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Abstract 
The computation of a reachability graph is one of the most used method to check system prop­
erties. Its main drawback is the state explosion. Two different approaches are generally used to 
tackle this problem: by defining new concise graph representations for which verification 
methods are adapted; by reducing graphs while preserving observed properties. We propose a 
new representation of a reachability graph where nodes are particular Petri nets, occurrence 
nets, characterizing parts of the state space. Checking invariant properties can be done using 
efficient algorithms for occurrence nets. Moreover, our representation can be used to obtain a 
stuttering equivalent graph on which nexttime-less linear temporal formulae are verified. 
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1. INTRODUCTION 

Temporal logic model checking is a useful method for verifying properties of finite concurrent 
systems. Many algorithms have been developed that depend on the representation of properties 
(temporal logic formula or Biichi automaton). The reader can find a complete survey of this 
domain in [Wol89]. 

However, due to the state-explosion problem these methods tend to be impossible for the 
verification of realistic systems. Different approaches are generally used to combat this prob­
lem. One way is to define new concise graph representations for which there are adapted veri­
fication methods. For instance, we can mention methods based on Binary Decision Diagram 
[Clark94] [Past94] and unfoldings [Nielsen80][McM92][Esp96]. A complementary approach is 
to reduce reachability graphs while preserving observed properties. Among them, we can note 
Petri net reductions [Berth85], stubborn set method [Val91] and more generally semantic 
equivalences [Lam83][KV92]. 

In this paper, we propose a new representation of a reachability graph for safe Petri nets 
where nodes are particular nets, occurrence nets that characterize parts of the state space. This 
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class of net has been already used for unfolding Petri nets [Nielsen80]. In [McM92], unfold­
ings are used to check invariant properties and to dectect deadlocks. [Esp93] extends this 
results to a branching time temporal logic. The main shortcoming of this logic is the fact that 
liveness properties can not be expressed. 

The main improvement of our method against the unfolding technique is its capability to 
preserve infinite sequence. Moreover, our representation can be used to obtain equivalent 
graphs according to the stuttering equivalence introduced in [Lam83][KV92]. This result 
induces a model checking for the nexttime-less linear temporal logic. Roughly speaking, given 
an <;>ccurrence net graph, checking a formula is performed in two steps: the computation of a 
stuttering equivalent graph with respect to the atomic propositions; the verification of the for­
mula on the resulting graph. 

This paper is organized as follows. In Section 2, basic notions on nexttime-less linear tem­
poral logic and Petri nets are presented. Section 3 introduces occurrence nets and some specific 
properties. Section 4 contains the theoretical aspect of our model checking, the definition of 
occurrence net graphs and their key properties. Construction algorithms are given in Section 5. 
Section 6 concerns the model checking. Section 7 gives experimental results of our method 
followed by a comparison with other techniques and a discussion. 

Proofs of theorems and algorithms are technical and use intensively the elementary proper­
ties of occurrence nets. Hence, they have been omitted for reason of space and clarity. 

2. PRELIMINARIES 

2.1. Nexttime-Less Linear Temporal Logic 
We assume that there is a set AP called the set of atomic propositions. We denote a transition 
system H by (S, X, L, s0, terminal) where S is the finite state set, X c;;; S x S is the transition 
relation specifying the single step of a system, L(s) c;;; AP is the labelling of each states with 
true propositions, s0 E S is the initial state and terminal is a state proposition which is at least 
true for deadlock (i.e. state with no successor). 

a is a finite sequence from w0 of H iff a= s0s1 ... sn.J such that for all O<i~n, (si.J• si) E X. a 
is an infinite sequence from s0 of H iff every finite prefix of a is a finite sequence from s0 of H. 
We denote by a(il the string obtained by leaving the first i elements of a. 

We call computations infinite sequences from the initial state and finite sequence from the 
initial state to a terminal state. 

We have chosen a linear temporal logic derived from one of the most common versions of 
propositional temporal logic appearing in the computer science literature and presented in 
[KV92]. Our logic does not accept the use of the temporal operator <<nexttime>> 0 but is aug­
mented by an additional operator o= <<infinitely often in the proper future>>. In other respects 
the definitions of our linear logic are standard and we will refer to it as LTL ~. 

LTL ~formulae are built from atomic propositions f1, f2, ... on states, boolean connectives 
(A,-,) and temporal operators ( u «Until>>, o= <<infinitely often in the proper future>>). The for­
mation rules are: 

• atomic propositions are formulae; 
• iff and g are formulae, so are f 1\ g, -,f, f u g, o= f. 
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We use Of («eventually>>) as an abbreviation for (true U f) and Of (<<always>>) as an abbrevi­
ation for -,0-,f. We also use v and ~ as the usual abbreviations. 

The formal semantic of LTL ~is given as follows. Let a= s0 ... si··· be a finite or infinite 
sequence from s0 of a transition system H = (S, X, L, s0, terminal). For a formula f, a I= f 
means that f is satisfied by a. We have 

• a I= f iff f E L(s0), for fan atomic proposition 
• a 1= f" g iff (a 1= f) and (a 1= g) 
• a 1= -,f iff not a I= f 
• a 1= f U g iff:3 i such that (Vj :o; i, aG> I= f) and ( a<i) 1= g) 

• a I= 000 f iff there are infinitely many i~O such that a<i) I= f 
For a transition system H, a LTL formula f is satisfied (denoted by H I= f) iff each computa­

tion satisfies f. 

The trace notion where only the truth labelling function modifications are visible, induces 
the stuttering equivalence between systems preserving our logic. Formally, a trace for a finite 
sequence a= w1 ... wn is defined by: 

• if n=l, tr(s1) = L(s1) 

• if n>l and L(sn_1) = L(sn), tr(a) = tr(s 1 ... sn_ 1) 

• if n> 1 and L(sn_1) ;t: L(sn), tr(a) = tr(s1 •.. sn_1).L(sn) 

The trace of an infinite sequence is the limit of the traces of its prefixes tr(s1 ..• sn)-

Three sets characterize the stuttering equivalence: dtr(H) is the finite computation trace set; 
inftr(H) is the infinite trace set of infinite computations and divtr(L) is the finite trace set of 
infinite computations. Two systems are said stuttering equivalent iff they have the same char­
acteristic trace sets. L. Lamport [Lam83] and R. Kaivola et al. [KV92] establish the relation 
between the stuttering equivalence and LTL ~. 

Theorem 2.1 : Let H and H' be transition systems. H and H' are stuttering equivalent iff 
for any LTL ~ formula f, H I= f ~ H' I= f. 

2.2. Petri Nets 

We assume that the reader is familiar with the basic notions and notations of Petri nets, as 
given for instance in [Mur89]. We use finite safe Petri nets as system models. We denote a Petri 
net by N = (P, T, F, M0) where (P, T, F) is a net and M0 its initial marking. A place of a safe 
Petri net contains at most one token and then markings are represented as place sets. 

In the sequel, we use the following particular notations: 
• N = (P(N), T(N), F(N), M0(N)) is used to denote the different net components when sev-

eral Petri nets are considered. 

• R(N) is the reachability set ofN. 

• Deadlock(N) is is a state proposition which is true for deadlock state of N. 

• RA(N) = {ME R(N): A~} is the coverability set for the place set A. 

• M[t> is the resulting marking of M by t when t is firable. 

• (M,V) = (MuV•u•V, V, (VxP u PxV) n F, M) is the sub-net of N that represents the fir­
ing sequence from M using only transitions in V. 

• NL = (R(N), [>, L, M0(N), Deadlock(N)) is the transition system of a Petri net N with 
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respect to a state labelling function L ([> denotes the transition relation of the Petri net 
N). 

Example : The following figure shows a safe Petri net previously presented in [Reisig95]. It 
models a mutual exclusion between two processes l and r. 

Figure 1 Round based mutual exclusion. 

Site 1 may spontaneously apply for getting critical, by moving from local1 to pend1• Then 1 
acts, i.e. sends a request and remains sent1 until site r either grants 1 to enter critical1 or site r 
also requests to go critical. In this case l goes critical along crosstalk1• A second component of 
site l in state quiet1 may echo a request from site r, granting r to go critical. 

The reachability graph of this net contains 32 nodes and 59 arcs. On this safe Petri net, the 
set of atomic propositions AP = { c1, cr s1, s,} induces a linear temporal logic with c1E L(M) <=> 
crit1E M, c,E L(M) <=> crit,E M, s1E L(M) <=> sent1E M and s,e L(M) <=> sent,E M. For instance, 
the formula 0( -.c1v-.c,) expresses the safeness property to access to the critical section. 

3. OCCURRENCE NETS 

Occurrence nets are sub-class of safe Petri nets introduced in [Nielsen80] for unfoldings. In 
this section, we recall its definition, the notion of configuration and basic properties. We point 
out two essential problems which are relevant for the occurrence net graph construction: 

l)the coverability problem: to characterize the reachable markings for which given places 
are marked, 

2)the cutup problem: to represent the reachable marking set by the union of reachable 
markings of occurrence sub-nets in which given transitions do not appear. 

More informations about occurrence nets can be founded in [Nielsen80][McM92][Esp96]. 

Definition 3.1 : An occurrence net is a marked Petri net N = (P, T, F, M0) where: 
l)V'pE P, l•pl::>landM0 ={pE P:l•pl =0} 

2) v t E T, l•t I ~ l 
3)The Petri net N is an acyclic graph 
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Example : The following figure shows a subnet of the net of Figure 1. This subnet is an occur­
rence net. 

Figure 2 Occurrence net. 

As K.L. McMillan notes in [McM92], <<The most important theoretical notion regarding 
occurrence nets is that of a configuration». Configurations represent possible firing sequences 
of the net. It is based on the reflexive partial order induced by the graph which is acyclic and on 
the notion of transition conflict. 

For a set of places and transitions U, we denote by Cu(N) the set containing all the transi­
tions of U and the ones that have a descendant in U. 

Definition 3.2 : Let N be an occurrence net. A set of transitions S is a configuration iff: 

(no conflict inS) V t, t' ES: •t n •t';t0::::} t=t' 

(Sis downward closed) S = C5(N) 

Example : For the occurrence net of the Figure 2, Cecho (g0)={ apply1,act1,echor} is a configura­
tion and then defines firing sequences. On the other ha~d, C {served1, served,} (g0) is not a configu­
ration because it contains, in particular, the conflict transitions echor and actr and then places 
served1 and servedr are in mutual exclusion in g0. 

Configurations simply characterize reachable markings and quasi-live transitions (transi-
tions fired at least once). 

Proposition 3.3 : Let N be an occurrence net. A marking M is reachable iff there exists a 
configurationS such that M=(M0uS•)\•S. When these properties hold, we have CM(N)!;;;;; 
S and if any transition in T has at least one output place then CM(N) = S. 

Proposition 3.4 : Let N be an occurrence net. Lett be a transition. tis quasi-live iff C1(N) 

is a configuration. 

When any transition in T has at least one output place, the reachability algorithm associated 
to Proposition 3.3 is based on a graph traversal and its complexity is O(IFI). Otherwise the 
problem is NP-complete. The quasi-liveness algorithm for a transition has a complexity in 
O(IFI). 
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The coverability problem is <<Does there exist a reachable marking including a place set 
A?». For our method, we need to represent the covering marking set RA(N). The following the­
orem characterizes it as the reachability set of an occurrence sub-net of N. 

Theorem 3.5 : Let N be an occurrence net. Let A be a place set. We denote the covering 

marking set RA (N) = { M E R(N): A~}. RA (N) is not empty iff C A (N) is a configuration 

and •CA(N)nA = 0. If RA(N) is not empty, the sub-net of N, (minA(N), TA(N)), where: 

minA(N) = (M0 U CA(N)•)\•CA(N) 

T A (N) = { t E T I C A (N) u C1(N) is a configuration A •C1(N) n A = 0} 

is a quasi-live occurrence net such that R((minA(N), TA(N))) = RA(N). 

It can be shown straightforwardly enough that the algorithm associated to coverability 
problem has a complexity in O(IFI). 

Example : For the occurrence net g in the Figure 2, we have min•enter (g) = {send1,grant­
ed1,local,} and Toenter (g)= {apply,}. The subnet (minoenter (g),T•enter (g)) 1iS the bolded one in 

I I I 
the Figure 2. 

The cutup problem with respect to a transition set K, is to decompose the occurrence net in 
a set of occurrence sub-nets where: 

l)the transitions inK do not appear in the sub-nets, 

2) the reachable marking set of the original net is the union of the reachable marking sets of 

the sub-nets. 

Theorem 3.6 : Let N be an occurrence net. Let I and K be transition sets with I !;;;;; K. We 

denote the cutup marking set R~ (N) ={ME R(N), :3 Sa configuration: M=(M0uS•)\•S 

A SnK=I}. Rk (N) is not empty iff C1(N) is a configuration and C1(N)nK = I. If 
Rk (N) is not empty, the sub-net of N, (mink (N) , T k (N) ), where: 

mink (N) = (M0 u C1(N)•)\•C1(N) 

T k (N) = { t E T I c,(N) u Ct(N) is a configuration 1\ Ct(N) ("\ K = I} 

is a quasi-live occurrence net such that R((mink (N) , T ~ (N) )) = R~ (N) . Moreover, 
R(N) = u Rk (N) and then the sub-nets (min~ (N) , T ~ (N) ), for which Rk (N) is 
not emply,'ifefine a cutup of N with respect of K. 

In general the complexity of this problem is exponential because of the number of subsets I 
in K for which Rk (N) is not empty. However, in our construction, we often use the cutup 
with respect to a single transition, and its complexity is reduced to O(IFI). 

Example : The cutup of the net g (in Figure 2) with respect to K={ act1,act,} gives: 

1) min~ (g) = M0 (g0 ) , T :' (g) = { apply1, apply,} 
. act1 • act1 

2) mmK (g) = { sent1, requested1, quiet,, local,} , T K (g) 
. actr . actr 

3) mmK (g) = {sent,, requested,, quiet1, local1} , T K (g) 

4) min~ (g) = {requested,, requested1} , T~ (g) = 0 

These nets are presented in the Figure 3. 
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f~~ granted1 
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pend1 

Figure 3 Cutup of a net. 

4. OCCURRENCE NET GRAPHS 

This part contains the main results of this paper: the definition of occurrence net graph for safe 
Petri net and there basic properties - the preservation of reachable states, the deadlock charac­
terization, and the stuttering equivalence. Briefly, an occurrence net graph is a representation 
of the reachability graph where nodes contain sub-graph and arcs link sub-graphs. Sub-graphs 
are expressed by occurrence nets that are sub-nets of the original one with distinct initial mark­
ing. The initial node has the same initial marking as the original net and then be a primary part 
of the reachability graph. To insure the stability of our representation, every firing from reach­
able states of nodes must be taken into account. Obviously, every firing of a transition belong­
ing to the node is already represented. On the other hand, when a transition, not in the node, is 
enabled for some markings, the corresponding firing is represented by an arc in the graph. In 
this case, the covering marking set where the transition is enabled, is defined as an occurrence 
sub-net. To assume the stability in term of states, it is sufficient to take as the successor node, 
the one for which its initial marking is the firing result from the minimal state of the covering 
marking set. Indeed, the state set obtained by firing the transition from the covering marking 
set is represented for a part in the successor node and in the descendants of this node. However, 
for the LTL model checking point of view, it is essential to preserve in the representation of our 
graph all the firing sequences. To achieve this goal, complementary arcs are added to the nodes 
in which are distributed the considered markings. 

First, are defined the occurrence net graphs which preserve reachable states. 

Definition 4.1 : An occurrence net graph NPG = (G, X, g0) of a safe net N is a graph 
where 

(node property) 
(transition relation) 
(initial node) 
( unicity property) 
(transition property) 

G is a set of quasi-live occurrence sub-nets ofN 

X~GxTxG 

g0 E G and M0(g0) = M0(N) 
V g,g' E G, M0(g) = M0(g') ~ g = g' 

if t fl. T(g) and (•t ~ P(g) and-then R.t(g) * 0) then 
::1! g' EG, (g,t,g') EX 

else V g' E G, (g,t,g') fl. X 
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(stability property) 
( reachability property) 

'</ g,g' E G, t E T: (g, t, g') E X, min.t(g)[t>M0(g') 
'</ g E G, there exists a path from g0 tog 
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Example : The following figure presents an occurrence net graph of the safe net of Figure 1. 

~ated1 
release1 

local1! 
apply1 

requested1 

pendl G) 

servect(V 
Both 

Figure 4 Occurrence net graph of the round based mutual exclusion model. 

Theorem 4.2 : (state preserving) Let NPG be an occurrence net graph of N, 

R (N) = u R(g) 
gE G 

Deadlocks of N is a deadlock of a node for which no transition labelling an output arc is 
enabled. For a computation point of view, the deadlock search can be done locally to a node. A 
node that contains a deadlock is called terminal because symbolic sequences in the occurrence 
net graph can deadly stop in such a node. 

Theorem 4.3: Let NPG = (G, X, g0) be an occurrence net graph of N, g be a net in G and 
M a reachable marking of g (ME R(g)). M is a deadlock inN iff: 

M is a dead marking in R(g) 
'</ t E T, '</ g' E G: (g,t,g') E X, ...., M[t> 

If g contains a dead marking of N then g is defined as terminal. 
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Until now, we were concerned by state properties. However, every symbolic sequence in an 
occurrence net graph deduces a set of firing sequences in the original net. An exemplary firing 
sequence of them is the one which goes from node initial marking to node initial marking 
using local firing sequences and transitions labelling output arcs. If we want to preserve every 
firing sequence, we have to add missing arcs. Indeed, for an arc (g,t,g') and a marking M of g 
such that tis enabled, M[t> is not necessary represented in g'. That leads us to the definition of 
a closure of an occurrence net graph. The first condition assures that the firing of any transition 
is represented in the graph. In other words, every firing sequence corresponds to a symbolic 
sequence. The second one preserves the fact that every symbolic sequence in the closure 
deduces a firing sequence set in the original net. 

Definition 4.4: Let NPG = (G, X, g0) be an occurrence net graph of a net N. close(NPG) 
is a transition relation including X (X ~ close(NPG) ~ G x T x G) which fulfills the 
following properties: 
l)(g,t,g') EX=> (g,t,g')Eclose(NPG) A R(rnin.1(g)[t>,T.1(g)) ~ .. .. U R ( g") 

g :(g,t,g ) E close (NPO') 
2)(g,t,g") Eclose(NPG) => :3(g,t,g') EX A M0(g") E R(rnin.1(g)[t>, T.1(g)) 

We call closure of the occurrence net graph NPG the graph (G, close(NPG), g0). 

To preserve the stuttering equivalence between the closure of an occurrence net graph and 
the net, we impose that every node reachable states have the same label, considered as the label 
of the node. Such an occurrence net graph is said to be compatible with a labelling function of 
the net. 

Definition 4.5 : Let NPG = (G, X, g0) be an occurrence net graph of N. NPG is said to be 
compatible with a labelling function L iff: 

V g E G, V mE R(g), L(m) = L(M0(g)) 

We denote by NPGL, the transition system defined by (G, close(NPG), L, g0, terminal) 
where L(g) = L(M0(g)). 

Theorem 4.6 : Let NPG be an occurrence net graph of N compatible with a labelling 
function L. NPGL and NL are stuttering equivalent. 

5. OCCURRENCE NET GRAPH CONSTRUCTION 

The occurrence net graph construction is based on the classical reachability graph algorithm. A 
stack collects nodes to be treated and initially contains the initial marking of the original net. 
The main loop picks a node in the stack (while it is not empty), computes its successors and, if 
they do not already exist, pushes them. At the contrary to the classical algorithm, a node picked 
in the stack needs to be completed. This is the goal of ConstructNode that appends new transi­
tions to the node and computes its successor transitions. For each successor transition, the ini­
tial marking of the destination node is obtained. If this one already exists, a new arc is created. 
Otherwise, a new node is generated with the initial marking and transitions already deduced 
from the previous node. After that, the new node is pushed and the arc is added. Note that the 
detection of the non-respect of the safeness properties is done during the computation. 
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ConstructNode(g,Ext) 
vart : Transition; 

I : TransitionSet:=T\T(g); 
Pg: PlaceSet:=M0uT(g)•; 

Ext:=0; 
while (3 tEI: •t >:;; Pg) do 
{I := I \ t; 
if R., (g) ct 0 then 
{ if (t•nPg ct 0) or-else 

ExtChoice(g,t) then 
Ext : = Ext u t ; 

} 
} 

else 
{ T(g) := T(g) U t; 

Pg := Pg u t•; 

ConstructGraph(): Graph 
varG : Node Set; 

X : ArcSet:=0; 
g 0 : Node: =<M0 , 0>; 
Ext: TransitionSet; 
g,g': Node; 
s : Stack of Node; 

G : = { gol ; 
Pushs(g0); 

while (g := Pops) do 
{ Cons true tNode ( g, Ext) ; 

forall t:tEExt do 
{ if ( (min.,(g) \•t)uT.,(g) • )nt•ct0 then 

error("N is not safe") 

} 
} 

if not (3g'EG:M0 (g')=min.,(g) [t>) then 
{ g' := (min,1(g) [t>,T.1(g)); 

G:=GU{g'}; 
Pushs(g'); 

} 
X:= Xu {(g,t,g')}; 

return <G,X,g0>; 

Algorithm 1 Occurrence net and occurrence net graph construction. 

To complement a node g, potentially enabled transitions (·t~P(g)) are taken into account. 
The enabled test is a coverability problem on the transition input places. In case of unsuccess, 
the transition will never be taken into account (there exists a conflict in C.t(g) and this conflict 
will remain forever). Otherwise, the transition is defined as internal (new transition in g) or 
external (new arc in X). If appending this transition to the net causes it not to be an occurrence 
net (t•nP(g);t:0), then the transition is external. Else, the transition is either internal or exter­
nal. The choice is made by the function ExtChoice. The resulting occurrence net graph 
strongly depends on this function. As an example, to obtain a compatible graph, the transitions 
which potentially can change the truth value of an atomic proposition have to be external. As a 
heuristic to reduce the graph size, transition is made external if the successor of its minimal 
state is the initial marking of an existing node. 

For each arc (g,t,g'), the closure algorithm identifies nodes that contains the successor 
states of g by t. These states are defined by the occurrence net (min.t(g)[t>, T.t(g)). The stack 
contains couples (g' ,gi) of occurrence nets with the same initial marking. g' is a node of the 
graph and gi is the occurrence to be included in g' and its descendants. For our implementa­
tion, a couple (g', gi) is coded by (g' ,T(gi)). If gi is a sub-net of g', obviously, the computation 
is already completed. Else, an external transition t' of g' exists for which both configurations in 
g' and gi are identical. Cutting up gi with respect to the transition t', the state in (min:: (gi), 
T:: (gi)) will be treated in the successor node of g' (g":(g',t',g")EX, noticed that M0(g") = 
min:: (gi) ), the other states (min~ (gi), T~ (gi)) will be treated in g'. The first step of the 
computation is to push (g' ,T.t(g)). As and when the algorithm go through nodes, arcs are cre­
ated. 
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Close(G,X): ArcSet 
var t Transition; 

I TransitionSet; 
X' ArcSet; 
g,g' ,g'' Node; 
S Stack of <Node, TransitionSet>; 

X':= 0; 
forall (g,t,g') EX do 
(X' =X' U (g,t,g'); 

Push5 (g' ,T,,(g)); 
while ((g',I) := Pop5) do 
{ forall (t',g"):(g',t',g") EX do 

{ if c.,. ( g' ) ~ I then 

} 
} 

{X' = X' u (g,t,g"); 

PushS(g' ', T;: (Mo(g'), I)); 

I : = T~ ( Mo ( g' ) , I) ; 

return X' i 

Algorithm 2 Closure algorithm. 

6. MODEL CHECKING 

The occurrence net graph preserves the reachability set and then any property expressed in 
term of coverability can be checked in a very efficient way (the complexity is O(IGixiTI)). On 
the other hand, deciding if a node is terminal (i.e. contains a deadlock of the original net) is 
NP-complete. However, K.L. McMillan proposes, in [McM92], a clever algorithm, based on a 
characterization of the configurations that lead eventually to deadlocks. This algorithm can be 
directly used in our work. The occurrence net graph preserves also the existence of infinite 
sequence and this property can be checked in O(IXI). 

The key point of the LTL ~ model checker is the use of the closure. Given a set of atomic 
propositions, we proceed the analysis in five stages: 

• Identify a cutup set (transition which may change the truth value of atomic propositions). 

• Compute a compatible occurrence net graph. 

• Identify terminal nodes (using Me Millan's algorithm). 

• Compute the closure of the graph. 

• Check formulae on the stuttering equivalent graph, the closure of a compatible occur­
rence net graph. 

Computing a compatible occurrence net graph can be done in several ways. The simplest 
one is to compute this graph directly from the ()riginal net by forcing the cutup transitions to be 
external. Another way consists in computing it from an occurrence net graph already done. 
Briefly, this algorithm makes a cutup on each node. Because compatible nodes are computed 
locally from original nodes, the node construction algorithm is more efficient (quasi-liveness 
tests can be omitted). Before the construction, an upper-bound of the node number can be esti­
mated as the number of cutup nets of original nodes. 
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The CutUpConstructGraph algorithm is almost the same as ConstructGraph. The main dif­
ference is in the information pushed on the stack in order to compute local compatible nodes. 
In the stack information (gc, g, C), gc is the local compatible node to be treated; g its node 
localization and C the configuration in g which leads to the initial marking of gc. The first step 
is to complete gc. Notice that in CutUpConstructNode the quasi-liveness tests have been with­
drawn. Three kinds of external transitions have to be managed: 

• Transition which leads to already computed node: its computation is self-evident. 
• Transition of the original node: we push the successor node, the same original node and 

the new configuration. 
• Transition external to the original node: the function Find is used to identify the original 

node containing the wanted state and its associated configuration. 

CutupConstructGraph(G,X,go,K}: Graph 
varGc: NodeSet; 

Xc : Arc Set: =0; 
gc0 : Node:=<M0 ,0>; 
Ext,C: TransitionSet; 
g,g' ,gc,gc': Node; 
S: Stack of <Node,Node,TransitionSet>; 

Gc := {gc0 }; 

Push5 (gc0 ,g0 ,0}; 
while ( (gc,g,C} := Pop5} do 
{CutUpConstructNode(X,g,K,gc,Ext}; 

forall t:tEExt do 
{if not(3gc'EGc:M0 (gc'}=min,1(gc} [t>} then 

{ gc' := (min,1(gc} [t>,T,1(gc}}; 
Gc := Gc u {gc'}; 
if (tET(g}} then 

Push5 (gc' ,g,C U C1(g}}; 
else 
{ g': (g,t,g'}EX; 

Push5 (gc', find(X, g', C\C,1 (g) u t}}; 

Xc : = Xc u { ( gc , t , gc ' } } ; 

return <Gc,Xc,gc0>; 

eutupconstructNode(X,g,K,gc,Ext} 
var t : Transition; 

I : TransitionSet:=T(g}; 
Pg: PlaceSet:=M0 (gc); 

Ext:=0; 
while (3 tEI: •t s;; Pg) do 
{I:=I\t; 
if (tEK} then 

Ext := Ext u t; 
else 
{ T ( gc} . - T ( gc } u t ; 

Pg : = Pg U t•; 
} 

} 
Ext:=ExtU{tET:3(g,t,g'}EX A •ts;;Pg}; 

Algorithm 3 Cutup graph construction. 

Find(X,g,C}: <Node, TransitionSet> 
var t : Transition; 

g': Node; 

while not (C s;; T(g}} do 
{ ( g' , t} : ( g, t, g' } E XAC,1 ( g} U { t} s;;C; 

C := C\(C,1(g}u{t}}; 
g := g'; 

} 
return (g,C}; 



392 Part Six Verification and Validation 

Example : Figure 5 gives the compatible occurrence net graph computed from the original 
graph (Figure 4) which is already closed. The atomic propositions are <<waiting for a critical 
section access» (places send1 and sen~ denoted by s1 and sr) and <<accessing to the critical sec­
tion>> (places crit1 and cri~ denoted by c1 and cr). The cutup set is defined by the input and the 
output transitions of these places. The size of this graph was foreseeable and correspond to the 
cutup of each node. 

8o 

Figure 5 Occurrence net graph compatible with critical and sent. 

The fairness property for guaranteed accessibility to the critical section (O(s1Uc1), 

O(srUcr)) are easily verified in the compatible occurrence net graph, as well as the priority of 
the process l over r (O((s1Asr)Uc1)). The safeness of the critical section (0( -,c1v-,cr)) is obvi­
ous on the graph, however, it can be checked on the original graph as a coverability problem. 

7. EXPERIMENTAL RESULTS 

The efficiency of our approach is evaluated in comparison to the following techniques: the 
Petri net traversal algorithm based on BDD [Past94], The stubborn set method [Val91] and the 
construction of a complete finite prefix of an unfolding. For this last technique, we use an 
improvement of the original method [McM92] due to J. Esparza, S. Romer and W. Vogler 
[Esp96]. Used tools are Prod [Var92] for the stubborn set method, Pep [GB96] for the unfolding 
and tools developed in our laboratory for the Petri net traversal algorithm and our approach. 

The results for three examples are presented in this paper: the dining philosophers [Past94], 
the Peterson's mutex algorithm for n processes [Cou94] and the distributed database [Jens86]. 
All examples are scalable, in such a way that the number of system states is exponential with 
respect to a given parameter. Figure 6 presents a run-time comparison, with a semi-logarithmic 
scale. Measurements have been done on a Spare 5 workstation. Table 1 gives the size of the 
initial Petri net, the number of states in the reachability graph, the number of nodes for the final 
BDD representation of the state set, the number of states in the reduced reachability graph, the 
size of the unfolding and the number of nodes of the occurrence net graph. 

The unfolding technique is very closed to our method and a comparison seems to be natu­
ral. BDD representation and stubborn set reduction are the bases of some efficient LTL model 
checkers (respectively [Clarke94] and [GW94]). The key points of these approaches are their 
capabilities to capture the partial order of a system and to give a concise state space representa­
tion. 
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Example BDD Stubborn sets Esparza's Occurrence 
unfolding net graph 

size nb.of nb. nb.of nb.of of cpu size (pl/tr) n (pVtr) states (sec.) states cpu cpu nodes cpu 
nodes 

20 140/100 2x 771 357.37 25426 93.30 200/100 0.23 I 0.13 10'3 

dining 2x philosophers 50 350/250 1033 1886 4447.5 - - 500/250 0.91 I 0.55 

100 700/500 - - - - 1000/500 4.71 I 2.08 

2 18/18 50 78 0.65 32 0.14 51/31 0.08 9 0.03 
Peterson's 

mutex 3 45/57 1065 436 64.26 645 2.18 758/447 0.68 119 0.65 
algorithm 

4 841132 25636 4041 1487.9 15600 122.1 12132/6804 85.9 2183 31.54 

2 15/8 7 51 0.19 7 0.06 23/8 0.09 3 0.07 

distributed 4 61132 109 392 8.06 29 0.14 101132 0.13 44 0.18 

database 6 139n2 1459 1148 93.24 67 0.32 235172 0.24 432 2.9 

8 249/128 17497 2848 606.68 121 0.59 4251128 0.49 3264 72.77 

Table 1 Experimental results. 
For the dining philosopher example, unfolding and occurrence net graph methods give the 

best results. Both techniques construct almost the original net and then lead to a perfect concise 
representation of the state space. On the other hand, the stubborn set reduction captures in an 
efficient way the partial order but the lack of concise representation leads to low performances. 
The good BDD representation of the state space can not avoid the state explosion. 

For the Peterson's mutex algorithm, the results given by the stubborn set method show that 
the system is highly synchronized (the reduction rate is less than two). Efficiency of the differ­
ent approaches depends mainly on the state representation. Size of the result given by the BDD 
based technique is satisfactory. However a memory high peak increases the computation time. 
For the unfolding method, one can notice that the size of the resulting net becomes large. The 
more the size of the unfolding net grows during the construction, the more the cost of adding a 
new transition increases. Indeed, this cost depends on the size of the net and especially on the 
rate of duplicated elements. This phenomenon can be observed on the run-time comparison 
diagram. In the occurrence net graph, a node construction only depends on the size of the orig­
inal net. Therefore, good performances can be obtained. 

For the distributed database, the efficiency of the stubborn set and unfolding techniques is 
remarkable. This is due to the fact that this model is largely asynchronous. At the contrary, the 
occurrence net graph approach fails. Indeed, our method does not capture the full partial order 
of the system. As an example, for a system composed by n completly independant subsystems, 
the occurrence net graph of the system is the cartesian product of the occurrence net graph of 
each subsystems. In each node the partial order is well captured. However, this order is ignored 
at the graph level. 
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Figure 6 Run-time comparison. 

8. CONCLUDING REMARKS 
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We have proposed a new representation of reachability graph as a graph of particular Petri nets 
for which a model checker is adapted. The efficiency of the method strongly depends on the 
size of the graph and on the complexity of node computation. However, the number of nodes is 
bounded by the number of states. The node construction uses efficient occurrence net algo­
rithms. 

Many problems can be stated in term of coverability or deadlock. The occurrence net graph 
representation provides adequate algorithms to check them on each node and then fits the veri­
fication of invariant properties. Based on stuttering equivalence, we have defined a nexttime­
less temporal logic model checker. 

The primary experimental results have demonstrated that our method is competitive against 
other ones and very efficient in some cases. The improvement under consideration is to take 
into account the partial order at the graph level by an approach based on the stubborn set the­
ory. An other objective is to adapt our construction algorithm to verify temporal logic formulae 
in an on-the-fly way. 
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