
28
Specification and Verification of the
PowerScale™ Bus Arbitration Protocol:
An Industrial Experiment with LOTOS

Ghassan CHEHAIBAR
Bull S.A., Rue Jean-Jaures, F-78340 Les Clayes-sous-Bois, France
Current E-mail: Ghassan. Chehaibar@inrialpes. fr

Hubert GARAVEL, Laurent MOUNIER
Inria Rhone-Alpes / Verimag, Miniparc-Zirst, TUe Lavoisier,
F-38330 Montbonnot Saint-Martin, France
E-mail: Hubert. Garavel@imag. fr, Laurent. Mounier@imag. fr

Nadia TAWBI
Bull S.A., Rue Jean-Jaures, F-78340 Les Clayes-sous-Bois, France
CuTrent E-mail: Tawbi@ift. ulaval. ca

Ferruccio ZULIAN
Bull H.N., I-20010 Pregnana Milanese, Italy
E-mail: F. Zulian@i t 12. bull. it

Abstract
This paper presents the results of an industrial case-study concerning the use of
formal methods for the validation of hardware design. The case-study focuses on
POWERSCALETM, a multiprocessor architecture based on POWERPC™ micro-processors
and used in Bull's ESCALA TM series of servers and workstations*. The specification lan­
guage LOTOS (Iso International Standard 8807) was used to describe formally the main
components of this architecture (processors, memory controller and bus arbiter). Four
correctness properties were identified, which express the essential requirements for a
proper functioning of the arbitration algorithm, and formalized in terms of bisimula­
tion relations (modulo abstractions) between finite labelled transition systems. Using
the compositional and on-the-fly model-checking techniques implemented in the CADP
(CJESAR/ ALDEBARAN) toolbox, the correctness of the arbitration algorithm was estab­
lished automatically in a few minutes.

Keywords
FDT-based system and protocol engineering, FDT-application, Practical experience and
case studies, Tools and tool support, Verification, validation and testing, LOTOS, Labelled
Transition Systems, Model-checking, Bisimulations, Hardware protocols

*PowerScale and Escala are registered trademarks of Bull. PowerPC is a registered trademark of the
International Business Machines Corporation.

R. Gotzhein et al. (eds.), Formal Description Techniques IX
© IFIP International Federation for Information Processing 1996

436 Part Seven Industrial Usage Reports

1 INTRODUCTION

The design of hardware systems involves methodologies based upon hardware description
languages such as VHDL [IEE93] or VERILOG [IEE95]. These languages support various
description levels, including architectural, behavioural, register-transfer, gate and switch
levels. Many tools exist for simulating the descriptions written in these languages, syn­
thetizing implementations automatically, and generating test sequences.

However, if one is only interested in the high-level functional design of a hardware
system, namely the correctness of the distributed algorithms used in hardware systems
(e.g., bus arbitration protocols, cache coherence protocols, etc.), then hardware descrip­
tion languages are perhaps not the best candidates for modelling these distributed al­
gorithms. These languages are probably too detailed for this specific problem. Many
hardware-related details have to be described, although they are not directly relevant
to the algorithms themselves; this may result in overspecification issues. Moreover, since
the descriptions are overly complex, the simulation tools handle them often slowly. One
may therefore wonder whether the Formal Description Techniques (FDT) defined for com­
puter networks and telecommunication systems could not be also applied with profit to
the distributed algorithms used in hardware systems.

In this paper, we investigate the use of LOTOS t [ISOSSb] for the formal specification and
verification of the bus arbitration algorithm used in Bull's POWERSCALE™ architecture.
We selected LOTOS for this case-study because its underlying semantics model is based
on the rendez-vous paradigm, which is appropriate for the description of hardware entities
(processors, memory controllers, etc.) communicating by means of electrical signals sent
on wires. The possibility of using LOTOS for the description of hardware systems was
already pointed out in [FL93] and [ST93]. For this reason, we used LOTOS rather than
other protocol description languages such as ESTELLE [IS088a] and SoL [IT92] based on
infinite FIFO queues, which are clearly not adapted to our problem. There are several
possible specification styles in LOTOS [VSS88]: for this case-study, we adopted an imper­
ative approach (the so-called resource-oriented style) in which LOTOS is used as a concise
and readable language to describe a set of extended finite-state machines (i.e., automata
with state variables) running in parallel and communicating using rendez-vous. In this
approach, each architecture component (processors, bus arbiter, etc.) is represented by an
extended finite-state machine, possibly refined into sub-components.

To express the expected functioning properties of the bus arbiter, we identi­
fied four correctness requirements, and proved them automatically using the CADP
(CJESAR/ ALDEBARAN) toolbox [FGM+92, FGK+96]. These requirements were expressed
using Labelled Transition Systems (LTss) and the verification process was based on the
comparison of LTSs modulo equivalence or preorder relations. This choice was also moti­
vated by the existence in the CADP toolbox of a powerful tool, ALDEBARAN, for checking
bisimulation relations, which was available at the time of our case-study (more recent
versions of the CADP toolbox also include evaluators for temporal logic formulas).

This article is organized as follows. Section 2 presents the POWERSCALE™ architecture
and gives the main facts about its formal description in LOTOS. Section 3 focuses on the
bus arbitration protocol. Section 4 sketches the four correctness properties, informally

t Language Of Temporal Ordering Specification

An Industrial Experiment with LOTOS 437

first, then formally. After a brief overview of the CADP toolbox, Section 5 presents the
verification approach we followed and the results we obtained. Finally, some concludig
remarks are drawn in Section 6.

2 THE POWERSCALE ARCHITECTURE

POWERSCALE™ [BR95] is an original, Bull-patented, symmetrical multiprocessor archi­
tecture using IBM's POWERPC™ processors. The POWERSCALE™ architecture is used in
Bull's EscALA ™ series of servers and workstations. A schematic view of this architecture
(reproduced from [BR95] with minor adaptations) is shown on Figure 1.

, , ,

r::;:qr::;:q
~~

~
~

·····-....

Figure 1 The PoWERSCALE™ architecture

Address

----------1

Address & Control Bus

~
~

I
I
I
I
I
I
I
I

The POWERSCALE™ architecture supports up to four nodes, each node containing two

438 Part Seven Industrial Usage Reports

POWERPC™ processors. There is also a fifth node specially dedicated to the control of
input/output operations.

All the processors share a global memory array. In addition, each processor is equipped
with a data cache that allows to speed up accesses to the shared memory. To maintain the
consistency between the different caches of the processors, the POWERSeALE™ architec­
ture uses a MESI (Modified, Exclusive, Shared, Invalid) snoopy-based protocol (see, e.g.,
[PP84] with a slightly different terminology) implementing the weak consistency storage
model [GLV90].

The processors access the shared memory using two 64-bit buses: an address bus and a
data bus

The address bus is used for command transfer. A command is a data structure con­
taining several fields: the type of operation (read, write, invalidation of a data stored in
a cache, etc.), the address concerned by the operation, and various other fields such as:
tags associated to the data sent as response to a read operation, bits related to the cache
coherence protocol, etc. The precise knowledge of the command format is not required for
our case-study.

The data bus is implemented as a crossbar switch (named DeB for Data Cross Bar).
It centralizes five 64-bit data paths originating from the four nodes and the input/output
dedicated node. It is connected to the shared memory via a third 256-bit bus (named
MA-bus).

The System Memory Controlle1· (SMe) is connected to the address bus and is in charge
of controlling the memory, the DeB and the MA-bus. It switches data paths in DeB and
orders transfers through the MA-bus.

Finally, the Arbiter (ARB) is connected to all the processors and to the SMe. It is
in charge of the arbitration of the address bus and data pathes. It takes care to avoid
conflicts when granting the address and data buses to the processors and the SMe.

After reading the relevant documents defining the POWERSeALE™ architecture, we
produced a 2,000 lines formal description in LOTOS of the overall architecture, together
with a 30-pages technical document. Although this description could be compiled and
simulated, it was not appropriate for a formal verification, for two reasons: it was too
large for being analyzed exhaustively and, at the same time, some critical parts were not
detailed enough to allow thorough analysis.

We therefore decided to focus on the bus arbitration protocol, which was a challenging
target for both researchers and industrialists because of its complexity and its essential
role in the POWERSeALE™ architecture.

3 FORMAL DESCRIPTION OF THE ARBITRATION PROTOCOL

The purpose of this section is to show the different steps that led us to get the abstract
model of the POWERSeALE TM arbiter on which we performed our verification.

In order to verify the arbiter functions, we have built a formal description in which the
arbiter is detailed, together with its surrounding devices: the processors and the SMe.
Therefore, at the highest description level, we consider three types of communicating
processes: the arbiter, the processors, and the SMe. However, the behaviour of processors
and the SMe are abstracted away to modelize only the interactions with the arbiter.

An Industrial Experiment with LOTOS 439

To keep verification tractable, we made some simplifying assumptions, all of which are
compatible with the actual POWERSCALE™ architecture. Firstly, we have only modeled
the arbitration mode for PoWERPC™ 620 processors, while the actual arbiter has slightly
different modes for POWERPC™ 601 and 604 processors.

Secondly, we decided to consider only a single node with two processors (noted PO
and Pl in the sequel). Consequently, the arbiter which we model manages the address
bus and a single data path, whereas the actual arbiter manages the address bus and
five data paths. This simplification is sound, since the five data paths are managed by
the POWERSCALE™ arbiter in a completely independent way. Only the address bus
arbitration protocol is concerned by this change, because it must handle two processors
instead of ten; however, it was written in a generic way, i.e., it is parameterized by the
number of processors.

3.1 The processors

Each processor has access to two buses: the address bus and a data bus. Before accessing
each bus, a processor must emit a request and obtain a grant from the arbiter. Depending
upon the type of operation to perform, the processor may ask for a single bus or both.
Each processor can issue three types of operations:

e In response to an address bus request (ABR), the processor receives an address bus grant
(ABG): this is the case of address-only operations, which include read operations, cache
invalidation requests, etc. For these operations, a command is sent on the address bus.

e In response to a processor data bus request (PDBR), the processor receives a processor
data bus grant (PDBG): this is the case of interventions, i.e. data-only (cache to cache)
operations in which a processor Pi provides data to another processor Pj in response
to a read operation from Pj.

• In response to an address-data bus request (ADBR) the processor receives first an ABG,
then a PDBG: this is the case of address-data operations. These are write operations to
the memory. The address bus is used to send the command and the data bus is used to
send the data. The command and the data are sent asynchronously on the two buses.

In our LOTOS description, we only model the bus requests and grants and forget about
the actual operations (read, write, intervention). So, each processor is refined into two
communicating sub-processes:

e The process DATA..SENDER is in charge of sending data on the data bus. When this
process is activated, it can either send a data and free the bus or free the bus without
sending data.

• The process MASTER is in charge of emitting all bus requests, obtaining bus grants,
and sending commands on the address bus. In particular, when obtaining a PDBG (for
a write operation or an intervention), it activates the DATA..SENDER process and can
immediately start to emit a new ABR (even if the data bus has not been freed yet);
therefore, several bus operations can be processed in para.llel.

440 Part Seven Industrial Usage Reports

3.2 The System Memory Controller

In the actual POWERSeALE™ architecture, the SMe is connected to the address bus, the
data cross bar (DeB), the memory, and the arbiter. But, since we only deal with a single
node, we need not model all the details of the DeB; instead, we regard it as a simple bus:
hence, we can assume that the SMe is directly connected to the data bus.

For each data path, there are two internal registers in the SMe (called DIRs for Data
In Registers). A DIR is a one-slot buffer designed to receive data emitted by the proces­
sor. When a processor emits a write operation, the corresponding operand (sent by the
DATA..SENDER process) is temporarily stored in a DIR until it is written to the memory,
which frees the DIR. A processor is not granted a PDBG unless there is a free DIR available
in the SMe.

When a processor wants to perform a read operation, the SMe emits a Memory Data Bus
Request (MDBR) to obtain the data bus connected to this processor and, after obtaining
a Memory Data Bus Grant (MDBG), orders the data transfer from the memory to the
processor.

For the purpose of our case-study, it was not necessary to model the SMe behaviour in
full detail. We made appropriate abstractions instead and split the SMe in two commu­
nicating sub-processes:

e The process SMC....DI..STAT maintains the number of busy DIRs in the SMe. This number
is incremented when a processor sends data. On the opposite, a copy from a DIR to the
memory decrements this number. As we have no specific LOTOS process to represent
the memory, we consider that the decrementation can occur non-deterministically when
the number of busy DIRs is greater or equal to 1.

e The process M....DATA.REQ is in charge of emitting MDBRs and receiving MDBGs. We do not
model data sending itself, since it is independent from the arbitration mechanism itself:
the important events are requests and grants for the data bus.

3.3 The arbiter

The arbiter is the core of our modelling. When trying to formalize its behaviour, a number
of questions arose, which required further technical explanations from the designer of the
POWERSeALE™ arbiter.

The arbiter communicates with the processors and the SMe. It manages the address
bus and the data bus simultaneously. The address bus is accessed by the processors; the
data bus is accessed by the processors and the S111e. The arbitration strategies for both
buses are based upon the same round robin algorithm: the arbiter maintains a circular
list of devicesi and a current pointer in this list; it continuously scans the list, starting
from the current pointer and seeking for the first device with a pending bus request. If
such a device exists, it is delivered a bus grant and the current pointer is moved to the
next device in the circular list. Otherwise, the current pointer is kept unchanged.

In addition to its arbitration role, the arbiter implements a mechanism to control the
flow of data sent to the SMe: when both DIRs of the SMe are busy, the arbiter does not

+i.e., the processors and, in the case of the data bus, the SMC

An Industrial Experiment with LOTOS 441

deliver PDBGs to the processors. Hence, the round robin algorithm implemented in the
data arbiter is slightly different from the above description. When both of the two DIRs
are busy, the arbiter issues grants only for the memory and does not move the current
pointer after giving a grant. This mechanism is called masking.

In our modelling, we refined the arbiter in four communicating sub-processes:

e The process RND...ADDR...ARB is in charge of the address bus. It receives ABR and ADBR
requests from the processors and delivers the corresponding ABG grants to the processors
on a round-robin basis. For an ADBR request, when the corresponding ABG is delivered
to the processor, an internal data bus requests (IDBR) is put in a FIFO queue in order to
be served later by the data bus arbiter. This FIFO queue ensures that the PDBG grants
generated for ADBR requests are delivered in the same order as ABG grants.

e The process !NT YDBR_FIFO implements a FIFO queue in which the ABG grants generated
for ADBR requests are stored, before being transmitted to the data arbiter as IDBR.

• The process RND..DATA...ARB is in charge of the data bus (in the actual POWERSCALE™
architecture, there are five such processes, one per data path). It receives data bus
requests originating from the processors (PDBR), from the SMC (MDBR), or from the
FIFO queue (IDBR). It delivers grants on a round-robin basis and taking into account
the number of busy DIRs in the SMC (if the two DIRs are busy, the current pointer is
not moved after an MDBG).

e The process ARB..DI...STAT maintains the number of busy DIRs according to signals it
gets from SMC..DI...STAT. It informs the data arbiter whether to deliver PDBGs to the
processors or not.

3.4 The LOTOS description

A LOTOS description representing the arbitration protocol (arbiter, processors and SMc)
was developed. This specification contains 760 lines of code (including a few comment
lines), divided into 200 lines (26%) for the data part and 560 lines (74%) for the control
part. The data part contains 6 type definitions (3 enumerated types, 2 tables used for the
round-robin algorithm, and 1 FIFO queue) and 14 process definitions (corresponding to
the aforementioned processes and their parallel combinations at different levels).

Figure 2 gives an overview of the arbitration protocol. Only a single, generic processor
is represented; it is noted P !pid, where pid is a parameter denoting the index of the
processor (0 or 1). The arbiter, the generic processor, and the SMC are refined in sub­
processes, as explained above. Boxes represent LOTOS processes and lines between boxes
represent communication gates between processes. For instance, the processor P !pid and
the arbiter communicate via the gate labelled ABR !pid, which expresses the fact that each
processor can send to the arbiter an address bus request ABR parametrized by its index.

4 BEHAVIOURAL EXPRESSION OF THE REQUIREMENTS

Before performing verification, it is necessary to define which functioning properties have
to be verified. We identified four requirements related to bus arbitration and data transfer
from the different devices (processors and memory). We found more suitable and easier to

442 Part Seven Industrial Usage Reports

PR~C&SSOR J
(pid I

ARBITER

'"" ' MASTER
onAD o RNO.AOOR.AllB (pi d)
,,,., ' (abl'Tol>lt,o<lbr't'abk,poi < r)

t ' """~"""'' .
I I ABGtoOBR chOMn
I

I . PnA,., • ·

ll\"T .PDBR . .HI'O

(dbriro,flmt.Stn<)

'''" \ ' OSBEC !pid I IN'l'.POBR! r-•(dbrf'iro) SMC

M.DATA..REQ

I
RNO.DA't'A.ARB '"'""
(dbl'!abl~,pointor) """"

'pof'REE/

'"'""""
I OJ .STATUS •m .. lc 1 o• TAT..REC

OA't'A.SENO / ARB.DI.STA'l'
nl RF~~F.'T' SMC.DI.STA'l'

(pld) (nbBu•y)
nt '"' '"""' I

(nbBuJy,dlt) ~.B££Illll

I " """~ ,,.,J,
I I

............... ," ' I
Figure 2 The LOTOS program structure

describe these requirements using behavioural specifications rather than temporal logic
formulas . We adopted the following approach: from an abstract point of view, let us
assume that we can translate the whole LOTOS description of the arbitration protocol
into a (large) LTS, which we will note arb in the sequel. Then, for each requirement, we
define another, much smaller LTS, which we will note req. To express that the arbitration
protocol satisfies this requirement, we state that arb and req are related modulo a given
equivalence relation or a given preorder relation.

Notice that, as the various LTSs req are generally small, they can be specified simply
by listing their states and transitions. In our case-study, we chose to specify them directly
in LOTOS and to use software tools to automatically generate the corresponding LTSs.
This allowed us to write generic requirements, parameterized with a processor identifier
pid, which can be easily instantiated with either PO or Pl. However, in this paper, we
show the LTss themselves, rather than the LOTOS code from which they were produced.

When comparing arb and req, abstraction criteria have to be used, as arb contains
many details which are not relevant to the requirement being expressed. Thus, LTSs have

An Industrial Experiment with LOTOS 443

to be abstracted when compared, by hiding all transitions that are not to be observed. For
instance, if we want to prove properties about the address arbitration fairness, we need
to hide all transitions but ABR and ABG. In the sequel, we adopt the following convention:
any action in arb that is not present in req is to be hidden. Hence we observe only actions
related to the property we want to prove.

We now present the four requirements and their expression in terms of equivalence or
preorder relations:

Proper response to bus requests: When a processor Pi issues a bus request, it is
always possible to satisfy this request by delivering to Pi the corresponding grant(s).
More precisely, each ABR !Pi may be followed by an ABG !Pi; each PDBR !Pi may be
followed by a PDBG !Pi; each ADBG !Pi can be followed by an ABG !Pi and then a PDBG !Pi.
These response properties state that it is always possible for each bus request to be
followed by the corresponding bus grant(s); this proves the deadlock-freeness of the
arbiter in addition to proper bus granting. These properties do not state that bus
grant(s) are eventually delivered, due to the presence of r-cycles in the model caused
by the non-deterministic interleaving semantics and absence of fairness assumption.
To express this requirement for processor PO, we state that the abstracted arb should be
branching equivalent [vGW89] to the graph req shown on Figure 3. We use branching
equivalence because it preserves the deadlocks.
We express the same property for processor Pl by using another req in which PO and
Pl are interchanged.

ADBR !P

ABG !PO

Figure 3 Property graph #1 (Proper response to bus requests)

Fairness of the arbitration: While a processor Pi has issued a bus request and is wait­
ing for the corresponding grant(s), at most one bus request emitted by the other pro­
cessor can be granted. For instance, if an ABR (resp. PDBR) request of PO is waiting, at
most one ABG (resp. PDBG) grant may be delivered to Pl before an ABG (resp. PDBG)
grant is delivered to PO.
To express this requirement for the address bus and processor PO only, we state that
the abstracted arb should be included, modulo the safety preorder [BFG+91], in the

444 Part Seven Industrial Usage Reports

graph req shown on Figure 4. We also need to verify three similar properties, for the
data bus as well, and by interchanging processors PO and Pl.

ABG !Pl

Figure 4 Property graph #2 (Fairness of the arbitration)

Order of grants for address-data requests: When both processors PO and Pl issue
ADBR requests, the PDBGs should be delivered in the same order than the ABGs. For
instance, if ABG !PO precedes ABG !Pl, then PDBG !PO should also precede PDBG !Pl.
To express this requirement for processor PO, we state that the abstracted arb should
be included, modulo the safety preorder, in the graph req shown on Figure 5. This
guarantees that all execution trees of the arbiter are covered by req. The same property
should hold when PO and Pl are interchanged.

Correctness of the DBG flow control: When both processors are granted the data
bus, they can send data that will be stored in the two DIRs of the SMC (see Section 3.2
above). The correctness of the flow control mechanism is expressed by two properties:
(a) it is not possible to send a data when the two DIRs are busy (which implies that no
PDBG is delivered when the two DIRs are busy); (b) it is always possible to free a DIR
so that data sending becomes possible.
To express these two properties at once, we state that the abstracted arb should be
branching equivalent to the graph req shown on Figure 6, which is nothing but a
two-slot buffer.

Instead of branching equivalence, other equivalences, such as the well-known observation
equivalence [Mil89]) could have been used. We prefered branching equivalence because
there exist efficient algorithms for it [GV90, Mou92], some of which are implemented in
ALDEBARAN. Although branching equivalence is stronger than observational equivalence
in the general case, both equivalences coincide if the property graph does not contain
T-transitions [Mou92], which is the case here.

Similarly, trace inclusion could have been used instead of safety preorder. We prefered
the latter since it is efficiently implemented in ALDEBARAN. Moreover, both relations
coincide when the property graphs are deterministic, which is the case here.

An Industrial Experiment with LOTOS

PDBG !Pl
PDBG !PO

Figure 5 Property graph #3 (Order of grants for address-data requests)

FREEDIR FREEDIR

DATASEND DATASEND

Figure 6 Property graph #4 (Correctness of the DBG flow control)

5 VERIFICATION

445

In this section, we briefly present the approach used to verify the LOTOS description of
the arbitration protocol. For this case-study, we used only a subset of CADP toolbox,
namely the CJESAR.ADT [Gar89, GT93], CJESAR [GS90J, XSIMULATOR, and ALDEBARAN
[Fer90, FKM93] tools. CJESAR.ADT and CJESAR are LOTOS-to-C compilers; additionally,
CJESAR can generate an LTS corresponding to a LOTOS description. XSIMULATOR is
an interactive, X-WINDOWS-based simulator, offering unlimited backtracking facilities.
ALDEBARAN compares two LTSs with respect to equivalence or preorder relations; an
important feature of ALDEBARAN is on-the-fly verification: it accepts as input a system
defined by a composition of LTS and can compare this system to another one without
building the corresponding LTS.

446 Part Seven Industrial Usage Reports

Once the LOTOS description was written, we performed a first debugging by com­
piling its data part (using the ClESAR.ADT compiler), compiling its control part (using
the ClESAR compiler), and analyzing a subset of its behaviour (using XsiMULATOR).
XSIMULATOR revealed some deadlocks, which have been fixed.

As regards performances, all our experiments were carried out on a low-end Spare ma­
chine, with 40 Mbytes of main memory. From the LOTOS description (720 lines, 32 kbytes),
CJESAR.ADT generated a C file for the data types (1,044 lines, 42 kbytes) and ClESAR
generated a C file for the behaviour part (2,241 lines, 92 kbytes). Linking and compiling
these C files together produced a small executable program (49 kbytes). Performing the
whole translation and starting the simulation takes less than one minute.

However, interactive simulation is not sufficient to ensure the correctness, as it only gives
a very limited coverage of all possible execution sequences. To perform full verification,
we tried to generate exhaustively arb (the LTS of the arbitration protocol) using ClESAR.
This "brute-force" approach failed due to memory limitations, after generating 580,000
states and 1,540,000 transitions approximately.

We therefore switched to another compositional, on-the-fly approach, based on a divide
and conquer paradigm. We split the arbitration protocol into three parallel components
noted ARB_COMP _1, ARB_COMP ...2, and ARB_COMP _3. This decomposition is shown on Figure 7.
It is worth noticing that the splitting is not done according to the hardware components
(the arbiter, the processors and the SMC), but in a transversal way, by grouping together
sub-processes belonging to different hardware components. There are many possible de­
compositions; we present here the one we found to give satisfactory results. A rule of
thumb is to put together the processes which constraint each other, i.e., which have many
interactions together: this reduces the size of the generated LTS.

For each of the three parallel components we generated the corresponding LTS using
CJESAR and reduced this LTS modulo strong bisimulation using ALDEBARAN. This hap­
pened to be tractable since the complexity of each component remains within the amount
of memory available on our machine. The following table gives, for each component, the
number of states S and the number of transitions T of the LTS generated by ClESAR, the
number of states S' and the number of transitions T' of the LTS reduced by ALDEBARAN,
as well as the durations G and R spent for generating and reducing these LTSs.

component S T S' T' G R

ARB_COMP_1 176,810 566,270 6,746 21,191 8 mn 25 mn

ARB_COMP ...2 8,882 32,768 183 427 < 1 mn < 1 mn

ARB_COMP_3 588 1,798 237 687 < 1 mn < 1 mn

Thanks to this decomposition, the problem is reduced to the verification of a system
consisting of three communicating state machines. We tried to generate directly the entire
LTS (noted red_arb) for this system, but this failed again: the number of states of red_arb
is potentially high (6, 746 x 183 x 237 ~ 2.9 108 states).

We therefore used ALDEBARAN to compare on-the-fly this system of three commu­
nicating processes with each req graph expressing the expected properties. On-the-fly

An Industrial Experiment with LOTOS 447

ARB.COMPl

• RR 1'
MASTER

•I"'RO o · RND..a.ODR...ARB (pid)
(abrTablt ,.,dbrTabl<,pc or)

ARt: t • .
I ABGt.oDBR !cha.en

h'iT ..PDBR.FIFO

~ · (dbriro.lintl&n<)

p

OSBEG !pid

~
l iNT ..PDBR !First(dbrFifo)

ARB.COMP2
M.DATA..REQ R..'<D.DATA.ARB M ORA

(dbrTable,pointer) UI"'Dr.

PDFRE~
Mnl>Rl>.l>.

/ 1 DLSTATUS !mask 1 Dl.STAT ..REC

DATA.SE:\''1: ~ ARB.DI.STAT
ARB.COMP3

1"\T <>C.<:IM'
SMC.DI.sTAT

(pid) (nbBusy) m f'IHNf>"'
(nbB.ay,dJ)

nt"''"'" '""'"-

1"\,\"t'A<:<'"I"' I • I
Figure 7 The LOTOS program decomposition

comparison means that ALDEBARAN does not generate red_arb entirely: it only explores
those parts of red_arb that are relevant to the property expressed by req.

Using ALDEBARAN, we proved that all the requirements stated in Section 4 were sat­
isfied. Each property was verified in less than one minute.

Then, we modified our LOTOS descript ion to implement a different version of the data
arbitration algorithm, in which the current pointer is always moved to the next item in
the circular list after delivering an MDBG, which means that this different version does not
implement the masking mechanism described in Section 3.3. This version of the algorithm
was considered one moment by the designers of the P OW ERSCALE™ architectu:e, but
it was discarded and not implemented. ALDEBARAN discovered that, for this modified
algorithm, the fairness property was no longer satisfied .

448 Part Seven Industrial Usage Reports

6 CONCLUSION

This paper reports the results of an industrial experimentation of formal methods. The aim
of this case-study was to investigate whether the Formal Description Technique LOTOS
and the protocol-engineering toolbox CADP were mature enough for being applied to real,
industrial applications, such as the multiprocessor systems developed by Bull.

In a first time, we have described formally, using LOTOS the POWERSCALE™ multi­
processor architecture used in Bull's ESCALA TM series. Then, we focused in more detail
on the POWERSCALE TM bus arbitration protocol, using appropriate abstractions to cut
down the complexity of the problem.

We identified four correctness requirements for the arbitration functionality, which we
expressed in terms of equivalence and preorder relations between labelled transition sys­
tems.

Verification was performed automatically using the ClESAR and ALDEBARAN tools. For
each requirement, expressed in LOTOS, we generated the corresponding LTS. Due to lack
of memory space, we have not been able to do the same for the arbitration protocol,
since its LTS was much too large for being generated. We used instead a compositional
verification approach, by splitting the LOTOS description into three parts, the LTss of
which could be generated and minimized separately. Then, these LTSs were combined
together and compared on-the-fly against the requirements. By doing so, we were able to
prove the correctness of the arbitration protocol. This protocol was already tested and
simulated, which explains that no misconceptions were found. However, we discovered an
error in a proposed variant of the bus arbiter (which is not actually implemented in Bull
products).

This case study was performed in a relatively short lapse of time. Producing the first
LOTOS description (whole POWERSCALE™ architecture) took 8 man.months, including
the time spent in learning both POWERSCALE ™and LOTOS. Producing the second LOTOS
description (arbitration functionality) took 1.5 man.months only, including the prelimi­
nary debugging using interactive simulation. Requirement capture and verification took
about 1.5 man.months. The case-study was facilitated by the complementary expertises
brought by the different authors: F. Zulian designed the POWERSCALE™ bus arbiter,
G. Chehaibar and N. Tawbi performed the modelling and verification, H. Garavel and
L. Mounier provided insights in using the CADP tools and expressing the requirements.

The results of this experiment are encouraging. It seems that LOTOS is appropriate for
the description of hardware protocols and that the compositional and on-the-fly verifi­
cation techniques implemented in the CADP tools allow to deal with mid-size industrial
cases involving a fair degree of parallelism.

In this experiment, formal description and verification took place after the arbiter was
already designed. In the near future, we intend to apply this approach to a cache coherency
protocol for a new Bull architecture under development. We take aim at a complete tech­
nology transfer, by progressively integrating formal methods in the existing development
process.

An Industrial Experiment with LOTOS 449

ACKNOWLEDGEMENTS

This work has been done in the framework of DYADE, the Bull-Inria Advanced Re­
search Joint Venture. It has been supported by the Bull R&D POWERPC™ Technol­
ogy Platforms Division, headed by Angelo Ramolini. The development of the CADP tools
has been supported in part by the European Commission, under project Isc-CAN-65
"EUCALYPTUS-2: A European/Canadian LoTOS Protocol Tool Set".

REFERENCES

[BFC+91] Ahmed Bouajjani, Jean-Claude Fernandez, Susanne Craf, Carlos Rodriguez,
and Joseph Sifakis. Safety for Branching Time Semantics. In Proceedings of 18th
ICALP, Berlin, July 1991. Springer Verlag.

[BR95] P. Bennett and A. Ramolini. The PowerScale Architecture: A Technical Overview.
Journal of Technical Information for the Distributed Computing Model, January­
February 1995.

[Fer90] Jean-Claude Fernandez. An Implementation of an Efficient Algorithm for Bisimu­
lation Equivalence. Science of Computer Programming, 13(2-3):219-236, May 1990.

[FCK+96] Jean-Claude Fernandez, Hubert Caravel, Alain Kerbrat, Radu Mateescu, Lau­
rent Mounier, and Mihaela Sighireanu. CADP (ClESAR/ ALDEBARAN Develop­
ment Package): A Protocol Validation and Verification Toolbox. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided
Verification (New Brunswick, New Jersey, USA}, August 1996.

[FCM+92] Jean-Claude Fernandez, Hubert Caravel, Laurent Mounier, Anne Rasse, Carlos
Rodriguez, and Joseph Sifakis. A Toolbox for the Verification of LOTOS Programs. In
Lori A. Clarke, editor, Proceedings of the 14th International Conference on Software En­
gineering ICSE'14 (Melbourne, Australia), pages 246-259, New-York, May 1992. ACM.

[FKM93] Jean-Claude Fernandez, Alain Kerbrat, and Laurent Mounier. Symbolic Equiv­
alence Checking. In C. Courcoubetis, editor, Proceedings of the 5th Workshop on
Computer-Aided Verification (Heraklion, Greece), volume 697 of Lecture Notes in Com­
puter Science, Berlin, June 1993. Springer Verlag.

[FL93] M. Faci and L. Logrippo. Specifying Hardware in LOTOS. In D. Agnew, L. Claesen,
and R. Camposano, editors, Proceedings of the the 11th International Conference on
Computer Hardware Description Languages and their Applications (Ottawa, Ontario,
Canada), pages 305-312, Amsterdam, April1993. North-Holland.

[Gar89J Hubert Caravel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong,
editor, Proceedings of the 2nd International Conference on Formal Description Tech­
niques FORTE'89 (Vancouver B.C., Canada), pages 147-162, Amsterdam, December
1989. North-Holland.

[CLL+90] K. Gharachorloo, D. Lenosky, J. Laudon, P. Gibbons, A. Gupta, and J. Hen­
nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory Multi­
processors. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, 1990.

[CS90] Hubert Caravel and Joseph Sifakis. Compilation and Verification of LOTOS Spec­
ifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th

450 Part Seven Industrial Usage Reports

International Symposium on Protocol Specification, Testing and Verification (Ottawa,
Canada), pages 379-394, Amsterdam, June 1990. IFIP, North-Holland.

[GT93] Hubert Caravel and Philippe Turlier. CJESAR.ADT : un compilateur pour les
types abstraits algebriques du langage LOTOS. In Rachida Dssouli and Gregor
v. Bachmann, editors, Actes du Colloque Francophone pour l'Ingenierie des Protocoles
CFIP'93 (Montreal, Canada), 1993.

[GV90] Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for Branching
Bisimulation and Stuttering Equivalence. In M. S. Patterson, editor, Proceedings of
the 17th ICALP (Warwick), volume 443 of Lecture Notes in Computer Science, pages
626-638, Berlin, 1990. Springer Verlag.

[IEE93] IEEE. Standard VHDL Language Reference Manual. IEEE Standard 1076-1993,
Institution of Electrical and Electronic Engineers, 1993.

[IEE95] IEEE. Verilog HDL Language Reference Manual. IEEE Draft Standard 1364,
Institution of Electrical and Electronic Engineers, October 1995.

[IS088a] ISO/IEC. ESTELLE- A Formal Description Technique Based on an Extended
State Transition Model. International Standard 907 4, International Organization for
Standardization - Information Processing Systems - Open Systems Interconnection,
Geneve, September 1988.

[IS088b] ISO/IEC. LOTOS -A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International Or­
ganization for Standardization - Information Processing Systems - Open Systems
Interconnection, Geneve, September 1988.

[IT92] ITU-T. Specification and Description Language (SDL). ITU-T Recommendation
Z.lOO, International Telecommunication Union, Geneve, 1992.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs,
NJ, 1989.

[Mou92] Laurent Mounier. Methodes de verification de specifications comportementales :
etude et mise en ceuvre. These de Doctorat, Universite Joseph Fourier (Grenoble),
January 1992.

[PP84] M. S. Papamarcos and J. H. Patel. A Low-Overhead Coherence Solution for Mul­
tiprocessors with Private Cache Memories. In Proceedings of the 11th International
Symposium on Computer Architecture, 1984.

[ST93] Richard 0. Sinnott and Kenneth J. Turner. DILL: Specifying Digital Logic in
LOTOS. In Richard L. Tenney, Paul D. Amer, and M. Umit Uyar, editors, Proceed­
ings of the 6th International Conference on Formal Description Techniques FORTE'93
(Boston, MA, USA), pages 71-86, Amsterdam, October 1993. North-Holland.

[vGW89] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in
Bisimulation Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en
Informatica, Amsterdam, 1989. Also in proc. IFIP 11th World Computer Congress,
San Francisco, 1989.

[VSS88] C. Vissers, G. Scollo, and M. van Sinderen. Architecture and Specification Style
in Formal Descriptions of Distributed Systems. In S. Aggarwal and K. Sabnani, editors,
Proceedings of the 8th International Workshop on Protocol Specification, Testing and
Verification (Atlantic City, NJ, USA), pages 189-204, Amsterdam, 1988. IFIP, North­
Holland.

