
28 
Specification and Verification of the 
PowerScale™ Bus Arbitration Protocol: 
An Industrial Experiment with LOTOS 

Ghassan CHEHAIBAR 
Bull S.A., Rue Jean-Jaures, F-78340 Les Clayes-sous-Bois, France 
Current E-mail: Ghassan. Chehaibar@inrialpes. fr 

Hubert GARAVEL, Laurent MOUNIER 
Inria Rhone-Alpes / Verimag, Miniparc-Zirst, TUe Lavoisier, 
F-38330 Montbonnot Saint-Martin, France 
E-mail: Hubert. Garavel@imag. fr, Laurent. Mounier@imag. fr 

Nadia TAWBI 
Bull S.A., Rue Jean-Jaures, F-78340 Les Clayes-sous-Bois, France 
CuTrent E-mail: Tawbi@ift. ulaval. ca 

Ferruccio ZULIAN 
Bull H.N., I-20010 Pregnana Milanese, Italy 
E-mail: F. Zulian@i t 12. bull. it 

Abstract 
This paper presents the results of an industrial case-study concerning the use of 
formal methods for the validation of hardware design. The case-study focuses on 
POWERSCALETM, a multiprocessor architecture based on POWERPC™ micro-processors 
and used in Bull's ESCALA TM series of servers and workstations*. The specification lan­
guage LOTOS (Iso International Standard 8807) was used to describe formally the main 
components of this architecture (processors, memory controller and bus arbiter). Four 
correctness properties were identified, which express the essential requirements for a 
proper functioning of the arbitration algorithm, and formalized in terms of bisimula­
tion relations (modulo abstractions) between finite labelled transition systems. Using 
the compositional and on-the-fly model-checking techniques implemented in the CADP 
( CJESAR/ ALDEBARAN) toolbox, the correctness of the arbitration algorithm was estab­
lished automatically in a few minutes. 
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1 INTRODUCTION 

The design of hardware systems involves methodologies based upon hardware description 
languages such as VHDL [IEE93] or VERILOG [IEE95]. These languages support various 
description levels, including architectural, behavioural, register-transfer, gate and switch 
levels. Many tools exist for simulating the descriptions written in these languages, syn­
thetizing implementations automatically, and generating test sequences. 

However, if one is only interested in the high-level functional design of a hardware 
system, namely the correctness of the distributed algorithms used in hardware systems 
(e.g., bus arbitration protocols, cache coherence protocols, etc.), then hardware descrip­
tion languages are perhaps not the best candidates for modelling these distributed al­
gorithms. These languages are probably too detailed for this specific problem. Many 
hardware-related details have to be described, although they are not directly relevant 
to the algorithms themselves; this may result in overspecification issues. Moreover, since 
the descriptions are overly complex, the simulation tools handle them often slowly. One 
may therefore wonder whether the Formal Description Techniques (FDT) defined for com­
puter networks and telecommunication systems could not be also applied with profit to 
the distributed algorithms used in hardware systems. 

In this paper, we investigate the use of LOTOS t [ISOSSb] for the formal specification and 
verification of the bus arbitration algorithm used in Bull's POWERSCALE™ architecture. 
We selected LOTOS for this case-study because its underlying semantics model is based 
on the rendez-vous paradigm, which is appropriate for the description of hardware entities 
(processors, memory controllers, etc.) communicating by means of electrical signals sent 
on wires. The possibility of using LOTOS for the description of hardware systems was 
already pointed out in [FL93] and [ST93]. For this reason, we used LOTOS rather than 
other protocol description languages such as ESTELLE [IS088a] and SoL [IT92] based on 
infinite FIFO queues, which are clearly not adapted to our problem. There are several 
possible specification styles in LOTOS [VSS88]: for this case-study, we adopted an imper­
ative approach (the so-called resource-oriented style) in which LOTOS is used as a concise 
and readable language to describe a set of extended finite-state machines (i.e., automata 
with state variables) running in parallel and communicating using rendez-vous. In this 
approach, each architecture component (processors, bus arbiter, etc.) is represented by an 
extended finite-state machine, possibly refined into sub-components. 

To express the expected functioning properties of the bus arbiter, we identi­
fied four correctness requirements, and proved them automatically using the CADP 
( CJESAR/ ALDEBARAN) toolbox [FGM+92, FGK+96]. These requirements were expressed 
using Labelled Transition Systems (LTss) and the verification process was based on the 
comparison of LTSs modulo equivalence or preorder relations. This choice was also moti­
vated by the existence in the CADP toolbox of a powerful tool, ALDEBARAN, for checking 
bisimulation relations, which was available at the time of our case-study (more recent 
versions of the CADP toolbox also include evaluators for temporal logic formulas). 

This article is organized as follows. Section 2 presents the POWERSCALE™ architecture 
and gives the main facts about its formal description in LOTOS. Section 3 focuses on the 
bus arbitration protocol. Section 4 sketches the four correctness properties, informally 

t Language Of Temporal Ordering Specification 
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first, then formally. After a brief overview of the CADP toolbox, Section 5 presents the 
verification approach we followed and the results we obtained. Finally, some concludig 
remarks are drawn in Section 6. 

2 THE POWERSCALE ARCHITECTURE 

POWERSCALE™ [BR95] is an original, Bull-patented, symmetrical multiprocessor archi­
tecture using IBM's POWERPC™ processors. The POWERSCALE™ architecture is used in 
Bull's EscALA ™ series of servers and workstations. A schematic view of this architecture 
(reproduced from [BR95] with minor adaptations) is shown on Figure 1. 
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Figure 1 The PoWERSCALE™ architecture 
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The POWERSCALE™ architecture supports up to four nodes, each node containing two 
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POWERPC™ processors. There is also a fifth node specially dedicated to the control of 
input/output operations. 

All the processors share a global memory array. In addition, each processor is equipped 
with a data cache that allows to speed up accesses to the shared memory. To maintain the 
consistency between the different caches of the processors, the POWERSeALE™ architec­
ture uses a MESI (Modified, Exclusive, Shared, Invalid) snoopy-based protocol (see, e.g., 
[PP84] with a slightly different terminology) implementing the weak consistency storage 
model [GLV90]. 

The processors access the shared memory using two 64-bit buses: an address bus and a 
data bus 

The address bus is used for command transfer. A command is a data structure con­
taining several fields: the type of operation (read, write, invalidation of a data stored in 
a cache, etc.), the address concerned by the operation, and various other fields such as: 
tags associated to the data sent as response to a read operation, bits related to the cache 
coherence protocol, etc. The precise knowledge of the command format is not required for 
our case-study. 

The data bus is implemented as a crossbar switch (named DeB for Data Cross Bar). 
It centralizes five 64-bit data paths originating from the four nodes and the input/output 
dedicated node. It is connected to the shared memory via a third 256-bit bus (named 
MA-bus). 

The System Memory Controlle1· (SMe) is connected to the address bus and is in charge 
of controlling the memory, the DeB and the MA-bus. It switches data paths in DeB and 
orders transfers through the MA-bus. 

Finally, the Arbiter (ARB) is connected to all the processors and to the SMe. It is 
in charge of the arbitration of the address bus and data pathes. It takes care to avoid 
conflicts when granting the address and data buses to the processors and the SMe. 

After reading the relevant documents defining the POWERSeALE™ architecture, we 
produced a 2,000 lines formal description in LOTOS of the overall architecture, together 
with a 30-pages technical document. Although this description could be compiled and 
simulated, it was not appropriate for a formal verification, for two reasons: it was too 
large for being analyzed exhaustively and, at the same time, some critical parts were not 
detailed enough to allow thorough analysis. 

We therefore decided to focus on the bus arbitration protocol, which was a challenging 
target for both researchers and industrialists because of its complexity and its essential 
role in the POWERSeALE™ architecture. 

3 FORMAL DESCRIPTION OF THE ARBITRATION PROTOCOL 

The purpose of this section is to show the different steps that led us to get the abstract 
model of the POWERSeALE TM arbiter on which we performed our verification. 

In order to verify the arbiter functions, we have built a formal description in which the 
arbiter is detailed, together with its surrounding devices: the processors and the SMe. 
Therefore, at the highest description level, we consider three types of communicating 
processes: the arbiter, the processors, and the SMe. However, the behaviour of processors 
and the SMe are abstracted away to modelize only the interactions with the arbiter. 
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To keep verification tractable, we made some simplifying assumptions, all of which are 
compatible with the actual POWERSCALE™ architecture. Firstly, we have only modeled 
the arbitration mode for PoWERPC™ 620 processors, while the actual arbiter has slightly 
different modes for POWERPC™ 601 and 604 processors. 

Secondly, we decided to consider only a single node with two processors (noted PO 
and Pl in the sequel). Consequently, the arbiter which we model manages the address 
bus and a single data path, whereas the actual arbiter manages the address bus and 
five data paths. This simplification is sound, since the five data paths are managed by 
the POWERSCALE™ arbiter in a completely independent way. Only the address bus 
arbitration protocol is concerned by this change, because it must handle two processors 
instead of ten; however, it was written in a generic way, i.e., it is parameterized by the 
number of processors. 

3.1 The processors 

Each processor has access to two buses: the address bus and a data bus. Before accessing 
each bus, a processor must emit a request and obtain a grant from the arbiter. Depending 
upon the type of operation to perform, the processor may ask for a single bus or both. 
Each processor can issue three types of operations: 

e In response to an address bus request (ABR), the processor receives an address bus grant 
(ABG): this is the case of address-only operations, which include read operations, cache 
invalidation requests, etc. For these operations, a command is sent on the address bus. 

e In response to a processor data bus request (PDBR), the processor receives a processor 
data bus grant (PDBG): this is the case of interventions, i.e. data-only (cache to cache) 
operations in which a processor Pi provides data to another processor Pj in response 
to a read operation from Pj. 

• In response to an address-data bus request ( ADBR) the processor receives first an ABG, 
then a PDBG: this is the case of address-data operations. These are write operations to 
the memory. The address bus is used to send the command and the data bus is used to 
send the data. The command and the data are sent asynchronously on the two buses. 

In our LOTOS description, we only model the bus requests and grants and forget about 
the actual operations (read, write, intervention). So, each processor is refined into two 
communicating sub-processes: 

e The process DATA..SENDER is in charge of sending data on the data bus. When this 
process is activated, it can either send a data and free the bus or free the bus without 
sending data. 

• The process MASTER is in charge of emitting all bus requests, obtaining bus grants, 
and sending commands on the address bus. In particular, when obtaining a PDBG (for 
a write operation or an intervention), it activates the DATA..SENDER process and can 
immediately start to emit a new ABR (even if the data bus has not been freed yet); 
therefore, several bus operations can be processed in para.llel. 
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3.2 The System Memory Controller 

In the actual POWERSeALE™ architecture, the SMe is connected to the address bus, the 
data cross bar (DeB), the memory, and the arbiter. But, since we only deal with a single 
node, we need not model all the details of the DeB; instead, we regard it as a simple bus: 
hence, we can assume that the SMe is directly connected to the data bus. 

For each data path, there are two internal registers in the SMe (called DIRs for Data 
In Registers). A DIR is a one-slot buffer designed to receive data emitted by the proces­
sor. When a processor emits a write operation, the corresponding operand (sent by the 
DATA..SENDER process) is temporarily stored in a DIR until it is written to the memory, 
which frees the DIR. A processor is not granted a PDBG unless there is a free DIR available 
in the SMe. 

When a processor wants to perform a read operation, the SMe emits a Memory Data Bus 
Request (MDBR) to obtain the data bus connected to this processor and, after obtaining 
a Memory Data Bus Grant (MDBG), orders the data transfer from the memory to the 
processor. 

For the purpose of our case-study, it was not necessary to model the SMe behaviour in 
full detail. We made appropriate abstractions instead and split the SMe in two commu­
nicating sub-processes: 

e The process SMC....DI..STAT maintains the number of busy DIRs in the SMe. This number 
is incremented when a processor sends data. On the opposite, a copy from a DIR to the 
memory decrements this number. As we have no specific LOTOS process to represent 
the memory, we consider that the decrementation can occur non-deterministically when 
the number of busy DIRs is greater or equal to 1. 

e The process M....DATA.REQ is in charge of emitting MDBRs and receiving MDBGs. We do not 
model data sending itself, since it is independent from the arbitration mechanism itself: 
the important events are requests and grants for the data bus. 

3.3 The arbiter 

The arbiter is the core of our modelling. When trying to formalize its behaviour, a number 
of questions arose, which required further technical explanations from the designer of the 
POWERSeALE™ arbiter. 

The arbiter communicates with the processors and the SMe. It manages the address 
bus and the data bus simultaneously. The address bus is accessed by the processors; the 
data bus is accessed by the processors and the S111e. The arbitration strategies for both 
buses are based upon the same round robin algorithm: the arbiter maintains a circular 
list of devicesi and a current pointer in this list; it continuously scans the list, starting 
from the current pointer and seeking for the first device with a pending bus request. If 
such a device exists, it is delivered a bus grant and the current pointer is moved to the 
next device in the circular list. Otherwise, the current pointer is kept unchanged. 

In addition to its arbitration role, the arbiter implements a mechanism to control the 
flow of data sent to the SMe: when both DIRs of the SMe are busy, the arbiter does not 

+i.e., the processors and, in the case of the data bus, the SMC 
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deliver PDBGs to the processors. Hence, the round robin algorithm implemented in the 
data arbiter is slightly different from the above description. When both of the two DIRs 
are busy, the arbiter issues grants only for the memory and does not move the current 
pointer after giving a grant. This mechanism is called masking. 

In our modelling, we refined the arbiter in four communicating sub-processes: 

e The process RND...ADDR...ARB is in charge of the address bus. It receives ABR and ADBR 
requests from the processors and delivers the corresponding ABG grants to the processors 
on a round-robin basis. For an ADBR request, when the corresponding ABG is delivered 
to the processor, an internal data bus requests (IDBR) is put in a FIFO queue in order to 
be served later by the data bus arbiter. This FIFO queue ensures that the PDBG grants 
generated for ADBR requests are delivered in the same order as ABG grants. 

e The process !NT YDBR_FIFO implements a FIFO queue in which the ABG grants generated 
for ADBR requests are stored, before being transmitted to the data arbiter as IDBR. 

• The process RND..DATA...ARB is in charge of the data bus (in the actual POWERSCALE™ 
architecture, there are five such processes, one per data path). It receives data bus 
requests originating from the processors (PDBR), from the SMC (MDBR), or from the 
FIFO queue (IDBR). It delivers grants on a round-robin basis and taking into account 
the number of busy DIRs in the SMC (if the two DIRs are busy, the current pointer is 
not moved after an MDBG). 

e The process ARB..DI...STAT maintains the number of busy DIRs according to signals it 
gets from SMC..DI...STAT. It informs the data arbiter whether to deliver PDBGs to the 
processors or not. 

3.4 The LOTOS description 

A LOTOS description representing the arbitration protocol (arbiter, processors and SMc) 
was developed. This specification contains 760 lines of code (including a few comment 
lines), divided into 200 lines (26%) for the data part and 560 lines (74%) for the control 
part. The data part contains 6 type definitions (3 enumerated types, 2 tables used for the 
round-robin algorithm, and 1 FIFO queue) and 14 process definitions (corresponding to 
the aforementioned processes and their parallel combinations at different levels). 

Figure 2 gives an overview of the arbitration protocol. Only a single, generic processor 
is represented; it is noted P !pid, where pid is a parameter denoting the index of the 
processor (0 or 1). The arbiter, the generic processor, and the SMC are refined in sub­
processes, as explained above. Boxes represent LOTOS processes and lines between boxes 
represent communication gates between processes. For instance, the processor P !pid and 
the arbiter communicate via the gate labelled ABR !pid, which expresses the fact that each 
processor can send to the arbiter an address bus request ABR parametrized by its index. 

4 BEHAVIOURAL EXPRESSION OF THE REQUIREMENTS 

Before performing verification, it is necessary to define which functioning properties have 
to be verified. We identified four requirements related to bus arbitration and data transfer 
from the different devices (processors and memory). We found more suitable and easier to 
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Figure 2 The LOTOS program structure 

describe these requirements using behavioural specifications rather than temporal logic 
formulas . We adopted the following approach: from an abstract point of view, let us 
assume that we can translate the whole LOTOS description of the arbitration protocol 
into a (large) LTS, which we will note arb in the sequel. Then, for each requirement, we 
define another, much smaller LTS, which we will note req. To express that the arbitration 
protocol satisfies this requirement, we state that arb and req are related modulo a given 
equivalence relation or a given preorder relation. 

Notice that, as the various LTSs req are generally small, they can be specified simply 
by listing their states and transitions. In our case-study, we chose to specify them directly 
in LOTOS and to use software tools to automatically generate the corresponding LTSs. 
This allowed us to write generic requirements, parameterized with a processor identifier 
pid, which can be easily instantiated with either PO or Pl. However, in this paper, we 
show the LTss themselves, rather than the LOTOS code from which they were produced. 

When comparing arb and req, abstraction criteria have to be used, as arb contains 
many details which are not relevant to the requirement being expressed. Thus, LTSs have 
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to be abstracted when compared, by hiding all transitions that are not to be observed. For 
instance, if we want to prove properties about the address arbitration fairness, we need 
to hide all transitions but ABR and ABG. In the sequel, we adopt the following convention: 
any action in arb that is not present in req is to be hidden. Hence we observe only actions 
related to the property we want to prove. 

We now present the four requirements and their expression in terms of equivalence or 
preorder relations: 

Proper response to bus requests: When a processor Pi issues a bus request, it is 
always possible to satisfy this request by delivering to Pi the corresponding grant( s ). 
More precisely, each ABR !Pi may be followed by an ABG !Pi; each PDBR !Pi may be 
followed by a PDBG !Pi; each ADBG !Pi can be followed by an ABG !Pi and then a PDBG !Pi. 
These response properties state that it is always possible for each bus request to be 
followed by the corresponding bus grant(s ); this proves the deadlock-freeness of the 
arbiter in addition to proper bus granting. These properties do not state that bus 
grant(s) are eventually delivered, due to the presence of r-cycles in the model caused 
by the non-deterministic interleaving semantics and absence of fairness assumption. 
To express this requirement for processor PO, we state that the abstracted arb should be 
branching equivalent [vGW89] to the graph req shown on Figure 3. We use branching 
equivalence because it preserves the deadlocks. 
We express the same property for processor Pl by using another req in which PO and 
Pl are interchanged. 

ADBR !P 

ABG !PO 

Figure 3 Property graph #1 (Proper response to bus requests) 

Fairness of the arbitration: While a processor Pi has issued a bus request and is wait­
ing for the corresponding grant(s), at most one bus request emitted by the other pro­
cessor can be granted. For instance, if an ABR (resp. PDBR) request of PO is waiting, at 
most one ABG (resp. PDBG) grant may be delivered to Pl before an ABG (resp. PDBG) 
grant is delivered to PO. 
To express this requirement for the address bus and processor PO only, we state that 
the abstracted arb should be included, modulo the safety preorder [BFG+91], in the 
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graph req shown on Figure 4. We also need to verify three similar properties, for the 
data bus as well, and by interchanging processors PO and Pl. 

ABG !Pl 

Figure 4 Property graph #2 (Fairness of the arbitration) 

Order of grants for address-data requests: When both processors PO and Pl issue 
ADBR requests, the PDBGs should be delivered in the same order than the ABGs. For 
instance, if ABG !PO precedes ABG !Pl, then PDBG !PO should also precede PDBG !Pl. 
To express this requirement for processor PO, we state that the abstracted arb should 
be included, modulo the safety preorder, in the graph req shown on Figure 5. This 
guarantees that all execution trees of the arbiter are covered by req. The same property 
should hold when PO and Pl are interchanged. 

Correctness of the DBG flow control: When both processors are granted the data 
bus, they can send data that will be stored in the two DIRs of the SMC (see Section 3.2 
above). The correctness of the flow control mechanism is expressed by two properties: 
(a) it is not possible to send a data when the two DIRs are busy (which implies that no 
PDBG is delivered when the two DIRs are busy); (b) it is always possible to free a DIR 
so that data sending becomes possible. 
To express these two properties at once, we state that the abstracted arb should be 
branching equivalent to the graph req shown on Figure 6, which is nothing but a 
two-slot buffer. 

Instead of branching equivalence, other equivalences, such as the well-known observation 
equivalence [Mil89]) could have been used. We prefered branching equivalence because 
there exist efficient algorithms for it [GV90, Mou92], some of which are implemented in 
ALDEBARAN. Although branching equivalence is stronger than observational equivalence 
in the general case, both equivalences coincide if the property graph does not contain 
T-transitions [Mou92], which is the case here. 

Similarly, trace inclusion could have been used instead of safety preorder. We prefered 
the latter since it is efficiently implemented in ALDEBARAN. Moreover, both relations 
coincide when the property graphs are deterministic, which is the case here. 
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PDBG !Pl 
PDBG !PO 

Figure 5 Property graph #3 (Order of grants for address-data requests) 

FREEDIR FREEDIR 

DATASEND DATASEND 

Figure 6 Property graph #4 (Correctness of the DBG flow control) 

5 VERIFICATION 

445 

In this section, we briefly present the approach used to verify the LOTOS description of 
the arbitration protocol. For this case-study, we used only a subset of CADP toolbox, 
namely the CJESAR.ADT [Gar89, GT93], CJESAR [GS90J, XSIMULATOR, and ALDEBARAN 
[Fer90, FKM93] tools. CJESAR.ADT and CJESAR are LOTOS-to-C compilers; additionally, 
CJESAR can generate an LTS corresponding to a LOTOS description. XSIMULATOR is 
an interactive, X-WINDOWS-based simulator, offering unlimited backtracking facilities. 
ALDEBARAN compares two LTSs with respect to equivalence or preorder relations; an 
important feature of ALDEBARAN is on-the-fly verification: it accepts as input a system 
defined by a composition of LTS and can compare this system to another one without 
building the corresponding LTS. 
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Once the LOTOS description was written, we performed a first debugging by com­
piling its data part (using the ClESAR.ADT compiler), compiling its control part (using 
the ClESAR compiler), and analyzing a subset of its behaviour (using XsiMULATOR). 
XSIMULATOR revealed some deadlocks, which have been fixed. 

As regards performances, all our experiments were carried out on a low-end Spare ma­
chine, with 40 Mbytes of main memory. From the LOTOS description (720 lines, 32 kbytes), 
CJESAR.ADT generated a C file for the data types (1,044 lines, 42 kbytes) and ClESAR 
generated a C file for the behaviour part (2,241 lines, 92 kbytes). Linking and compiling 
these C files together produced a small executable program (49 kbytes). Performing the 
whole translation and starting the simulation takes less than one minute. 

However, interactive simulation is not sufficient to ensure the correctness, as it only gives 
a very limited coverage of all possible execution sequences. To perform full verification, 
we tried to generate exhaustively arb (the LTS of the arbitration protocol) using ClESAR. 
This "brute-force" approach failed due to memory limitations, after generating 580,000 
states and 1,540,000 transitions approximately. 

We therefore switched to another compositional, on-the-fly approach, based on a divide 
and conquer paradigm. We split the arbitration protocol into three parallel components 
noted ARB_COMP _1, ARB_COMP ...2, and ARB_COMP _3. This decomposition is shown on Figure 7. 
It is worth noticing that the splitting is not done according to the hardware components 
(the arbiter, the processors and the SMC), but in a transversal way, by grouping together 
sub-processes belonging to different hardware components. There are many possible de­
compositions; we present here the one we found to give satisfactory results. A rule of 
thumb is to put together the processes which constraint each other, i.e., which have many 
interactions together: this reduces the size of the generated LTS. 

For each of the three parallel components we generated the corresponding LTS using 
CJESAR and reduced this LTS modulo strong bisimulation using ALDEBARAN. This hap­
pened to be tractable since the complexity of each component remains within the amount 
of memory available on our machine. The following table gives, for each component, the 
number of states S and the number of transitions T of the LTS generated by ClESAR, the 
number of states S' and the number of transitions T' of the LTS reduced by ALDEBARAN, 
as well as the durations G and R spent for generating and reducing these LTSs. 

component S T S' T' G R 

ARB_COMP_1 176,810 566,270 6,746 21,191 8 mn 25 mn 

ARB_COMP ...2 8,882 32,768 183 427 < 1 mn < 1 mn 

ARB_COMP_3 588 1,798 237 687 < 1 mn < 1 mn 

Thanks to this decomposition, the problem is reduced to the verification of a system 
consisting of three communicating state machines. We tried to generate directly the entire 
LTS (noted red_arb) for this system, but this failed again: the number of states of red_arb 
is potentially high (6, 746 x 183 x 237 ~ 2.9 108 states). 

We therefore used ALDEBARAN to compare on-the-fly this system of three commu­
nicating processes with each req graph expressing the expected properties. On-the-fly 
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Figure 7 The LOTOS program decomposition 

comparison means that ALDEBARAN does not generate red_arb entirely: it only explores 
those parts of red_arb that are relevant to the property expressed by req. 

Using ALDEBARAN, we proved that all the requirements stated in Section 4 were sat­
isfied. Each property was verified in less than one minute. 

Then, we modified our LOTOS descript ion to implement a different version of the data 
arbitration algorithm, in which the current pointer is always moved to the next item in 
the circular list after delivering an MDBG, which means that this different version does not 
implement the masking mechanism described in Section 3.3. This version of the algorithm 
was considered one moment by the designers of the P OW ERSCALE™ architectu:e, but 
it was discarded and not implemented. ALDEBARAN discovered that, for this modified 
algorithm, the fairness property was no longer satisfied . 
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6 CONCLUSION 

This paper reports the results of an industrial experimentation of formal methods. The aim 
of this case-study was to investigate whether the Formal Description Technique LOTOS 
and the protocol-engineering toolbox CADP were mature enough for being applied to real, 
industrial applications, such as the multiprocessor systems developed by Bull. 

In a first time, we have described formally, using LOTOS the POWERSCALE™ multi­
processor architecture used in Bull's ESCALA TM series. Then, we focused in more detail 
on the POWERSCALE TM bus arbitration protocol, using appropriate abstractions to cut 
down the complexity of the problem. 

We identified four correctness requirements for the arbitration functionality, which we 
expressed in terms of equivalence and preorder relations between labelled transition sys­
tems. 

Verification was performed automatically using the ClESAR and ALDEBARAN tools. For 
each requirement, expressed in LOTOS, we generated the corresponding LTS. Due to lack 
of memory space, we have not been able to do the same for the arbitration protocol, 
since its LTS was much too large for being generated. We used instead a compositional 
verification approach, by splitting the LOTOS description into three parts, the LTss of 
which could be generated and minimized separately. Then, these LTSs were combined 
together and compared on-the-fly against the requirements. By doing so, we were able to 
prove the correctness of the arbitration protocol. This protocol was already tested and 
simulated, which explains that no misconceptions were found. However, we discovered an 
error in a proposed variant of the bus arbiter (which is not actually implemented in Bull 
products). 

This case study was performed in a relatively short lapse of time. Producing the first 
LOTOS description (whole POWERSCALE™ architecture) took 8 man.months, including 
the time spent in learning both POWERSCALE ™and LOTOS. Producing the second LOTOS 
description (arbitration functionality) took 1.5 man.months only, including the prelimi­
nary debugging using interactive simulation. Requirement capture and verification took 
about 1.5 man.months. The case-study was facilitated by the complementary expertises 
brought by the different authors: F. Zulian designed the POWERSCALE™ bus arbiter, 
G. Chehaibar and N. Tawbi performed the modelling and verification, H. Garavel and 
L. Mounier provided insights in using the CADP tools and expressing the requirements. 

The results of this experiment are encouraging. It seems that LOTOS is appropriate for 
the description of hardware protocols and that the compositional and on-the-fly verifi­
cation techniques implemented in the CADP tools allow to deal with mid-size industrial 
cases involving a fair degree of parallelism. 

In this experiment, formal description and verification took place after the arbiter was 
already designed. In the near future, we intend to apply this approach to a cache coherency 
protocol for a new Bull architecture under development. We take aim at a complete tech­
nology transfer, by progressively integrating formal methods in the existing development 
process. 



An Industrial Experiment with LOTOS 449 

ACKNOWLEDGEMENTS 

This work has been done in the framework of DYADE, the Bull-Inria Advanced Re­
search Joint Venture. It has been supported by the Bull R&D POWERPC™ Technol­
ogy Platforms Division, headed by Angelo Ramolini. The development of the CADP tools 
has been supported in part by the European Commission, under project Isc-CAN-65 
"EUCALYPTUS-2: A European/Canadian LoTOS Protocol Tool Set". 

REFERENCES 

[BFC+91] Ahmed Bouajjani, Jean-Claude Fernandez, Susanne Craf, Carlos Rodriguez, 
and Joseph Sifakis. Safety for Branching Time Semantics. In Proceedings of 18th 
ICALP, Berlin, July 1991. Springer Verlag. 

[BR95] P. Bennett and A. Ramolini. The PowerScale Architecture: A Technical Overview. 
Journal of Technical Information for the Distributed Computing Model, January­
February 1995. 

[Fer90] Jean-Claude Fernandez. An Implementation of an Efficient Algorithm for Bisimu­
lation Equivalence. Science of Computer Programming, 13(2-3):219-236, May 1990. 

[FCK+96] Jean-Claude Fernandez, Hubert Caravel, Alain Kerbrat, Radu Mateescu, Lau­
rent Mounier, and Mihaela Sighireanu. CADP (ClESAR/ ALDEBARAN Develop­
ment Package): A Protocol Validation and Verification Toolbox. In Rajeev Alur and 
Thomas A. Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided 
Verification (New Brunswick, New Jersey, USA}, August 1996. 

[FCM+92] Jean-Claude Fernandez, Hubert Caravel, Laurent Mounier, Anne Rasse, Carlos 
Rodriguez, and Joseph Sifakis. A Toolbox for the Verification of LOTOS Programs. In 
Lori A. Clarke, editor, Proceedings of the 14th International Conference on Software En­
gineering ICSE'14 (Melbourne, Australia), pages 246-259, New-York, May 1992. ACM. 

[FKM93] Jean-Claude Fernandez, Alain Kerbrat, and Laurent Mounier. Symbolic Equiv­
alence Checking. In C. Courcoubetis, editor, Proceedings of the 5th Workshop on 
Computer-Aided Verification (Heraklion, Greece), volume 697 of Lecture Notes in Com­
puter Science, Berlin, June 1993. Springer Verlag. 

[FL93] M. Faci and L. Logrippo. Specifying Hardware in LOTOS. In D. Agnew, L. Claesen, 
and R. Camposano, editors, Proceedings of the the 11th International Conference on 
Computer Hardware Description Languages and their Applications (Ottawa, Ontario, 
Canada), pages 305-312, Amsterdam, April1993. North-Holland. 

[Gar89J Hubert Caravel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong, 
editor, Proceedings of the 2nd International Conference on Formal Description Tech­
niques FORTE'89 (Vancouver B.C., Canada), pages 147-162, Amsterdam, December 
1989. North-Holland. 

[CLL+90] K. Gharachorloo, D. Lenosky, J. Laudon, P. Gibbons, A. Gupta, and J. Hen­
nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory Multi­
processors. In Proceedings of the 17th Annual International Symposium on Computer 
Architecture, 1990. 

[CS90] Hubert Caravel and Joseph Sifakis. Compilation and Verification of LOTOS Spec­
ifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th 



450 Part Seven Industrial Usage Reports 

International Symposium on Protocol Specification, Testing and Verification (Ottawa, 
Canada), pages 379-394, Amsterdam, June 1990. IFIP, North-Holland. 

[GT93] Hubert Caravel and Philippe Turlier. CJESAR.ADT : un compilateur pour les 
types abstraits algebriques du langage LOTOS. In Rachida Dssouli and Gregor 
v. Bachmann, editors, Actes du Colloque Francophone pour l'Ingenierie des Protocoles 
CFIP'93 (Montreal, Canada), 1993. 

[GV90] Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for Branching 
Bisimulation and Stuttering Equivalence. In M. S. Patterson, editor, Proceedings of 
the 17th ICALP (Warwick), volume 443 of Lecture Notes in Computer Science, pages 
626-638, Berlin, 1990. Springer Verlag. 

[IEE93] IEEE. Standard VHDL Language Reference Manual. IEEE Standard 1076-1993, 
Institution of Electrical and Electronic Engineers, 1993. 

[IEE95] IEEE. Verilog HDL Language Reference Manual. IEEE Draft Standard 1364, 
Institution of Electrical and Electronic Engineers, October 1995. 

[IS088a] ISO/IEC. ESTELLE- A Formal Description Technique Based on an Extended 
State Transition Model. International Standard 907 4, International Organization for 
Standardization - Information Processing Systems - Open Systems Interconnection, 
Geneve, September 1988. 

[IS088b] ISO/IEC. LOTOS -A Formal Description Technique Based on the Temporal 
Ordering of Observational Behaviour. International Standard 8807, International Or­
ganization for Standardization - Information Processing Systems - Open Systems 
Interconnection, Geneve, September 1988. 

[IT92] ITU-T. Specification and Description Language (SDL). ITU-T Recommendation 
Z.lOO, International Telecommunication Union, Geneve, 1992. 

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, 
NJ, 1989. 

[Mou92] Laurent Mounier. Methodes de verification de specifications comportementales : 
etude et mise en ceuvre. These de Doctorat, Universite Joseph Fourier (Grenoble), 
January 1992. 

[PP84] M. S. Papamarcos and J. H. Patel. A Low-Overhead Coherence Solution for Mul­
tiprocessors with Private Cache Memories. In Proceedings of the 11th International 
Symposium on Computer Architecture, 1984. 

[ST93] Richard 0. Sinnott and Kenneth J. Turner. DILL: Specifying Digital Logic in 
LOTOS. In Richard L. Tenney, Paul D. Amer, and M. Umit Uyar, editors, Proceed­
ings of the 6th International Conference on Formal Description Techniques FORTE'93 
(Boston, MA, USA), pages 71-86, Amsterdam, October 1993. North-Holland. 

[vGW89] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in 
Bisimulation Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en 
Informatica, Amsterdam, 1989. Also in proc. IFIP 11th World Computer Congress, 
San Francisco, 1989. 

[VSS88] C. Vissers, G. Scollo, and M. van Sinderen. Architecture and Specification Style 
in Formal Descriptions of Distributed Systems. In S. Aggarwal and K. Sabnani, editors, 
Proceedings of the 8th International Workshop on Protocol Specification, Testing and 
Verification (Atlantic City, NJ, USA), pages 189-204, Amsterdam, 1988. IFIP, North­
Holland. 


