
3
Design and Optimization of
High-Performance Protocols with the
DO-IT Toolbox
Andreas Mitschele-Thiel
Friedrich-Alexander-Universitiit Erlangen-Niimberg,
Lehrstuhlfiir Informatik VII, MartensstrajJe 3, 9I058 Erlangen, Germany,
email:mitsch@informatik.uni-erlangen.de

Peter Langendorfer
Brandenburgische Technische Universitiit Cottbus, Institut fiir Informatik,
Lehrstuhl fiir Rechnemetze und Kommunikationssysteme, Postfach I 0 I 3 44,
03013 Cottbus, Germany, email: pl@informatik. tu-cottbus .de

RalfHenke
Otto-von-Guericke-Universitiit Magdeburg, Fakultiitfiir Informatik, Institut
fiir Rechnemetze und Betriebssysteme, Postfach 4120, 39120 Magdeburg,
Germany, email: henke@cs. uni -magdeburg. de

Abstract
In the telecommunication industry, the Specification and Description Language (SOL) is a
widely accepted technique to support the software development process. While several commer­
cial SOL tools exist that focus on functional aspects, rather little research has been done concern­
ing the integration of nonfunctional aspects in the development process.

Our research is focusing on the integration of performance aspects in the development process.
In the paper, we give an overview on the DO-IT toolbox and describe how the toolbox can be
applied to develop a parallel implementation of a multimedia application on top of the XTP pro­
tocol suite. The DO-IT toolbox supports the formal specification of performance requirements
(e.g. response time and throughput) and the selection of the appropriate design and implemen­
tation decisions.

Keywords
FDT-based system and protocol engineering, FDT-based implementation, parallel systems, SOL,
MSC, performance modeling and optimization, tool support, XTP, multimedia

1 INTRODUCTION

SDL'92 (ITU, 1993), with it's support for object orientation, supports the software engineering
process from object-oriented design down to the generation of executable code. In conjunction

R. Gotzhein et al. (eds.), Formal Description Techniques IX
© IFIP International Federation for Information Processing 1996

46 Part One Tools and Tool Support

with Message Sequence Charts (MSCs) (ITU, 1993a), system simulation and testing are sup­
ported, too. Besides a number of proprietary tools and tools from academia, there are two main
providers of commercial tools for SDL, namely Telelogic with SDT (Telelogic, 1995) and Ver­
ilog with GEODE (Verilog, 1994). The tools support formal specification, validation, simulation,
code generation and testing. While the tools for specification, validation, simulation and testing
are widely used, the generation of the implementation is often done manually. This is due to the
inefficiency of the code generated by the tools. In addition, implementations generated by the
tools typically consume considerably more memory. In contrary, the manual implementation of
SDL specifications contradicts the intended purpose of SDL and forces intensive testing of the
application at the implementation level in order to ensure consistency with the specification.

A related problem is the lack of a formal approach in the system development cycle that sup­
ports non-functional requirements, e.g. performance or fault-tolerance requirements. This be­
comes even more obvious when an SDL specification is implemented on parallel systems due to
the wide variety of design decisions that have to be met. These design decisions include (but are
not limited to) the architecture of the parallel system, the distribution of code and data as well
as the strategies employed for scheduling and dynamic load balancing.

In the paper, a set of tools supporting our methodology is presented. Our approach is focusing
on the development of high-performance parallel systems with SDL and MSCs. The approach
fully integrates performance issues in the system development cycle. We show the applicability
of our approach by applying the tools to the implementation of a multimedia conference appli­
cation based on the Xpress Transfer Protocol (XTP) (Strayer eta!, 1992).

The topic is highly relevant since it allows for the rapid development, configuration and mod­
ification of parallel systems in the scope of SDL, which provide the required performance. Es­
pecially in telecommunications, a highly competitive market, the time to market has become the
major issue to ensure competitiveness. The use of parallel systems is a must to provide the per­
formance required by multimedia applications, especially at the server side.

The paper is organized as follows. In section 2, the DO-IT toolbox supporting the integration
of performance aspects in the development process is described. In section 3, the application
of the DO-IT toolbox to design a parallel multimedia application is described. Conclusions are
given in section 4.

2 THE DO-IT TOOLBOX

2.1 Outline of the Underlying Methodology

The major goal of our approach is the early and systematic integration of performance aspects
into the development process. This allows for minimizing time and cost for redesign and reim­
plementation. The outline of the methodology is depicted in figure I. Note that the development
methodology is not limited to the waterfall approach. Rather, the feedback arcs are omitted for
simplicity of the figure.

Starting point of the methodology is the requirements specification. The formal part of the re­
quirements specification comprises two aspects, the functional and non-functional requirements.
Our approach is based on use cases. Use cases are specified in the MSC notation. The functional
requirements are formally specified with standard MSCs. The performance requirements of the
system under development are also given formally. For this, an annotated extension of MSCs
is used in conjunction with a high-level notation to formally specify the interrelation between a
set ofMSCs in respect to performance aspects. In addition, the machine architecture is formally

High-Performance Protocols with the DO-IT Toolbox 47

Figure 1 Outline of the development methodology

~pecified with respect to structural, behavioral and performance aspects. The formal specifica­
tion of functional and performance aspects as well as the machine architecture are a prerequisite
for the automization of the design process.

The conceptual design specification is derived from the requirements specification. The struc­
tural (conceptual) design is specified with SDL. The implementation design is derived in a series
of steps subsequently moving from a purely structural to a detailed behavioral design document.
In conjunction with the refinement of the SOL specification, the MSCs are subsequently refined
to reflect the internal behavior of the refined SDL specification.

A more detailed description of our methodology with its support for performance analysis and
system synthesis can be found in (Mitschele-Thiel, 1996).

2.2 Overview on the DO-IT Toolbox

In order to support our methodology, especially the integration of performance aspects in the de­
sign and implementation process for parallel systems, the DO-IT toolbox (Design and Optimiza­
tion- Integrated Toolbox) has been devised. As depicted in figure 2, the DO-IT toolbox consists
of three major components, namely MODE (MOdel DErivation), MOPS (Model based Opti­
mization of Parallel Systems) and COPS (Code Optimization for Parallel Systems). The three
components of the DO-IT toolbox are intended to complement the commercially available tools
for SDL and MSCs.

The input to the MODE component consists of the SDL specification and the load model. At
this stage of the development cycle, the load model formally specifies the performance require­
ments of the system under development. As already mentioned, we employ use cases to formally
specify the performance requirements.

The use cases are specified in the MSC notation. An additional notation has been introduced
to specify the interrelationship between the MSCs. Since we employ a notion similar to high­
level MSCs (HMSC) currently in the standardization process, we call our notation high-level
performance MSC, or HPMSC for short. A HPMSC specifies all the performance requirements
of a system under development in a similar way a HMSC specifies the functional requirements
of a system. A HPMSC is structured as a tree. The leaves of the tree refer to MSCs in most cases.

48 Part One Tools and Tool Support

runtime library

Figure 2 The DO-IT toolbox

A detailed description of tbe HPMSC notation is given in section 3 .2. An example of an HPMSC
to specify the performance aspects of our multimedia application is given in figure 6.

Given the load model, i.e. the formal specification of the performance-relevant use cases, and
the corresponding SDL specification, the MODE component is employed to derive the perfor­
mance data of the SDL specification. Performance data denote the cost of executing the given
use cases on the target system. In addition to the derivation of the performance data, MODE is re­
sponsible for tbe back annotation of the load model with the respective performance data. Thus,
the performance data are used to annotate the MSCs referred to in the HPMSC. As described in
detail below, two different instances of MODE exist, depending on the level of detail provided
by the given SDL specification. Thus, MODE may be applied in early as well as in late design
phases.

Once the necessary performance data have been derived, the MOPS component can be ap­
plied. The major inputs to MOPS consist of the load model and the machine model. After the
execution of MODE, the load model contains all required performance information of the ap­
plication. MOPS computes the major design decisions concerning the software, the hardware as
well as the mapping of the software on the hardware. The resulting design decisions are given
in an abstract form. This is denoted as system model.

The system model represents the basis for the code generator and optimizer COPS which is
responsible for the implementation of tbe design decisions made by MOPS. In the paper, we
focus on the components MODE and MOPS.

2.3 Derivation of Performance Data- MODE

The derivation of performance data for a given SDL specification, especially the execution and
communication cost of its implementation is supported by the MODE tools, namely MODE-M
and MODE-A. The two tools support the derivation of performance data at different phases in
the development cycle. Both tools support the back annotation of the MSCs with performance
data. With MODE-M (MOdel DErivation by Measurements), the performance data are derived
by measuring tbe computation cost of the SDL specification on a specific machine. In this con­
text, the term "machine" denotes the combination of hardware and system software that exe­
cutes the SDL constructs. Thus, the computation and communication cost with which tbe use
cases (MSCs) are annotated reflect the cost of execution ofthe constructs with the given system
software on a specific hardware unit. Note that the cost also depend on the code generator and
compiler that are used. Thus, each combination of code generator, compiler, system software
and hardware constitutes a separate machine. In case several machines are at the disposal of the
design process, the MSCs are annotated with vectors where each element of the vector reflects
the cost of tbe corresponding SDL constructs on a specific machine.

The derivation of the performance data with MODE-M is performed in a series of steps, it­
self involving a set of tools. First, the given SDL specification is automatically instrumented,

High-Performance Protocols with the DO-IT Toolbox 49

i.e. additional instructions are integrated into the code that record start and end time of the rele­
vant SDL constructs. The instrumentation is controlled by the corresponding MSCs. Our current
instrumentation tool performs the automatic instrumentation of C code (Dauphin, Dulz and Lem­
men, 1995). However, with support of the code generator for SDL, e.g. as provided by the SDT
code generator, the respective instructions can be directly integrated into the SDL specification.
This eliminates the need to associate each SDL construct with the respective parts in the C code.

After instrumentation, the code is translated and executed on the target hardware. During exe­
cution, the performance-relevant data are traced. The execution of the code is controlled by the
input signals corresponding to the respective MSCs. As a result, only those parts of the SDL
specification are typically executed for which a respective MSC exists. Thus, no performance
data are traced for the remaining parts of the SDL specification. However, this is not a problem
as long as the performance-relevant parts of the SDL specifications are covered by MSCs, which
is typically the case.

The monitoring of the system and the recording of the traces is either done in software or with
the ZM4 hybrid monitoring system (Dauphin et al, 1994). The ZM4 allows for the monitoring of
parallel as well as distributed systems and supports a wide range of hardware interfaces. For the
analysis ofthe traces, the SIMPLE analysis tools (Dauphin et al, 1994) are used. An additional
tool is needed that supports the back annotation of the respective MSCs with the measured per­
formance data. As an example of the annotation of an MSC with performance data, the annotated
version of the MSC depicted in figure 8 is given in figure 11.

Instead of the derivation of the performance data by means of measurements, the analytical
modeling tool MODE-A (MOdel DErivation- Analytic approach) may be employed. Central
component of this approach is a performance data base. For a set of relevant machines, it speci­
fies the performance data ofthe SDL constructs (e.g. input, output, create) and the performance
data of specific procedures called from the SDL processes. Examples are procedures provided
by an implementation of an abstract data type or a procedure to perform a cyclic redundancy
check. Provided that the data base contains the performance data for the required machines, the
annotation of the respective MSCs can be done quickly without the need to actually implement
and execute the SDL specification. The performance data for a particular machine in the data
base can either be estimated based on performance data available for a comparable machine or
based on measurements previously derived by MODE-M.

Note that our approach to model derivation is not necessarily limited to the automatic deriva­
tion of code from the given SDL specification. The approach can also be applied, if parts of the
SDL specification are hand coded or different code generators are applied to generate code for
different parts of the SDL specification.

2.4 Performance Evaluation and Optimization- MOPS

Once the necessary performance data of the SDL specification are derived, the performance-rele­
vant design decisions can be made. The design decisions comprise software and hardware issues
as well as the mapping of the software on the parallel machine. This is supported by the model
based optimization tool MOPS (Model based Optimization of Parallel Systems). The outline of
MOPS is depicted in figure 3.

The major input to MOPS consists of

• the machine model, i.e. the formal specification of the available parallel machine, and
• the load model, i.e. the formal specification of the load imposed on the machine including the

performance requirements of the load.

50 Part One Tools and Tool Support

generation
strategy

Figure 3 Model based optimization of parallel systems - MOPS

The machine model specifies a rather abstract machine. The abstract machine can be viewed
as a parallel system that executes an abstract program. In our case, the abstract program is given
by the HPMSC, described in detail in section 3.2. Note that the abstract machine also models
the operating system. Thus, it supports process management including scheduling and load bal­
ancing. The open parameters of the machine which define the strategies for scheduling and load
balancing are specified by the system model.

The tool computes the system model comprising the major design decisions concerning the
static as well as dynamic aspects of the implementation. In general, the system model comprises
the following design decisions:

• the static mapping of the code on the machines, i.e. the decision on which processor a specific
SDL process can be executed,

• the dynamic load balancing strategy for the SDL processes,
• the dynamic scheduling strategy, e.g. the priorities of the processes, and
• the selection of implementation alternatives, possibly including hand-coded parts.

The MOPS tool consists of two main components, a component to generate system models
(optimization method) and a component to evaluate given system models. The optimization
method employed by MOPS is based on the subsequent improvement of an initial solution, i.e.
the repeated improvement of an initial system model. Several optimization techniques support­
ing this approach are known from literature. The most important techniques are genetic algo­
rithms, simulated annealing and tabu search. A comprehensive survey of these techniques can
be found in (Reeves, 1993). The most appropriate optimization technique mainly depends on the
time complexity of the evaluation component of MOPS.

The evaluation component performs the evaluation of given system models. In order to pro­
vide a design optimization tool that supports various optimization goals, we propose a flexible

approach. In our approach, a set of basic predefined evaluation functions are provided to evaluate
given system models. These evaluation functions may be complemented by user-defined eval­
uation functions. In addition, the interrelationship between the different (predefined and user­
defined) evaluation functions and their influence on the main goal function, that quantifies the
quality of a system model, is user-defined. Thus, different and possibly conflicting optimization
goals may be pursued with different intensity. In addition, various optimization constraints may
be specified and enforced. Examples of predefined evaluation functions are:

High-Performance Protocols with the DO-IT Toolbox 51

host A host 8 host C
application application application

audio video white board

~microphone I
mterface I camera I

interface

I loudspeaker J I display 8 I
mterface

I display C I I

_j
I I I

lxTP XTP I XTP I
I medium I I

Figure 4 Outline of the multimedia application

(1) the evaluation of the (static) load per processor resulting from the load as specified by the load
model (static bottleneck analysis),

(2) the evaluation of the (static) load per communication link (static bottleneck analysis),
(3) the evaluation of the response time of each use case, i.e. each MSC, under the assumption

that no contention exists between the use cases, i.e. the use cases are imposed on the system
sequentially rather than concurrently (zero load dynamic analysis),

(4) the evaluation of the response time of the use cases under the assumption that the maximum
load, as specified by the load model, is imposed on the system concurrently (full load dynamic
analysis).

The use of the last evaluation function is further detailed in section 3.4.
Several optimization algorithms have been implemented to compute a part of the design deci­

sions relevant to configurable message passing systems (Mitschele-Thiel, 1993, Mitschele-Thiel
and Dussa-Zieger, 1994, Schwehm and Walter, 1994).

3 APPLICATION OF THE DO-IT TOOLSET

3.1 Example: Multimedia Application

Our multimedia application is structured in two parts, the multimedia application itself and the
underlying XTP protocol suite (release 4.0) to handle communication between the hosts. The
structure of the multimedia system is depicted in figure 4. Three kinds of applications are sup­
ported: video, audio and white board. We assume that data compression is employed for all appli­
cations. The functional requirements for transport connections are as follows: Audio and video
require a non-confirmed connection-oriented transport service. The whiteboard application is
handled by a confirmed connection-oriented transport service.

The performance requirements of the three types of multimedia applications differ consider­
ably. An audio application requires a fixed number of small data packets. In order to keep the sig­
nal delay small, we require 22 packets per second. In addition, we require a maximum processing
delay of 40 ms to send an audio packet and 50 ms to receive a packet.

Similarly, a video application also requires a fixed number of packets per time unit. However,
the number of data packets transferred per time unit may be smaller. Typical throughput require­
ments for a video application vary from a single packet every ten seconds to 30 packets per sec-

52 Part One Tools and Tool Support

ond. For a multimedia conference with two or three participants we require a throughput of ten
packets per second. In case of four participants, the required throughput is 5 packets per second.
The delay of video signals is less critical than audio. We require a processing delay smaller than
200 ms for inbound and outbound traffic, respectively.

For the whiteboard application, we require a processing delay below 200 ms. The required
throughput of the white board application is two packets per second.

For a conference with two participants, two video connections, two audio connections (one
for each direction) and one connection for the whiteboard application is required. In case a third
participant enters the conference, three video connections are used altogether, one multicast con­
nection to handle all outgoing video streams and one connection for each incoming video stream.
The same holds for audio. For the whiteboard application, two connections are employed, one
connection per remote participant.

3.2 Formal Specification of the Multimedia Application

Functional Specification with SDL
The structure of our SDL specification is given in figure 5. The octagons denote SDL processes.
The solid lines denote communication, dashed lines model the creation of process instances. The
SDL specification is structured in two blocks, one block for the application and one for XTP
itself.

In the XTP block, separate SDL processes are used to handle the different applications (au­
dio, video and whiteboard). In addition, inbound and outbound traffic is separated, i.e. handled
by different SDL processes. Thus, a separate sender, receiver and encoder exists for each appli­
cation. The XTP connections are managed by the context manager, which creates and terminates
the process instances.

In the application block, separate SDL processes are used for incoming and outgoing data
streams as well as for each application. An exception is the white board application, which is han­
dled by a single SDL process. Each inbound video stream requires a separate process instance.
Similarly, each outbound video stream (each local camera) is handled by a separate process in­
stance. A similar approach is taken for audio streams. When a new conference is started or a
new participant enters the conference, the manager process in the application block creates the
respective process instances and instructs the context manager in the XTP block to generate the
corresponding process instances there.

Formal Specification of Peiformance Requirements with HPMSC
As already mentioned in section 2.2, we employ high-level performance MSCs (HPMSC), a no­
tation based on use cases to formally specify, among others, the performance requirements of
the system under development. A HPMSC is structured as a tree. The leaves of the tree refer
to MSCs in most cases. The HPMSC employed to specify the performance requirements of our
multimedia application is given in figure 6.

The syntax of HPMSCs is as follows: Four types of nodes exist, namely the root, MSC nodes,
construction nodes and comment nodes. MSC nodes refer to an MSC. The referred MSCs are
typically annotated with performance aspects. Four of the MSCs referred to in figure 6 are shown
in figures 7 to 10. * Comment nodes are used to include informal text. Six different construction
nodes exist. The construction nodes ALT, AND, PAR and SEQ are used to construct a larger tree
from a set of subtrees. With exceptions, construction nodes have more than one child connected

*The notation employed by the MSCs is as follows: Each vertical axis denotes a process instance. A solid arrow
models the transmission of a signal. A dashed arrow denotes the creation of a process instance.

High-Performance Protocols with the DO-IT Toolbox 53

block multimedia

block appl blockXTP

Figure 5 Structure of the SDL specification of the multimedia application

Figure 6 High-level performance MSC (HPMSC) to specify the performance requirements of
the multimedia application

to it. Exceptions are the construction node RESET which does not have a child at all and the
node NO_PERF which has exactly one child.

The semantics of the construction nodes is as follows: Each subtree in the HPMSC represents
a load on the system with specific performance requirements. The PAR node denotes the case
where the system under development has to be able to concurrently handle the load as given in
each of the subtrees of the PAR node. Thus, the load is defined by the sum of the load specified
by the subtrees. In the example given in figure 6, the PAR node is used to state that the various
data streams (audio, video and whiteboard) are concurrently imposed on the sytem.

Similarly, the AND node also denotes the fact that the system has to be able to handle the load
as given in each of the respective subtrees. However, different from the PAR node, the load as
specified by the representative subtrees of the AND node is not imposed on the system concur­
rently. Rather, the load specified by each subtree has to be handled by the system one (subtree)
at a time. In the example given in figure 6, the AND node is used to state that the system has to
be able to handle each of the three types of conferences, i.e. with two, three or four participants.
However, the system does not have to be able to handle all three types of conferences concur­
rently.

54 Part One Tools and Tool Support

msc local_setup_3_conf

l ~l.man_ager J L XTP.context man~J ! XTP.decoder
CON__req

X"Jll.audm_out_loCnd addr

____________ • similar setup of process instances for
video and whiteboard conneclions

--1 XTP.audio_out_enc jr-----,

----------- --------- XTP.audio_out_send[r-----,

XTP.audio_in_recvj
XTI'.audio in_recv addr

I

Figure 7 Local setup of a multimedia conference with three participants

msc send_audio

[i:f~:~ed~IC~~t 1 [jxTP.audio_out_send [[XTP.audio_out_enc [

audio frame

· 1 #event send audiO lh

appl.audio frame
XTP.audio frame

XTP.audio frame enc B

XTP .audio frame enc C

\ j #event send audio out
I #req send audio out - send audio in < 40ms

Figure 8 Sending of audio data

The SEQ node states that the system execution as specified by the subtrees is done sequentially,
executing the subtrees from left to right.

The ALT node is used to express open design or implementation decisions. In this case, the
selection of one of the alternatives is up to MOPS. Thus, MOPS implicitly selects the subtree in
the HPMSC, which results in the best value of the overall optimization goal function. In other
words, MOPS selects a subtree of the ALT node such that the resulting system model is optimal.
In case that several ALT nodes are present in an HPMSC, MOPS decides on the best combination
of all the alternatives.

In addition to the different types of nodes, attributes to the nodes can be specified. Each sub­
tree of an ALT node is attributed with a condition. The conditions are evaluated statically be­
fore the performance evaluation is started. The variables of a condition are defined in the system
model. The actual values of the variables are computed by the optimization algorithm employed
by MOPS. In figure 6, an example of the use of an ALT node to express a design alternative for
the audio transmission is given. In the example, the ALT node is used to express the design alter­
native where integrated layer processing (ILP) (Clark and Tennenhouse, 1990) is used to merge
the two audio processes audio_ouLsend and audio_ouLenc of the block XTP. It also shows how
the condition attribute can be used to represent context dependences. In the figure, two dif­
ferent MSCs for the setup of the conference are given, one for the non-ILP design alternative
and one for the case that ILP is employed.

Attributes important for performance evaluation are the attributes period and arrivals.
The attribute period specifies the time period for which the performance evaluation is done.
The arrivals attribute specifies the number of arrivals for the given MSC (or more specif­
ically the number of its executions) in the given time period (as specified by the period at­
tribute). Thus, the arrivals attribute in conjunction with the period attribute supports the
specification of the load which the system under development is supposed to handle. This is

High-Performance Protocols with the DO-IT Toolbox

msc recv_audio_B

I appl.audio_in I
instance speaker_ I

audio frame
appl.audio frame

'-J #event recv audio out B

I XTP.audio_in_recv \ I XTP .decoder I
XTP.audio_frame_B

med.audio frame

',j#event recv _audio_in_B

I_~ recv audio out B - recv audio_in 8 < 50ms

Figure 9 Reception of audio data from user B

msc send_whiteboard

I appl.whiteboard I p{TP.w~iteboard_out_send I]XT~.whiteboard_out_enc I]XT_P.whiteboard_in_recv] I XTP.decoder I
mstance wb I I mstance wb I I mstance wb_l J I mstance wb I [

wh frame

'-!#event send wb in
appl.wb frame

XTP.wb frame

55

med.wb frame cnc 8

med.wb_frame enc_C

\j #event send wb out
I #req send wb_out - send_wb in < 200ms ack

L ack_B
ack_C ack

ack

Figure 10 Transmission of a local update of the whiteboard

typically used to specify throughput requirements of the system. Both, the period and the
arrivals attributemaybepresentwiththenodetypesALT,AND, PAR and SEQ. The attributes
are inherited by their subtrees. However, attributes may be redefined in a subtree.

Not necessarily each MSC (or even subtree containing a set ofMSCs) in the HPMSC is directly
relevant for the performance evaluation. Some MSCs may be given solely to initialize the system
to a state where performance evaluation can be started. For example in communication systems,
we are often solely interested in the performance of the data transmission and not so much in the
connection establishment phase preceding the data transmission. Nevertheless, the connection
must be established before data transmission can be started. For example, the appropriate process
instances have to be created and initialized. In order to distinguish between subtrees relevant for
the performance optimization and subtrees not relevant, the NO_PERF node has been introduced.
NO_PERF excludes the subtree from any performance evaluation. The subtree of the NO_PERF
node is solely used to initialize the system.

In a system, several performance evaluations are typically employed. As stated above, the re­
sults of the performance evaluation may depend on the state of the system from which a specific
performance evaluation is started. In order to support the start of a performance evaluation at
a defined state, the RESET node in conjunction with the NO_PERF node and a respective MSC
to set the system into the appropriate initial state for performance evaluation, is employed. The
RESET node puts the system in its initial state as specified in the SOL specification.

The MSCs referred to in the leaves of the HPMSC serve three purposes. First, they are used
to specify the functional aspects relevant to performance evaluation, e.g. the creation of process
instances prior to their use. An example of this is the MSC locaLsetup_3_conf given in figure 7.

Second, the MSCs are employed to specify response time requirements. Examples of these
can be found in figures 8 through 10. For example, in figure 8 two events are defined, event
send_audioJn and event send_audio_out. The response time requirement itself is given in the

56 Part One Tools and Tool Support

req clause. It states that the time required to process an outgoing signal has to be smaller than
40ms.

Third, the MSCs are employed to specify performance data. However, note that performance
data are not part of the requirements specification. Rather, they are derived by the MODE com­
ponent. For this reason, discussion on the specification of performance data is deferred to sec­
tion 3.3.

Machine Model
The parallel target machine for our multimedia application is a Sun Spare 20 station with four
processors. We assume that three of the processors are solely dedicated to handle the multimedia
application as specified above. All other processes on the workstation are assumed to be run on

the fourth processor. t
As a result, the machine model defines three identical processors available to handle the load

as specified by the HPMSC given in figure 6. The abstract parallel machine comprises a small
set of abstract instructions, namely

• create and terminate to set up and terminate a process instance.
• comp to execute a computation on an abstract processor,
• input and output to support communication between the process instances,
• seLtimer to induce a special timer signal in the system at a specified time.

The abstract instructions directly correspond to the activities specified with the MSCs. As noted
before, the abstract instructions return the cost of their execution on the different resources. In
this simple example the only resources considered are the processors. Other possible resources
could be communication links and storage devices.

In addition to the abstract instructions corresponding to the MSC activities, instructions that
implement the functions of the (abstract) operating system are provided by the machine model.
This includes a function to implement the scheduler for the MSCs. In addition, functions are
provided to fetch the abstract MSC instructions described above and to read information from
the system model.

For our example, we assume that the three processors are clustered to dynamic load sharing
groups. Each SDL process is statically assigned to one of the load sharing groups. Each load
sharing group employs its own scheduler. Thus, a given process instance can be dynamically
scheduled on each of the processors of the load sharing group. Migration of processes between
load sharing groups is not allowed.

3.3 Application of MODE

The purpose of the MODE tools is to derive performance data for the application. As outlined
in section 2.2, performance data either specify the actual cost to execute the entities described
with the MSCs or specify the parameters from which the respective cost can be derived. The
DO-IT toolbox supports both approaches. The mapping of parameterized cost to actual cost is
done by the abstract instructions defined by the machine model. In the example, actual cost are
used to specify computation cost. Parameters are employed for the specification of cost related
to communication. Thus, the actual cost for communication may depend on the location of the
communicating processes and is computed after this has been decided. The physical location of

t A mixture of the load is possible but is not described here for space limitations.

High-Performance Protocols with the DO-IT Toolbox 57

msc send_audio__perf_data

I
appl.audio_out I
instanq: micro I IXTP.audio_out_sendl I XTP.audio_out_enc I

audio frame
_ -1 ~sg_size 2048Byte
' #event send audio in

llkom 7m• I
appl.audio frame

llkom lm• I
'j#msg_size 1024Byte

XTP.audio frame

llkomp 0.5m• I
'j #msg_size 1072Byte

XTP .audio fnlme enc 8

'·~#msg_size 10728yte

l1k:omp0.5m• I
XTP.audio frame enc C

'-1 #m•g_•ize !072Byte
#event send audio out
fh'eq send audio out - send audio in < 40ms

Figure 11 Annotation of the MSC send_audio with performance data

process instances is either statically defined by the system model or decided at runtime during
the creation of process instances. This is the case if several process instances are created from
an SDL process and dynamic or semi-dynamic load balancing is employed.

As explained in section 2.3, MODE derives the performance data for each MSC specified by
the HPMSC given in figure 6. In addition, MODE performs the back annotation of the MSCs
with the derived performance data.

An example for the specification of performance data in the MSC send_audio, as specified in
figure 8, is shown in figure 11. In the figure, the computation cost are given in the comp clause.
Communication cost are derived from the size of the messages which is given in the msg_size
clause.

3.4 Application of MOPS

As described in section 2.4, the input to MOPS mainly consists of the abstract specification of
the machine and the load. Open parameters of the machine and the load are defined by the system
model. In addition, the system model defines the design decisions related to the mapping of the
load on the machine. For space limitations, we concentrate on the evaluation of a given system
model and its prerequisites. We describe in more detail how the evaluation of the dynamic be­
havior of the system under full load is done. This refers to the fourth evaluation function given
in section 2.4.

System Model
During the optimization process of MOPS, we assume that at some state of the optimization
process, the following system model has been computed:

• two load sharing groups, S I and S2, are used,
• processor P 1 is assigned to the load sharing group S 1; P2 and P3 are assigned to S2,
• all SDL processes related to audio including the XTP decoder are assigned to S 1, the remain­

ing processes are assigned to S2,
• the priorities of the SDL processes assigned to S 1 -specified in decreasing order of their prior­

ity - are as follows: XTP.audio_ouLenc, XTP.audio_out...send, appl.audio_out, appl.audiojn,
XTP.audio_inJecv, XTP.decoder,

58 Part One Tools and Tool Support

0 455 100 200 300 400 500 600 700 800 900 1000 t/ms

Legend: I: MSC send_ video 4: MSC send_audio 7: MSC recv_whiteboard_C
2: MSC recv_video_B 5: MSC recv_audio_B
3: MSC recv_video_C 6: MSC recv_audio_C

Figure 12 Temporal order of the signal arrivals for the specified load scenario

om trigger fr

controlle -r

load model [system model] [machine modelj

evaluation_ 4! / for each load scenario J
evaluate trace for violations

derive all -----'> execute scenario

load scenarios and generate - of performance requirements

execution trace and value of goal function
- report to

controller

Figure 13 Evaluation of the dynamic behavior of a system model under full load

• the priorities of the remaining SDL processes assigned to S2 are as follows: appl.manager,
XTP.contexLmanager, XTP.whiteboard_ouLenc, XTP.whiteboard_out...send, appl.white­
board, XTP.whiteboardJn_recv, XTP.video_ouLenc, XTP.video_out...send, appl.video_out,
appl.videoJn, XTP.video_in_recv,

• the ILP option is turned off.

Example of the Evaluation of the System Model
Before the evaluation function is described, we introduce load scenarios. A load scenario rep­
resents an example of the load imposed on the system within a given time period. For example,
the load model defined by the HPMSC given in figure 6 can be divided in three parts according
to the number of participants of the multimedia conference. The detailed subtree specifying the
conference with three participants defines three load scenarios. This is because of the AND node
in the subtree that distinguishes three load cases for the whiteboard application. In the figure,
the MSCs belonging to the load scenario used in the following example are marked by the grey
background.

A load scenario implicitly defines a temporal order on a set of input signals. The temporal
order of the arrivals derived from the load scenario marked in figure 6 is depicted in figure 12.
Note that in conjunction with the machine and the system model, the temporal order on the input
signals fully defines the execution order (schedule) of the abstract machine.

In figure 13, the evaluation function to evaluate the dynamic behavior of the system model
under full load is outlined. The evaluation is done in two phases. First, the different load sce­
narios are derived from the load model. Second, the system model is evaluated for each load
scenario. For our specific evaluation function, the evaluation is done by abstract execution of
the load scenarios on the abstract machine according to the guidelines provided by the system
model.

High-Performance Protocols with the DO-IT Toolbox

J 1,2,3,4,5,6,7 !4,5,6

a.ao

0 45.5 50

j send_audio_in
recv _audio_in_B
recv _audio_in_ C

l recv_audio_out_B l send_audio_out

j send audio in
recv _audio_in_B

l send_audio_out

Legend of the scheduled process instances:

a.ai: appl.audio_in
a.ao: appl.audio_out

x.air: XTP.audio_in_recv
x.aoe: XTP.audio_out_enc
x.aos: XTP.audio_out_send

recv_audio_in_C l recv_audio_out_C

x.d(a): XTP.decoder(audio data)
x.d(v): XTP.decoder(video data)
x.d(w): XTP.decoder(whiteboard data)

Figure 14 Schedule of the load sharing group S 1

59

a.ai

t/ms

l recv _audio_out_B

l

The schedule of the load sharing group S 1 for the example load scenario is depicted in fig­
ure 14. Note that for the sake of clear presentation, the cost are not given in their exact scale.
Also note that computation cost related to communication between the process instances are not
explicitly shown. Instead, they are added to the computation cost of the process instances.

During the abstract execution, events defined by the MSCs are traced and checked against the
requirements also defined by the MSCs. The events related to audio traffic are depicted in fig­
ure 14. In addition to the evaluation of the events, the value of the optimization goal function is
derived.

4 CONCLUSIONS

The DO-IT toolbox is a joint project of the University of Erlangen and the Technical University
of Cottbus. The goal of the DO-IT toolbox is to support

• the automatic derivation of the performance data incurred with the implementation of the
components of an SDL specification,

• the analysis of SDL specifications for performance bottlenecks,
• the synthesis of an optimized system design deciding the issues related to software, hardware

and the mapping of the software on the hardware, and
• the implementation of the design decisions.

Central to the early integration of performance issues in the design process is the extension of
MSCs to formally specify performance-relevant information.

In the paper, we have concentrated on the first and the third issue. We have shown how the
DO-IT toolbox can be employed to derive the implementation design of a multimedia applica­
tion. Designing such an application, many conflicting performance requirements have to be met
and the best compromise has to be found. Especially with the implementation on parallel sys­
tems, a large number of design parameters need to be decided on. This results in an enormous
design space. In the paper, an approach for the automatic search of the design space has been

60 Part One Tools and Tool Support

described. In addition, we have shown how different classes of design decisions can be included

in the automatic search process.

ACKNOWLEDGEMENTS

Many people have contributed to the design of the DO-IT toolbox. Thanks for their support of the

project and for numerous discussions go to H. Konig, U. Herzog, W. Dulz, N. Fa! tin, L. Lambert

and F. Lemmen.

REFERENCES

D.D. Clark, D.L. Tennenhouse. (1990). Architectural considerations for a new generation of pro­

tocols. ACM SIGCOMM, p. 200-208.
P. Dauphin, R. Hofmann, R. Klar, B. Mohr, A. Quick, M. Siegle, F. Sotz. (1994) ZM4/SIMPLE:

a General Approach to Performance-Measurement and -Evaluation of Distributed Systems.
Readings in Distributed Computing Systems, T.L. Casavant, M. Singhal (Ed.), IEEE Com­

puter Society Press.
P. Dauphin, W. Dulz, F. Lemmen. (1995) Specification-driven Performance Monitoring of

SDLIMSC-specified Protocols. Proc. 8th Int. Workshop on Protocol Test Systems, A. Cav­

alli, S. Budkowski (Ed.).
R. Hofmann, R. Klar, B. Mohr, A. Quick, M. Siegle. (1994) Distributed Performance Monitor­

ing: Methods, Tools and Applications. IEEE Transactions on Parallel and Distributed Sys­

tems, 5(6).
ITU-T. (1993) Z.100, Specification and Description Language (SDL). ITU.

ITU-T. (1993a) Z.120, Message Sequence Chart. ITU.
A. Mitschele-Thiel. (1993) Automatic Configuration and Optimization of Parallel Transputer

Applications. Transputer Applications and Systems '93, R. Grebe et a!. (Ed.), vol. 2, lOS
Press.

A. Mitschele-Thiel, K. Dussa-Zieger. (1994) Near-Optimal Compile-Time Scheduling and Con­
figuration of Parallel Systems. Proc. of the 1994 World Transputer Congress, Lake Como,
Italy, lOS Press.

A. Mitschele-Thiel. (1996) Methodology and Tools for the Development of High Performance
Parallel Systems with SDL/MSCs. Software Engineering for Parallel and Distributed Sys­

tems, I. Jelly, I. Gorton, P. Croll (Ed.), Chapman & Hall.

C.R. Reeves (Ed.). (1993) Modem Heuristic Techniques for Combinatorial Problems. Blackwell
Scientific Publications, Oxford.

M. Schwehm, T. Walter. (1994) Mapping and Scheduling by Genetic Algorithms, Parallel

Processing: CONPAR'94-VAPP VI, Third Joint Int. Conf. Vector and Parallel Processing,
Lecture Notes in Computer Science 854, Springer-Verlag.

W.T. Strayer, B.J. Dempsey, A.C. Weaver. (1992) XTP: The Xpress transfer protocol. Addison

Wesley.
Telelogic Malmo AB. (1995) SDT 3.0 User's Guide, SDT 3.0 Reference Manual.

Verilog. (1994) GEODE- Technical Presentation.

