employed for scheduling and dynamic load balancing. 

In the paper, a set of tools supporting our methodology is presented. Our approach is focusing 
on the development of high-performance parallel systems with SDL and MSCs. The approach 
fully integrates performance issues in the system development cycle. We show the applicability 
of our approach by applying the tools to the implementation of a multimedia conference appli­
cation based on the Xpress Transfer Protocol (XTP) (Strayer eta!, 1992). 

The topic is highly relevant since it allows for the rapid development, configuration and mod­
ification of parallel systems in the scope of SDL, which provide the required performance. Es­
pecially in telecommunications, a highly competitive market, the time to market has become the 
major issue to ensure competitiveness. The use of parallel systems is a must to provide the per­
formance required by multimedia applications, especially at the server side. 

The paper is organized as follows. In section 2, the DO-IT toolbox supporting the integration 
of performance aspects in the development process is described. In section 3, the application 
of the DO-IT toolbox to design a parallel multimedia application is described. Conclusions are 
given in section 4. 

2 THE DO-IT TOOLBOX 

2.1 Outline of the Underlying Methodology 

The major goal of our approach is the early and systematic integration of performance aspects 
into the development process. This allows for minimizing time and cost for redesign and reim­
plementation. The outline of the methodology is depicted in figure I. Note that the development 
methodology is not limited to the waterfall approach. Rather, the feedback arcs are omitted for 
simplicity of the figure. 

Starting point of the methodology is the requirements specification. The formal part of the re­
quirements specification comprises two aspects, the functional and non-functional requirements. 
Our approach is based on use cases. Use cases are specified in the MSC notation. The functional 
requirements are formally specified with standard MSCs. The performance requirements of the 
system under development are also given formally. For this, an annotated extension of MSCs 
is used in conjunction with a high-level notation to formally specify the interrelation between a 
set ofMSCs in respect to performance aspects. In addition, the machine architecture is formally 
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Figure 1 Outline of the development methodology 

~pecified with respect to structural, behavioral and performance aspects. The formal specifica­
tion of functional and performance aspects as well as the machine architecture are a prerequisite 
for the automization of the design process. 

The conceptual design specification is derived from the requirements specification. The struc­
tural (conceptual) design is specified with SDL. The implementation design is derived in a series 
of steps subsequently moving from a purely structural to a detailed behavioral design document. 
In conjunction with the refinement of the SOL specification, the MSCs are subsequently refined 
to reflect the internal behavior of the refined SDL specification. 

A more detailed description of our methodology with its support for performance analysis and 
system synthesis can be found in (Mitschele-Thiel, 1996). 

2.2 Overview on the DO-IT Toolbox 

In order to support our methodology, especially the integration of performance aspects in the de­
sign and implementation process for parallel systems, the DO-IT toolbox (Design and Optimiza­
tion- Integrated Toolbox) has been devised. As depicted in figure 2, the DO-IT toolbox consists 
of three major components, namely MODE (MOdel DErivation), MOPS (Model based Opti­
mization of Parallel Systems) and COPS (Code Optimization for Parallel Systems). The three 
components of the DO-IT toolbox are intended to complement the commercially available tools 
for SDL and MSCs. 

The input to the MODE component consists of the SDL specification and the load model. At 
this stage of the development cycle, the load model formally specifies the performance require­
ments of the system under development. As already mentioned, we employ use cases to formally 
specify the performance requirements. 

The use cases are specified in the MSC notation. An additional notation has been introduced 
to specify the interrelationship between the MSCs. Since we employ a notion similar to high­
level MSCs (HMSC) currently in the standardization process, we call our notation high-level 
performance MSC, or HPMSC for short. A HPMSC specifies all the performance requirements 
of a system under development in a similar way a HMSC specifies the functional requirements 
of a system. A HPMSC is structured as a tree. The leaves of the tree refer to MSCs in most cases. 
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runtime library 

Figure 2 The DO-IT toolbox 

A detailed description of tbe HPMSC notation is given in section 3 .2. An example of an HPMSC 
to specify the performance aspects of our multimedia application is given in figure 6. 

Given the load model, i.e. the formal specification of the performance-relevant use cases, and 
the corresponding SDL specification, the MODE component is employed to derive the perfor­
mance data of the SDL specification. Performance data denote the cost of executing the given 
use cases on the target system. In addition to the derivation of the performance data, MODE is re­
sponsible for tbe back annotation of the load model with the respective performance data. Thus, 
the performance data are used to annotate the MSCs referred to in the HPMSC. As described in 
detail below, two different instances of MODE exist, depending on the level of detail provided 
by the given SDL specification. Thus, MODE may be applied in early as well as in late design 
phases. 

Once the necessary performance data have been derived, the MOPS component can be ap­
plied. The major inputs to MOPS consist of the load model and the machine model. After the 
execution of MODE, the load model contains all required performance information of the ap­
plication. MOPS computes the major design decisions concerning the software, the hardware as 
well as the mapping of the software on the hardware. The resulting design decisions are given 
in an abstract form. This is denoted as system model. 

The system model represents the basis for the code generator and optimizer COPS which is 
responsible for the implementation of tbe design decisions made by MOPS. In the paper, we 
focus on the components MODE and MOPS. 

2.3 Derivation of Performance Data- MODE 

The derivation of performance data for a given SDL specification, especially the execution and 
communication cost of its implementation is supported by the MODE tools, namely MODE-M 
and MODE-A. The two tools support the derivation of performance data at different phases in 
the development cycle. Both tools support the back annotation of the MSCs with performance 
data. With MODE-M (MOdel DErivation by Measurements), the performance data are derived 
by measuring tbe computation cost of the SDL specification on a specific machine. In this con­
text, the term "machine" denotes the combination of hardware and system software that exe­
cutes the SDL constructs. Thus, the computation and communication cost with which tbe use 
cases (MSCs) are annotated reflect the cost of execution ofthe constructs with the given system 
software on a specific hardware unit. Note that the cost also depend on the code generator and 
compiler that are used. Thus, each combination of code generator, compiler, system software 
and hardware constitutes a separate machine. In case several machines are at the disposal of the 
design process, the MSCs are annotated with vectors where each element of the vector reflects 
the cost of tbe corresponding SDL constructs on a specific machine. 

The derivation of the performance data with MODE-M is performed in a series of steps, it­
self involving a set of tools. First, the given SDL specification is automatically instrumented, 
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i.e. additional instructions are integrated into the code that record start and end time of the rele­
vant SDL constructs. The instrumentation is controlled by the corresponding MSCs. Our current 
instrumentation tool performs the automatic instrumentation of C code (Dauphin, Dulz and Lem­
men, 1995). However, with support of the code generator for SDL, e.g. as provided by the SDT 
code generator, the respective instructions can be directly integrated into the SDL specification. 
This eliminates the need to associate each SDL construct with the respective parts in the C code. 

After instrumentation, the code is translated and executed on the target hardware. During exe­
cution, the performance-relevant data are traced. The execution of the code is controlled by the 
input signals corresponding to the respective MSCs. As a result, only those parts of the SDL 
specification are typically executed for which a respective MSC exists. Thus, no performance 
data are traced for the remaining parts of the SDL specification. However, this is not a problem 
as long as the performance-relevant parts of the SDL specifications are covered by MSCs, which 
is typically the case. 

The monitoring of the system and the recording of the traces is either done in software or with 
the ZM4 hybrid monitoring system (Dauphin et al, 1994 ). The ZM4 allows for the monitoring of 
parallel as well as distributed systems and supports a wide range of hardware interfaces. For the 
analysis ofthe traces, the SIMPLE analysis tools (Dauphin et al, 1994) are used. An additional 
tool is needed that supports the back annotation of the respective MSCs with the measured per­
formance data. As an example of the annotation of an MSC with performance data, the annotated 
version of the MSC depicted in figure 8 is given in figure 11. 

Instead of the derivation of the performance data by means of measurements, the analytical 
modeling tool MODE-A (MOdel DErivation- Analytic approach) may be employed. Central 
component of this approach is a performance data base. For a set of relevant machines, it speci­
fies the performance data ofthe SDL constructs (e.g. input, output, create) and the performance 
data of specific procedures called from the SDL processes. Examples are procedures provided 
by an implementation of an abstract data type or a procedure to perform a cyclic redundancy 
check. Provided that the data base contains the performance data for the required machines, the 
annotation of the respective MSCs can be done quickly without the need to actually implement 
and execute the SDL specification. The performance data for a particular machine in the data 
base can either be estimated based on performance data available for a comparable machine or 
based on measurements previously derived by MODE-M. 

Note that our approach to model derivation is not necessarily limited to the automatic deriva­
tion of code from the given SDL specification. The approach can also be applied, if parts of the 
SDL specification are hand coded or different code generators are applied to generate code for 
different parts of the SDL specification. 

2.4 Performance Evaluation and Optimization- MOPS 

Once the necessary performance data of the SDL specification are derived, the performance-rele­
vant design decisions can be made. The design decisions comprise software and hardware issues 
as well as the mapping of the software on the parallel machine. This is supported by the model 
based optimization tool MOPS (Model based Optimization of Parallel Systems). The outline of 
MOPS is depicted in figure 3. 

The major input to MOPS consists of 

• the machine model, i.e. the formal specification of the available parallel machine, and 
• the load model, i.e. the formal specification of the load imposed on the machine including the 

performance requirements of the load. 
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generation 
strategy 

Figure 3 Model based optimization of parallel systems - MOPS 

The machine model specifies a rather abstract machine. The abstract machine can be viewed 
as a parallel system that executes an abstract program. In our case, the abstract program is given 
by the HPMSC, described in detail in section 3.2. Note that the abstract machine also models 
the operating system. Thus, it supports process management including scheduling and load bal­
ancing. The open parameters of the machine which define the strategies for scheduling and load 
balancing are specified by the system model. 

The tool computes the system model comprising the major design decisions concerning the 
static as well as dynamic aspects of the implementation. In general, the system model comprises 
the following design decisions: 

• the static mapping of the code on the machines, i.e. the decision on which processor a specific 
SDL process can be executed, 

• the dynamic load balancing strategy for the SDL processes, 
• the dynamic scheduling strategy, e.g. the priorities of the processes, and 
• the selection of implementation alternatives, possibly including hand-coded parts. 

The MOPS tool consists of two main components, a component to generate system models 
(optimization method) and a component to evaluate given system models. The optimization 
method employed by MOPS is based on the subsequent improvement of an initial solution, i.e. 
the repeated improvement of an initial system model. Several optimization techniques support­
ing this approach are known from literature. The most important techniques are genetic algo­
rithms, simulated annealing and tabu search. A comprehensive survey of these techniques can 
be found in (Reeves, 1993). The most appropriate optimization technique mainly depends on the 
time complexity of the evaluation component of MOPS. 

The evaluation component performs the evaluation of given system models. In order to pro­
vide a design optimization tool that supports various optimization goals, we propose a flexible 

approach. In our approach, a set of basic predefined evaluation functions are provided to evaluate 
given system models. These evaluation functions may be complemented by user-defined eval­
uation functions. In addition, the interrelationship between the different (predefined and user­
defined) evaluation functions and their influence on the main goal function, that quantifies the 
quality of a system model, is user-defined. Thus, different and possibly conflicting optimization 
goals may be pursued with different intensity. In addition, various optimization constraints may 
be specified and enforced. Examples of predefined evaluation functions are: 
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Figure 4 Outline of the multimedia application 

(1) the evaluation of the (static) load per processor resulting from the load as specified by the load 
model (static bottleneck analysis), 

(2) the evaluation of the (static) load per communication link (static bottleneck analysis), 
(3) the evaluation of the response time of each use case, i.e. each MSC, under the assumption 

that no contention exists between the use cases, i.e. the use cases are imposed on the system 
sequentially rather than concurrently (zero load dynamic analysis), 

( 4) the evaluation of the response time of the use cases under the assumption that the maximum 
load, as specified by the load model, is imposed on the system concurrently (full load dynamic 
analysis). 

The use of the last evaluation function is further detailed in section 3.4. 
Several optimization algorithms have been implemented to compute a part of the design deci­

sions relevant to configurable message passing systems (Mitschele-Thiel, 1993, Mitschele-Thiel 
and Dussa-Zieger, 1994, Schwehm and Walter, 1994 ). 

3 APPLICATION OF THE DO-IT TOOLSET 

3.1 Example: Multimedia Application 

Our multimedia application is structured in two parts, the multimedia application itself and the 
underlying XTP protocol suite (release 4.0) to handle communication between the hosts. The 
structure of the multimedia system is depicted in figure 4. Three kinds of applications are sup­
ported: video, audio and white board. We assume that data compression is employed for all appli­
cations. The functional requirements for transport connections are as follows: Audio and video 
require a non-confirmed connection-oriented transport service. The whiteboard application is 
handled by a confirmed connection-oriented transport service. 

The performance requirements of the three types of multimedia applications differ consider­
ably. An audio application requires a fixed number of small data packets. In order to keep the sig­
nal delay small, we require 22 packets per second. In addition, we require a maximum processing 
delay of 40 ms to send an audio packet and 50 ms to receive a packet. 

Similarly, a video application also requires a fixed number of packets per time unit. However, 
the number of data packets transferred per time unit may be smaller. Typical throughput require­
ments for a video application vary from a single packet every ten seconds to 30 packets per sec-
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ond. For a multimedia conference with two or three participants we require a throughput of ten 
packets per second. In case of four participants, the required throughput is 5 packets per second. 
The delay of video signals is less critical than audio. We require a processing delay smaller than 
200 ms for inbound and outbound traffic, respectively. 

For the whiteboard application, we require a processing delay below 200 ms. The required 
throughput of the white board application is two packets per second. 

For a conference with two participants, two video connections, two audio connections (one 
for each direction) and one connection for the whiteboard application is required. In case a third 
participant enters the conference, three video connections are used altogether, one multicast con­
nection to handle all outgoing video streams and one connection for each incoming video stream. 
The same holds for audio. For the whiteboard application, two connections are employed, one 
connection per remote participant. 

3.2 Formal Specification of the Multimedia Application 

Functional Specification with SDL 
The structure of our SDL specification is given in figure 5. The octagons denote SDL processes. 
The solid lines denote communication, dashed lines model the creation of process instances. The 
SDL specification is structured in two blocks, one block for the application and one for XTP 
itself. 

In the XTP block, separate SDL processes are used to handle the different applications (au­
dio, video and whiteboard). In addition, inbound and outbound traffic is separated, i.e. handled 
by different SDL processes. Thus, a separate sender, receiver and encoder exists for each appli­
cation. The XTP connections are managed by the context manager, which creates and terminates 
the process instances. 

In the application block, separate SDL processes are used for incoming and outgoing data 
streams as well as for each application. An exception is the white board application, which is han­
dled by a single SDL process. Each inbound video stream requires a separate process instance. 
Similarly, each outbound video stream (each local camera) is handled by a separate process in­
stance. A similar approach is taken for audio streams. When a new conference is started or a 
new participant enters the conference, the manager process in the application block creates the 
respective process instances and instructs the context manager in the XTP block to generate the 
corresponding process instances there. 

Formal Specification of Peiformance Requirements with HPMSC 
As already mentioned in section 2.2, we employ high-level performance MSCs (HPMSC), a no­
tation based on use cases to formally specify, among others, the performance requirements of 
the system under development. A HPMSC is structured as a tree. The leaves of the tree refer 
to MSCs in most cases. The HPMSC employed to specify the performance requirements of our 
multimedia application is given in figure 6. 

The syntax of HPMSCs is as follows: Four types of nodes exist, namely the root, MSC nodes, 
construction nodes and comment nodes. MSC nodes refer to an MSC. The referred MSCs are 
typically annotated with performance aspects. Four of the MSCs referred to in figure 6 are shown 
in figures 7 to 10. * Comment nodes are used to include informal text. Six different construction 
nodes exist. The construction nodes ALT, AND, PAR and SEQ are used to construct a larger tree 
from a set of subtrees. With exceptions, construction nodes have more than one child connected 

*The notation employed by the MSCs is as follows: Each vertical axis denotes a process instance. A solid arrow 
models the transmission of a signal. A dashed arrow denotes the creation of a process instance. 
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Figure 5 Structure of the SDL specification of the multimedia application 

Figure 6 High-level performance MSC (HPMSC) to specify the performance requirements of 
the multimedia application 

to it. Exceptions are the construction node RESET which does not have a child at all and the 
node NO_PERF which has exactly one child. 

The semantics of the construction nodes is as follows: Each subtree in the HPMSC represents 
a load on the system with specific performance requirements. The PAR node denotes the case 
where the system under development has to be able to concurrently handle the load as given in 
each of the subtrees of the PAR node. Thus, the load is defined by the sum of the load specified 
by the subtrees. In the example given in figure 6, the PAR node is used to state that the various 
data streams (audio, video and whiteboard) are concurrently imposed on the sytem. 

Similarly, the AND node also denotes the fact that the system has to be able to handle the load 
as given in each of the respective subtrees. However, different from the PAR node, the load as 
specified by the representative subtrees of the AND node is not imposed on the system concur­
rently. Rather, the load specified by each subtree has to be handled by the system one (subtree) 
at a time. In the example given in figure 6, the AND node is used to state that the system has to 
be able to handle each of the three types of conferences, i.e. with two, three or four participants. 
However, the system does not have to be able to handle all three types of conferences concur­
rently. 
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Figure 7 Local setup of a multimedia conference with three participants 
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Figure 8 Sending of audio data 

The SEQ node states that the system execution as specified by the subtrees is done sequentially, 
executing the subtrees from left to right. 

The ALT node is used to express open design or implementation decisions. In this case, the 
selection of one of the alternatives is up to MOPS. Thus, MOPS implicitly selects the subtree in 
the HPMSC, which results in the best value of the overall optimization goal function. In other 
words, MOPS selects a subtree of the ALT node such that the resulting system model is optimal. 
In case that several ALT nodes are present in an HPMSC, MOPS decides on the best combination 
of all the alternatives. 

In addition to the different types of nodes, attributes to the nodes can be specified. Each sub­
tree of an ALT node is attributed with a condition. The conditions are evaluated statically be­
fore the performance evaluation is started. The variables of a condition are defined in the system 
model. The actual values of the variables are computed by the optimization algorithm employed 
by MOPS. In figure 6, an example of the use of an ALT node to express a design alternative for 
the audio transmission is given. In the example, the ALT node is used to express the design alter­
native where integrated layer processing (ILP) (Clark and Tennenhouse, 1990) is used to merge 
the two audio processes audio_ouLsend and audio_ouLenc of the block XTP. It also shows how 
the condition attribute can be used to represent context dependences. In the figure, two dif­
ferent MSCs for the setup of the conference are given, one for the non-ILP design alternative 
and one for the case that ILP is employed. 

Attributes important for performance evaluation are the attributes period and arrivals. 
The attribute period specifies the time period for which the performance evaluation is done. 
The arrivals attribute specifies the number of arrivals for the given MSC (or more specif­
ically the number of its executions) in the given time period (as specified by the period at­
tribute). Thus, the arrivals attribute in conjunction with the period attribute supports the 
specification of the load which the system under development is supposed to handle. This is 
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Figure 10 Transmission of a local update of the whiteboard 

typically used to specify throughput requirements of the system. Both, the period and the 
arrivals attributemaybepresentwiththenodetypesALT,AND, PAR and SEQ. The attributes 
are inherited by their subtrees. However, attributes may be redefined in a subtree. 

Not necessarily each MSC (or even subtree containing a set ofMSCs) in the HPMSC is directly 
relevant for the performance evaluation. Some MSCs may be given solely to initialize the system 
to a state where performance evaluation can be started. For example in communication systems, 
we are often solely interested in the performance of the data transmission and not so much in the 
connection establishment phase preceding the data transmission. Nevertheless, the connection 
must be established before data transmission can be started. For example, the appropriate process 
instances have to be created and initialized. In order to distinguish between subtrees relevant for 
the performance optimization and subtrees not relevant, the NO_PERF node has been introduced. 
NO_PERF excludes the subtree from any performance evaluation. The subtree of the NO_PERF 
node is solely used to initialize the system. 

In a system, several performance evaluations are typically employed. As stated above, the re­
sults of the performance evaluation may depend on the state of the system from which a specific 
performance evaluation is started. In order to support the start of a performance evaluation at 
a defined state, the RESET node in conjunction with the NO_PERF node and a respective MSC 
to set the system into the appropriate initial state for performance evaluation, is employed. The 
RESET node puts the system in its initial state as specified in the SOL specification. 

The MSCs referred to in the leaves of the HPMSC serve three purposes. First, they are used 
to specify the functional aspects relevant to performance evaluation, e.g. the creation of process 
instances prior to their use. An example of this is the MSC locaLsetup_3_conf given in figure 7. 

Second, the MSCs are employed to specify response time requirements. Examples of these 
can be found in figures 8 through 10. For example, in figure 8 two events are defined, event 
send_audioJn and event send_audio_out. The response time requirement itself is given in the 
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req clause. It states that the time required to process an outgoing signal has to be smaller than 
40ms. 

Third, the MSCs are employed to specify performance data. However, note that performance 
data are not part of the requirements specification. Rather, they are derived by the MODE com­
ponent. For this reason, discussion on the specification of performance data is deferred to sec­
tion 3.3. 

Machine Model 
The parallel target machine for our multimedia application is a Sun Spare 20 station with four 
processors. We assume that three of the processors are solely dedicated to handle the multimedia 
application as specified above. All other processes on the workstation are assumed to be run on 

the fourth processor. t 
As a result, the machine model defines three identical processors available to handle the load 

as specified by the HPMSC given in figure 6. The abstract parallel machine comprises a small 
set of abstract instructions, namely 

• create and terminate to set up and terminate a process instance. 
• comp to execute a computation on an abstract processor, 
• input and output to support communication between the process instances, 
• seLtimer to induce a special timer signal in the system at a specified time. 

The abstract instructions directly correspond to the activities specified with the MSCs. As noted 
before, the abstract instructions return the cost of their execution on the different resources. In 
this simple example the only resources considered are the processors. Other possible resources 
could be communication links and storage devices. 

In addition to the abstract instructions corresponding to the MSC activities, instructions that 
implement the functions of the (abstract) operating system are provided by the machine model. 
This includes a function to implement the scheduler for the MSCs. In addition, functions are 
provided to fetch the abstract MSC instructions described above and to read information from 
the system model. 

For our example, we assume that the three processors are clustered to dynamic load sharing 
groups. Each SDL process is statically assigned to one of the load sharing groups. Each load 
sharing group employs its own scheduler. Thus, a given process instance can be dynamically 
scheduled on each of the processors of the load sharing group. Migration of processes between 
load sharing groups is not allowed. 

3.3 Application of MODE 

The purpose of the MODE tools is to derive performance data for the application. As outlined 
in section 2.2, performance data either specify the actual cost to execute the entities described 
with the MSCs or specify the parameters from which the respective cost can be derived. The 
DO-IT toolbox supports both approaches. The mapping of parameterized cost to actual cost is 
done by the abstract instructions defined by the machine model. In the example, actual cost are 
used to specify computation cost. Parameters are employed for the specification of cost related 
to communication. Thus, the actual cost for communication may depend on the location of the 
communicating processes and is computed after this has been decided. The physical location of 

t A mixture of the load is possible but is not described here for space limitations. 
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Figure 11 Annotation of the MSC send_audio with performance data 

process instances is either statically defined by the system model or decided at runtime during 
the creation of process instances. This is the case if several process instances are created from 
an SDL process and dynamic or semi-dynamic load balancing is employed. 

As explained in section 2.3, MODE derives the performance data for each MSC specified by 
the HPMSC given in figure 6. In addition, MODE performs the back annotation of the MSCs 
with the derived performance data. 

An example for the specification of performance data in the MSC send_audio, as specified in 
figure 8, is shown in figure 11. In the figure, the computation cost are given in the comp clause. 
Communication cost are derived from the size of the messages which is given in the msg_size 
clause. 

3.4 Application of MOPS 

As described in section 2.4, the input to MOPS mainly consists of the abstract specification of 
the machine and the load. Open parameters of the machine and the load are defined by the system 
model. In addition, the system model defines the design decisions related to the mapping of the 
load on the machine. For space limitations, we concentrate on the evaluation of a given system 
model and its prerequisites. We describe in more detail how the evaluation of the dynamic be­
havior of the system under full load is done. This refers to the fourth evaluation function given 
in section 2.4. 

System Model 
During the optimization process of MOPS, we assume that at some state of the optimization 
process, the following system model has been computed: 

• two load sharing groups, S I and S2, are used, 
• processor P 1 is assigned to the load sharing group S 1; P2 and P3 are assigned to S2, 
• all SDL processes related to audio including the XTP decoder are assigned to S 1, the remain­

ing processes are assigned to S2, 
• the priorities of the SDL processes assigned to S 1 -specified in decreasing order of their prior­

ity - are as follows: XTP.audio_ouLenc, XTP.audio_out...send, appl.audio_out, appl.audiojn, 
XTP.audio_inJecv, XTP.decoder, 
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Figure 12 Temporal order of the signal arrivals for the specified load scenario 
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Figure 13 Evaluation of the dynamic behavior of a system model under full load 

• the priorities of the remaining SDL processes assigned to S2 are as follows: appl.manager, 
XTP.contexLmanager, XTP.whiteboard_ouLenc, XTP.whiteboard_out...send, appl.white­
board, XTP.whiteboardJn_recv, XTP.video_ouLenc, XTP.video_out...send, appl.video_out, 
appl.videoJn, XTP.video_in_recv, 

• the ILP option is turned off. 

Example of the Evaluation of the System Model 
Before the evaluation function is described, we introduce load scenarios. A load scenario rep­
resents an example of the load imposed on the system within a given time period. For example, 
the load model defined by the HPMSC given in figure 6 can be divided in three parts according 
to the number of participants of the multimedia conference. The detailed subtree specifying the 
conference with three participants defines three load scenarios. This is because of the AND node 
in the subtree that distinguishes three load cases for the whiteboard application. In the figure, 
the MSCs belonging to the load scenario used in the following example are marked by the grey 
background. 

A load scenario implicitly defines a temporal order on a set of input signals. The temporal 
order of the arrivals derived from the load scenario marked in figure 6 is depicted in figure 12. 
Note that in conjunction with the machine and the system model, the temporal order on the input 
signals fully defines the execution order (schedule) of the abstract machine. 

In figure 13, the evaluation function to evaluate the dynamic behavior of the system model 
under full load is outlined. The evaluation is done in two phases. First, the different load sce­
narios are derived from the load model. Second, the system model is evaluated for each load 
scenario. For our specific evaluation function, the evaluation is done by abstract execution of 
the load scenarios on the abstract machine according to the guidelines provided by the system 
model. 
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Figure 14 Schedule of the load sharing group S 1 
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The schedule of the load sharing group S 1 for the example load scenario is depicted in fig­
ure 14. Note that for the sake of clear presentation, the cost are not given in their exact scale. 
Also note that computation cost related to communication between the process instances are not 
explicitly shown. Instead, they are added to the computation cost of the process instances. 

During the abstract execution, events defined by the MSCs are traced and checked against the 
requirements also defined by the MSCs. The events related to audio traffic are depicted in fig­
ure 14. In addition to the evaluation of the events, the value of the optimization goal function is 
derived. 

4 CONCLUSIONS 

The DO-IT toolbox is a joint project of the University of Erlangen and the Technical University 
of Cottbus. The goal of the DO-IT toolbox is to support 

• the automatic derivation of the performance data incurred with the implementation of the 
components of an SDL specification, 

• the analysis of SDL specifications for performance bottlenecks, 
• the synthesis of an optimized system design deciding the issues related to software, hardware 

and the mapping of the software on the hardware, and 
• the implementation of the design decisions. 

Central to the early integration of performance issues in the design process is the extension of 
MSCs to formally specify performance-relevant information. 

In the paper, we have concentrated on the first and the third issue. We have shown how the 
DO-IT toolbox can be employed to derive the implementation design of a multimedia applica­
tion. Designing such an application, many conflicting performance requirements have to be met 
and the best compromise has to be found. Especially with the implementation on parallel sys­
tems, a large number of design parameters need to be decided on. This results in an enormous 
design space. In the paper, an approach for the automatic search of the design space has been 
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described. In addition, we have shown how different classes of design decisions can be included 

in the automatic search process. 
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