
24

MODEL CHECKING BASED ON
OCCURRENCE NET GRAPH

Jean-Michel Couvreurt, Denis Poitrenaud+

t Institut d'Informatique d'Entreprise, CEDRIC-liE
18, Allee J. Rostand, 91025 Evry Cedex, FRANCE

couvreur@iie.cnam.fr

* Laboratoire MASI, Institut Blaise Pascal, Universite Paris VI
4, Place Jussieu, 75252 Paris Cedex 05, FRANCE

Denis.Poitrenaud@masi.ibp.fr

Abstract
The computation of a reachability graph is one of the most used method to check system prop­
erties. Its main drawback is the state explosion. Two different approaches are generally used to
tackle this problem: by defining new concise graph representations for which verification
methods are adapted; by reducing graphs while preserving observed properties. We propose a
new representation of a reachability graph where nodes are particular Petri nets, occurrence
nets, characterizing parts of the state space. Checking invariant properties can be done using
efficient algorithms for occurrence nets. Moreover, our representation can be used to obtain a
stuttering equivalent graph on which nexttime-less linear temporal formulae are verified.

Keywords
Verification, temporal logic, Petri nets

1. INTRODUCTION

Temporal logic model checking is a useful method for verifying properties of finite concurrent
systems. Many algorithms have been developed that depend on the representation of properties
(temporal logic formula or Biichi automaton). The reader can find a complete survey of this
domain in [Wol89].

However, due to the state-explosion problem these methods tend to be impossible for the
verification of realistic systems. Different approaches are generally used to combat this prob­
lem. One way is to define new concise graph representations for which there are adapted veri­
fication methods. For instance, we can mention methods based on Binary Decision Diagram
[Clark94] [Past94] and unfoldings [Nielsen80][McM92][Esp96]. A complementary approach is
to reduce reachability graphs while preserving observed properties. Among them, we can note
Petri net reductions [Berth85], stubborn set method [Val91] and more generally semantic
equivalences [Lam83][KV92].

In this paper, we propose a new representation of a reachability graph for safe Petri nets
where nodes are particular nets, occurrence nets that characterize parts of the state space. This

R. Gotzhein et al. (eds.), Formal Description Techniques IX
© IFIP International Federation for Information Processing 1996

Model Checking Based on Occurrence Net Graph 381

class of net has been already used for unfolding Petri nets [Nielsen80]. In [McM92], unfold­
ings are used to check invariant properties and to dectect deadlocks. [Esp93] extends this
results to a branching time temporal logic. The main shortcoming of this logic is the fact that
liveness properties can not be expressed.

The main improvement of our method against the unfolding technique is its capability to
preserve infinite sequence. Moreover, our representation can be used to obtain equivalent
graphs according to the stuttering equivalence introduced in [Lam83][KV92]. This result
induces a model checking for the nexttime-less linear temporal logic. Roughly speaking, given
an <;>ccurrence net graph, checking a formula is performed in two steps: the computation of a
stuttering equivalent graph with respect to the atomic propositions; the verification of the for­
mula on the resulting graph.

This paper is organized as follows. In Section 2, basic notions on nexttime-less linear tem­
poral logic and Petri nets are presented. Section 3 introduces occurrence nets and some specific
properties. Section 4 contains the theoretical aspect of our model checking, the definition of
occurrence net graphs and their key properties. Construction algorithms are given in Section 5.
Section 6 concerns the model checking. Section 7 gives experimental results of our method
followed by a comparison with other techniques and a discussion.

Proofs of theorems and algorithms are technical and use intensively the elementary proper­
ties of occurrence nets. Hence, they have been omitted for reason of space and clarity.

2. PRELIMINARIES

2.1. Nexttime-Less Linear Temporal Logic
We assume that there is a set AP called the set of atomic propositions. We denote a transition
system H by (S, X, L, s0, terminal) where S is the finite state set, X c;;; S x S is the transition
relation specifying the single step of a system, L(s) c;;; AP is the labelling of each states with
true propositions, s0 E S is the initial state and terminal is a state proposition which is at least
true for deadlock (i.e. state with no successor).

a is a finite sequence from w0 of H iff a= s0s1 ... sn.J such that for all O<i~n, (si.J• si) E X. a
is an infinite sequence from s0 of H iff every finite prefix of a is a finite sequence from s0 of H.
We denote by a(il the string obtained by leaving the first i elements of a.

We call computations infinite sequences from the initial state and finite sequence from the
initial state to a terminal state.

We have chosen a linear temporal logic derived from one of the most common versions of
propositional temporal logic appearing in the computer science literature and presented in
[KV92]. Our logic does not accept the use of the temporal operator <<nexttime>> 0 but is aug­
mented by an additional operator o= <<infinitely often in the proper future>>. In other respects
the definitions of our linear logic are standard and we will refer to it as LTL ~.

LTL ~formulae are built from atomic propositions f1, f2, ... on states, boolean connectives
(A,-,) and temporal operators (u «Until>>, o= <<infinitely often in the proper future>>). The for­
mation rules are:

• atomic propositions are formulae;
• iff and g are formulae, so are f 1\ g, -,f, f u g, o= f.

382 Part Six Verification and Validation

We use Of («eventually>>) as an abbreviation for (true U f) and Of (<<always>>) as an abbrevi­
ation for -,0-,f. We also use v and ~ as the usual abbreviations.

The formal semantic of LTL ~is given as follows. Let a= s0 ... si··· be a finite or infinite
sequence from s0 of a transition system H = (S, X, L, s0, terminal). For a formula f, a I= f
means that f is satisfied by a. We have

• a I= f iff f E L(s0), for fan atomic proposition
• a 1= f" g iff (a 1= f) and (a 1= g)
• a 1= -,f iff not a I= f
• a 1= f U g iff:3 i such that (Vj :o; i, aG> I= f) and (a<i) 1= g)

• a I= 000 f iff there are infinitely many i~O such that a<i) I= f
For a transition system H, a LTL formula f is satisfied (denoted by H I= f) iff each computa­

tion satisfies f.

The trace notion where only the truth labelling function modifications are visible, induces
the stuttering equivalence between systems preserving our logic. Formally, a trace for a finite
sequence a= w1 ... wn is defined by:

• if n=l, tr(s1) = L(s1)

• if n>l and L(sn_1) = L(sn), tr(a) = tr(s 1 ... sn_ 1)

• if n> 1 and L(sn_1) ;t: L(sn), tr(a) = tr(s1 •.. sn_1).L(sn)

The trace of an infinite sequence is the limit of the traces of its prefixes tr(s1 ..• sn)-

Three sets characterize the stuttering equivalence: dtr(H) is the finite computation trace set;
inftr(H) is the infinite trace set of infinite computations and divtr(L) is the finite trace set of
infinite computations. Two systems are said stuttering equivalent iff they have the same char­
acteristic trace sets. L. Lamport [Lam83] and R. Kaivola et al. [KV92] establish the relation
between the stuttering equivalence and LTL ~.

Theorem 2.1 : Let H and H' be transition systems. H and H' are stuttering equivalent iff
for any LTL ~ formula f, H I= f ~ H' I= f.

2.2. Petri Nets

We assume that the reader is familiar with the basic notions and notations of Petri nets, as
given for instance in [Mur89]. We use finite safe Petri nets as system models. We denote a Petri
net by N = (P, T, F, M0) where (P, T, F) is a net and M0 its initial marking. A place of a safe
Petri net contains at most one token and then markings are represented as place sets.

In the sequel, we use the following particular notations:
• N = (P(N), T(N), F(N), M0(N)) is used to denote the different net components when sev-

eral Petri nets are considered.

• R(N) is the reachability set ofN.

• Deadlock(N) is is a state proposition which is true for deadlock state of N.

• RA(N) = {ME R(N): A~} is the coverability set for the place set A.

• M[t> is the resulting marking of M by t when t is firable.

• (M,V) = (MuV•u•V, V, (VxP u PxV) n F, M) is the sub-net of N that represents the fir­
ing sequence from M using only transitions in V.

• NL = (R(N), [>, L, M0(N), Deadlock(N)) is the transition system of a Petri net N with

Model Checking Based on Occurrence Net Graph 383

respect to a state labelling function L ([> denotes the transition relation of the Petri net
N).

Example : The following figure shows a safe Petri net previously presented in [Reisig95]. It
models a mutual exclusion between two processes l and r.

Figure 1 Round based mutual exclusion.

Site 1 may spontaneously apply for getting critical, by moving from local1 to pend1• Then 1
acts, i.e. sends a request and remains sent1 until site r either grants 1 to enter critical1 or site r
also requests to go critical. In this case l goes critical along crosstalk1• A second component of
site l in state quiet1 may echo a request from site r, granting r to go critical.

The reachability graph of this net contains 32 nodes and 59 arcs. On this safe Petri net, the
set of atomic propositions AP = { c1, cr s1, s,} induces a linear temporal logic with c1E L(M) <=>
crit1E M, c,E L(M) <=> crit,E M, s1E L(M) <=> sent1E M and s,e L(M) <=> sent,E M. For instance,
the formula 0(-.c1v-.c,) expresses the safeness property to access to the critical section.

3. OCCURRENCE NETS

Occurrence nets are sub-class of safe Petri nets introduced in [Nielsen80] for unfoldings. In
this section, we recall its definition, the notion of configuration and basic properties. We point
out two essential problems which are relevant for the occurrence net graph construction:

l)the coverability problem: to characterize the reachable markings for which given places
are marked,

2)the cutup problem: to represent the reachable marking set by the union of reachable
markings of occurrence sub-nets in which given transitions do not appear.

More informations about occurrence nets can be founded in [Nielsen80][McM92][Esp96].

Definition 3.1 : An occurrence net is a marked Petri net N = (P, T, F, M0) where:
l)V'pE P, l•pl::>landM0 ={pE P:l•pl =0}

2) v t E T, l•t I ~ l
3)The Petri net N is an acyclic graph

384 Part Six Verification and Validation

Example : The following figure shows a subnet of the net of Figure 1. This subnet is an occur­
rence net.

Figure 2 Occurrence net.

As K.L. McMillan notes in [McM92], <<The most important theoretical notion regarding
occurrence nets is that of a configuration». Configurations represent possible firing sequences
of the net. It is based on the reflexive partial order induced by the graph which is acyclic and on
the notion of transition conflict.

For a set of places and transitions U, we denote by Cu(N) the set containing all the transi­
tions of U and the ones that have a descendant in U.

Definition 3.2 : Let N be an occurrence net. A set of transitions S is a configuration iff:

(no conflict inS) V t, t' ES: •t n •t';t0::::} t=t'

(Sis downward closed) S = C5(N)

Example : For the occurrence net of the Figure 2, Cecho (g0)={ apply1,act1,echor} is a configura­
tion and then defines firing sequences. On the other ha~d, C {served1, served,} (g0) is not a configu­
ration because it contains, in particular, the conflict transitions echor and actr and then places
served1 and servedr are in mutual exclusion in g0.

Configurations simply characterize reachable markings and quasi-live transitions (transi-
tions fired at least once).

Proposition 3.3 : Let N be an occurrence net. A marking M is reachable iff there exists a
configurationS such that M=(M0uS•)\•S. When these properties hold, we have CM(N)!;;;;;
S and if any transition in T has at least one output place then CM(N) = S.

Proposition 3.4 : Let N be an occurrence net. Lett be a transition. tis quasi-live iff C1(N)

is a configuration.

When any transition in T has at least one output place, the reachability algorithm associated
to Proposition 3.3 is based on a graph traversal and its complexity is O(IFI). Otherwise the
problem is NP-complete. The quasi-liveness algorithm for a transition has a complexity in
O(IFI).

Model Checking Based on Occurrence Net Graph 385

The coverability problem is <<Does there exist a reachable marking including a place set
A?». For our method, we need to represent the covering marking set RA(N). The following the­
orem characterizes it as the reachability set of an occurrence sub-net of N.

Theorem 3.5 : Let N be an occurrence net. Let A be a place set. We denote the covering

marking set RA (N) = { M E R(N): A~}. RA (N) is not empty iff C A (N) is a configuration

and •CA(N)nA = 0. If RA(N) is not empty, the sub-net of N, (minA(N), TA(N)), where:

minA(N) = (M0 U CA(N)•)\•CA(N)

T A (N) = { t E T I C A (N) u C1(N) is a configuration A •C1(N) n A = 0}

is a quasi-live occurrence net such that R((minA(N), TA(N))) = RA(N).

It can be shown straightforwardly enough that the algorithm associated to coverability
problem has a complexity in O(IFI).

Example : For the occurrence net g in the Figure 2, we have min•enter (g) = {send1,grant­
ed1,local,} and Toenter (g)= {apply,}. The subnet (minoenter (g),T•enter (g)) 1iS the bolded one in

I I I
the Figure 2.

The cutup problem with respect to a transition set K, is to decompose the occurrence net in
a set of occurrence sub-nets where:

l)the transitions inK do not appear in the sub-nets,

2) the reachable marking set of the original net is the union of the reachable marking sets of

the sub-nets.

Theorem 3.6 : Let N be an occurrence net. Let I and K be transition sets with I !;;;;; K. We

denote the cutup marking set R~ (N) ={ME R(N), :3 Sa configuration: M=(M0uS•)\•S

A SnK=I}. Rk (N) is not empty iff C1(N) is a configuration and C1(N)nK = I. If
Rk (N) is not empty, the sub-net of N, (mink (N) , T k (N)), where:

mink (N) = (M0 u C1(N)•)\•C1(N)

T k (N) = { t E T I c,(N) u Ct(N) is a configuration 1\ Ct(N) ("\ K = I}

is a quasi-live occurrence net such that R((mink (N) , T ~ (N))) = R~ (N) . Moreover,
R(N) = u Rk (N) and then the sub-nets (min~ (N) , T ~ (N)), for which Rk (N) is
not emply,'ifefine a cutup of N with respect of K.

In general the complexity of this problem is exponential because of the number of subsets I
in K for which Rk (N) is not empty. However, in our construction, we often use the cutup
with respect to a single transition, and its complexity is reduced to O(IFI).

Example : The cutup of the net g (in Figure 2) with respect to K={ act1,act,} gives:

1) min~ (g) = M0 (g0) , T :' (g) = { apply1, apply,}
. act1 • act1

2) mmK (g) = { sent1, requested1, quiet,, local,} , T K (g)
. actr . actr

3) mmK (g) = {sent,, requested,, quiet1, local1} , T K (g)

4) min~ (g) = {requested,, requested1} , T~ (g) = 0

These nets are presented in the Figure 3.

386 Part Six Verification and Validation

f~~ granted1

'~''% f- (2)
apply, requested1

sent18 echor 8
apply1 apply, quJet, local,

8
pend1 ,~,r~·

requested,
local,

echo1 (Vsentr
(4)

(l)
(3) apply1

served1 granted,

pend1

Figure 3 Cutup of a net.

4. OCCURRENCE NET GRAPHS

This part contains the main results of this paper: the definition of occurrence net graph for safe
Petri net and there basic properties - the preservation of reachable states, the deadlock charac­
terization, and the stuttering equivalence. Briefly, an occurrence net graph is a representation
of the reachability graph where nodes contain sub-graph and arcs link sub-graphs. Sub-graphs
are expressed by occurrence nets that are sub-nets of the original one with distinct initial mark­
ing. The initial node has the same initial marking as the original net and then be a primary part
of the reachability graph. To insure the stability of our representation, every firing from reach­
able states of nodes must be taken into account. Obviously, every firing of a transition belong­
ing to the node is already represented. On the other hand, when a transition, not in the node, is
enabled for some markings, the corresponding firing is represented by an arc in the graph. In
this case, the covering marking set where the transition is enabled, is defined as an occurrence
sub-net. To assume the stability in term of states, it is sufficient to take as the successor node,
the one for which its initial marking is the firing result from the minimal state of the covering
marking set. Indeed, the state set obtained by firing the transition from the covering marking
set is represented for a part in the successor node and in the descendants of this node. However,
for the LTL model checking point of view, it is essential to preserve in the representation of our
graph all the firing sequences. To achieve this goal, complementary arcs are added to the nodes
in which are distributed the considered markings.

First, are defined the occurrence net graphs which preserve reachable states.

Definition 4.1 : An occurrence net graph NPG = (G, X, g0) of a safe net N is a graph
where

(node property)
(transition relation)
(initial node)
(unicity property)
(transition property)

G is a set of quasi-live occurrence sub-nets ofN

X~GxTxG

g0 E G and M0(g0) = M0(N)
V g,g' E G, M0(g) = M0(g') ~ g = g'

if t fl. T(g) and (•t ~ P(g) and-then R.t(g) * 0) then
::1! g' EG, (g,t,g') EX

else V g' E G, (g,t,g') fl. X

Model Checking Based on Occurrence Net Graph

(stability property)
(reachability property)

'</ g,g' E G, t E T: (g, t, g') E X, min.t(g)[t>M0(g')
'</ g E G, there exists a path from g0 tog

387

Example : The following figure presents an occurrence net graph of the safe net of Figure 1.

~ated1
release1

local1!
apply1

requested1

pendl G)

servect(V
Both

Figure 4 Occurrence net graph of the round based mutual exclusion model.

Theorem 4.2 : (state preserving) Let NPG be an occurrence net graph of N,

R (N) = u R(g)
gE G

Deadlocks of N is a deadlock of a node for which no transition labelling an output arc is
enabled. For a computation point of view, the deadlock search can be done locally to a node. A
node that contains a deadlock is called terminal because symbolic sequences in the occurrence
net graph can deadly stop in such a node.

Theorem 4.3: Let NPG = (G, X, g0) be an occurrence net graph of N, g be a net in G and
M a reachable marking of g (ME R(g)). M is a deadlock inN iff:

M is a dead marking in R(g)
'</ t E T, '</ g' E G: (g,t,g') E X,, M[t>

If g contains a dead marking of N then g is defined as terminal.

388 Part Six Verification and Validation

Until now, we were concerned by state properties. However, every symbolic sequence in an
occurrence net graph deduces a set of firing sequences in the original net. An exemplary firing
sequence of them is the one which goes from node initial marking to node initial marking
using local firing sequences and transitions labelling output arcs. If we want to preserve every
firing sequence, we have to add missing arcs. Indeed, for an arc (g,t,g') and a marking M of g
such that tis enabled, M[t> is not necessary represented in g'. That leads us to the definition of
a closure of an occurrence net graph. The first condition assures that the firing of any transition
is represented in the graph. In other words, every firing sequence corresponds to a symbolic
sequence. The second one preserves the fact that every symbolic sequence in the closure
deduces a firing sequence set in the original net.

Definition 4.4: Let NPG = (G, X, g0) be an occurrence net graph of a net N. close(NPG)
is a transition relation including X (X ~ close(NPG) ~ G x T x G) which fulfills the
following properties:
l)(g,t,g') EX=> (g,t,g')Eclose(NPG) A R(rnin.1(g)[t>,T.1(g)) ~ U R (g")

g :(g,t,g) E close (NPO')
2)(g,t,g") Eclose(NPG) => :3(g,t,g') EX A M0(g") E R(rnin.1(g)[t>, T.1(g))

We call closure of the occurrence net graph NPG the graph (G, close(NPG), g0).

To preserve the stuttering equivalence between the closure of an occurrence net graph and
the net, we impose that every node reachable states have the same label, considered as the label
of the node. Such an occurrence net graph is said to be compatible with a labelling function of
the net.

Definition 4.5 : Let NPG = (G, X, g0) be an occurrence net graph of N. NPG is said to be
compatible with a labelling function L iff:

V g E G, V mE R(g), L(m) = L(M0(g))

We denote by NPGL, the transition system defined by (G, close(NPG), L, g0, terminal)
where L(g) = L(M0(g)).

Theorem 4.6 : Let NPG be an occurrence net graph of N compatible with a labelling
function L. NPGL and NL are stuttering equivalent.

5. OCCURRENCE NET GRAPH CONSTRUCTION

The occurrence net graph construction is based on the classical reachability graph algorithm. A
stack collects nodes to be treated and initially contains the initial marking of the original net.
The main loop picks a node in the stack (while it is not empty), computes its successors and, if
they do not already exist, pushes them. At the contrary to the classical algorithm, a node picked
in the stack needs to be completed. This is the goal of ConstructNode that appends new transi­
tions to the node and computes its successor transitions. For each successor transition, the ini­
tial marking of the destination node is obtained. If this one already exists, a new arc is created.
Otherwise, a new node is generated with the initial marking and transitions already deduced
from the previous node. After that, the new node is pushed and the arc is added. Note that the
detection of the non-respect of the safeness properties is done during the computation.

Model Checking Based on Occurrence Net Graph 389

ConstructNode(g,Ext)
vart : Transition;

I : TransitionSet:=T\T(g);
Pg: PlaceSet:=M0uT(g)•;

Ext:=0;
while (3 tEI: •t >:;; Pg) do
{I := I \ t;
if R., (g) ct 0 then
{ if (t•nPg ct 0) or-else

ExtChoice(g,t) then
Ext : = Ext u t ;

}
}

else
{ T(g) := T(g) U t;

Pg := Pg u t•;

ConstructGraph(): Graph
varG : Node Set;

X : ArcSet:=0;
g 0 : Node: =<M0 , 0>;
Ext: TransitionSet;
g,g': Node;
s : Stack of Node;

G : = { gol ;
Pushs(g0);

while (g := Pops) do
{ Cons true tNode (g, Ext) ;

forall t:tEExt do
{ if ((min.,(g) \•t)uT.,(g) •)nt•ct0 then

error("N is not safe")

}
}

if not (3g'EG:M0 (g')=min.,(g) [t>) then
{ g' := (min,1(g) [t>,T.1(g));

G:=GU{g'};
Pushs(g');

}
X:= Xu {(g,t,g')};

return <G,X,g0>;

Algorithm 1 Occurrence net and occurrence net graph construction.

To complement a node g, potentially enabled transitions (·t~P(g)) are taken into account.
The enabled test is a coverability problem on the transition input places. In case of unsuccess,
the transition will never be taken into account (there exists a conflict in C.t(g) and this conflict
will remain forever). Otherwise, the transition is defined as internal (new transition in g) or
external (new arc in X). If appending this transition to the net causes it not to be an occurrence
net (t•nP(g);t:0), then the transition is external. Else, the transition is either internal or exter­
nal. The choice is made by the function ExtChoice. The resulting occurrence net graph
strongly depends on this function. As an example, to obtain a compatible graph, the transitions
which potentially can change the truth value of an atomic proposition have to be external. As a
heuristic to reduce the graph size, transition is made external if the successor of its minimal
state is the initial marking of an existing node.

For each arc (g,t,g'), the closure algorithm identifies nodes that contains the successor
states of g by t. These states are defined by the occurrence net (min.t(g)[t>, T.t(g)). The stack
contains couples (g' ,gi) of occurrence nets with the same initial marking. g' is a node of the
graph and gi is the occurrence to be included in g' and its descendants. For our implementa­
tion, a couple (g', gi) is coded by (g' ,T(gi)). If gi is a sub-net of g', obviously, the computation
is already completed. Else, an external transition t' of g' exists for which both configurations in
g' and gi are identical. Cutting up gi with respect to the transition t', the state in (min:: (gi),
T:: (gi)) will be treated in the successor node of g' (g":(g',t',g")EX, noticed that M0(g") =
min:: (gi)), the other states (min~ (gi), T~ (gi)) will be treated in g'. The first step of the
computation is to push (g' ,T.t(g)). As and when the algorithm go through nodes, arcs are cre­
ated.

390 Part Six Verification and Validation

Close(G,X): ArcSet
var t Transition;

I TransitionSet;
X' ArcSet;
g,g' ,g'' Node;
S Stack of <Node, TransitionSet>;

X':= 0;
forall (g,t,g') EX do
(X' =X' U (g,t,g');

Push5 (g' ,T,,(g));
while ((g',I) := Pop5) do
{ forall (t',g"):(g',t',g") EX do

{ if c.,. (g') ~ I then

}
}

{X' = X' u (g,t,g");

PushS(g' ', T;: (Mo(g'), I));

I : = T~ (Mo (g') , I) ;

return X' i

Algorithm 2 Closure algorithm.

6. MODEL CHECKING

The occurrence net graph preserves the reachability set and then any property expressed in
term of coverability can be checked in a very efficient way (the complexity is O(IGixiTI)). On
the other hand, deciding if a node is terminal (i.e. contains a deadlock of the original net) is
NP-complete. However, K.L. McMillan proposes, in [McM92], a clever algorithm, based on a
characterization of the configurations that lead eventually to deadlocks. This algorithm can be
directly used in our work. The occurrence net graph preserves also the existence of infinite
sequence and this property can be checked in O(IXI).

The key point of the LTL ~ model checker is the use of the closure. Given a set of atomic
propositions, we proceed the analysis in five stages:

• Identify a cutup set (transition which may change the truth value of atomic propositions).

• Compute a compatible occurrence net graph.

• Identify terminal nodes (using Me Millan's algorithm).

• Compute the closure of the graph.

• Check formulae on the stuttering equivalent graph, the closure of a compatible occur­
rence net graph.

Computing a compatible occurrence net graph can be done in several ways. The simplest
one is to compute this graph directly from the ()riginal net by forcing the cutup transitions to be
external. Another way consists in computing it from an occurrence net graph already done.
Briefly, this algorithm makes a cutup on each node. Because compatible nodes are computed
locally from original nodes, the node construction algorithm is more efficient (quasi-liveness
tests can be omitted). Before the construction, an upper-bound of the node number can be esti­
mated as the number of cutup nets of original nodes.

Model Checking Based on Occurrence Net Graph 391

The CutUpConstructGraph algorithm is almost the same as ConstructGraph. The main dif­
ference is in the information pushed on the stack in order to compute local compatible nodes.
In the stack information (gc, g, C), gc is the local compatible node to be treated; g its node
localization and C the configuration in g which leads to the initial marking of gc. The first step
is to complete gc. Notice that in CutUpConstructNode the quasi-liveness tests have been with­
drawn. Three kinds of external transitions have to be managed:

• Transition which leads to already computed node: its computation is self-evident.
• Transition of the original node: we push the successor node, the same original node and

the new configuration.
• Transition external to the original node: the function Find is used to identify the original

node containing the wanted state and its associated configuration.

CutupConstructGraph(G,X,go,K}: Graph
varGc: NodeSet;

Xc : Arc Set: =0;
gc0 : Node:=<M0 ,0>;
Ext,C: TransitionSet;
g,g' ,gc,gc': Node;
S: Stack of <Node,Node,TransitionSet>;

Gc := {gc0 };

Push5 (gc0 ,g0 ,0};
while ((gc,g,C} := Pop5} do
{CutUpConstructNode(X,g,K,gc,Ext};

forall t:tEExt do
{if not(3gc'EGc:M0 (gc'}=min,1(gc} [t>} then

{ gc' := (min,1(gc} [t>,T,1(gc}};
Gc := Gc u {gc'};
if (tET(g}} then

Push5 (gc' ,g,C U C1(g}};
else
{ g': (g,t,g'}EX;

Push5 (gc', find(X, g', C\C,1 (g) u t}};

Xc : = Xc u { (gc , t , gc ' } } ;

return <Gc,Xc,gc0>;

eutupconstructNode(X,g,K,gc,Ext}
var t : Transition;

I : TransitionSet:=T(g};
Pg: PlaceSet:=M0 (gc);

Ext:=0;
while (3 tEI: •t s;; Pg) do
{I:=I\t;
if (tEK} then

Ext := Ext u t;
else
{ T (gc} . - T (gc } u t ;

Pg : = Pg U t•;
}

}
Ext:=ExtU{tET:3(g,t,g'}EX A •ts;;Pg};

Algorithm 3 Cutup graph construction.

Find(X,g,C}: <Node, TransitionSet>
var t : Transition;

g': Node;

while not (C s;; T(g}} do
{ (g' , t} : (g, t, g' } E XAC,1 (g} U { t} s;;C;

C := C\(C,1(g}u{t}};
g := g';

}
return (g,C};

392 Part Six Verification and Validation

Example : Figure 5 gives the compatible occurrence net graph computed from the original
graph (Figure 4) which is already closed. The atomic propositions are <<waiting for a critical
section access» (places send1 and sen~ denoted by s1 and sr) and <<accessing to the critical sec­
tion>> (places crit1 and cri~ denoted by c1 and cr). The cutup set is defined by the input and the
output transitions of these places. The size of this graph was foreseeable and correspond to the
cutup of each node.

8o

Figure 5 Occurrence net graph compatible with critical and sent.

The fairness property for guaranteed accessibility to the critical section (O(s1Uc1),

O(srUcr)) are easily verified in the compatible occurrence net graph, as well as the priority of
the process l over r (O((s1Asr)Uc1)). The safeness of the critical section (0(-,c1v-,cr)) is obvi­
ous on the graph, however, it can be checked on the original graph as a coverability problem.

7. EXPERIMENTAL RESULTS

The efficiency of our approach is evaluated in comparison to the following techniques: the
Petri net traversal algorithm based on BDD [Past94], The stubborn set method [Val91] and the
construction of a complete finite prefix of an unfolding. For this last technique, we use an
improvement of the original method [McM92] due to J. Esparza, S. Romer and W. Vogler
[Esp96]. Used tools are Prod [Var92] for the stubborn set method, Pep [GB96] for the unfolding
and tools developed in our laboratory for the Petri net traversal algorithm and our approach.

The results for three examples are presented in this paper: the dining philosophers [Past94],
the Peterson's mutex algorithm for n processes [Cou94] and the distributed database [Jens86].
All examples are scalable, in such a way that the number of system states is exponential with
respect to a given parameter. Figure 6 presents a run-time comparison, with a semi-logarithmic
scale. Measurements have been done on a Spare 5 workstation. Table 1 gives the size of the
initial Petri net, the number of states in the reachability graph, the number of nodes for the final
BDD representation of the state set, the number of states in the reduced reachability graph, the
size of the unfolding and the number of nodes of the occurrence net graph.

The unfolding technique is very closed to our method and a comparison seems to be natu­
ral. BDD representation and stubborn set reduction are the bases of some efficient LTL model
checkers (respectively [Clarke94] and [GW94]). The key points of these approaches are their
capabilities to capture the partial order of a system and to give a concise state space representa­
tion.

Model Checking Based on Occurrence Net Graph 393

Example BDD Stubborn sets Esparza's Occurrence
unfolding net graph

size nb.of nb. nb.of nb.of of cpu size (pl/tr) n (pVtr) states (sec.) states cpu cpu nodes cpu
nodes

20 140/100 2x 771 357.37 25426 93.30 200/100 0.23 I 0.13 10'3

dining 2x philosophers 50 350/250 1033 1886 4447.5 - - 500/250 0.91 I 0.55

100 700/500 - - - - 1000/500 4.71 I 2.08

2 18/18 50 78 0.65 32 0.14 51/31 0.08 9 0.03
Peterson's

mutex 3 45/57 1065 436 64.26 645 2.18 758/447 0.68 119 0.65
algorithm

4 841132 25636 4041 1487.9 15600 122.1 12132/6804 85.9 2183 31.54

2 15/8 7 51 0.19 7 0.06 23/8 0.09 3 0.07

distributed 4 61132 109 392 8.06 29 0.14 101132 0.13 44 0.18

database 6 139n2 1459 1148 93.24 67 0.32 235172 0.24 432 2.9

8 249/128 17497 2848 606.68 121 0.59 4251128 0.49 3264 72.77

Table 1 Experimental results.
For the dining philosopher example, unfolding and occurrence net graph methods give the

best results. Both techniques construct almost the original net and then lead to a perfect concise
representation of the state space. On the other hand, the stubborn set reduction captures in an
efficient way the partial order but the lack of concise representation leads to low performances.
The good BDD representation of the state space can not avoid the state explosion.

For the Peterson's mutex algorithm, the results given by the stubborn set method show that
the system is highly synchronized (the reduction rate is less than two). Efficiency of the differ­
ent approaches depends mainly on the state representation. Size of the result given by the BDD
based technique is satisfactory. However a memory high peak increases the computation time.
For the unfolding method, one can notice that the size of the resulting net becomes large. The
more the size of the unfolding net grows during the construction, the more the cost of adding a
new transition increases. Indeed, this cost depends on the size of the net and especially on the
rate of duplicated elements. This phenomenon can be observed on the run-time comparison
diagram. In the occurrence net graph, a node construction only depends on the size of the orig­
inal net. Therefore, good performances can be obtained.

For the distributed database, the efficiency of the stubborn set and unfolding techniques is
remarkable. This is due to the fact that this model is largely asynchronous. At the contrary, the
occurrence net graph approach fails. Indeed, our method does not capture the full partial order
of the system. As an example, for a system composed by n completly independant subsystems,
the occurrence net graph of the system is the cartesian product of the occurrence net graph of
each subsystems. In each node the partial order is well captured. However, this order is ignored
at the graph level.

394 Part Six Verification and Validation

Dining Philosophers

10000

I 000 /
100 ...

... e . .,
10

" "' ~
u

0.1
20 50 100

Philosophers
Distributed Database

1000

100

10

e . .,
" "' u

0.1

0.01
2 4 6

managers

Figure 6 Run-time comparison.

8. CONCLUDING REMARKS

... e . .,
il..
u

Peterson's mutex algorithm

10000

I 000

~
100

10

0.1

0.01
2 4

processes

------ Occurrence Net Graph
BOD

-.\---- Stubborn Sets
-+-- Esparza's unfolding

We have proposed a new representation of reachability graph as a graph of particular Petri nets
for which a model checker is adapted. The efficiency of the method strongly depends on the
size of the graph and on the complexity of node computation. However, the number of nodes is
bounded by the number of states. The node construction uses efficient occurrence net algo­
rithms.

Many problems can be stated in term of coverability or deadlock. The occurrence net graph
representation provides adequate algorithms to check them on each node and then fits the veri­
fication of invariant properties. Based on stuttering equivalence, we have defined a nexttime­
less temporal logic model checker.

The primary experimental results have demonstrated that our method is competitive against
other ones and very efficient in some cases. The improvement under consideration is to take
into account the partial order at the graph level by an approach based on the stubborn set the­
ory. An other objective is to adapt our construction algorithm to verify temporal logic formulae
in an on-the-fly way.

9. REFERENCES

[Berth85] Berthelot, G.: «Checking Properties of Nets Using Transformations>>. Advances in Petri
Nets 1985, Rozenberg, G. (ed.), Springer Verlag, LNCS vol222, pp 19-40, 1986.

Model Checking Based on Occurrence Net Graph 395

[Clarke94] Clarke E., Grumberg 0. & Long D.: «Verification tools for finite-state concurrent sys­
tems», In: A Decade of Concurrency- Reflections and Perspectives, LNCS vol 803, 1994.

[Cou94] Couvreur J.M. & Paviot-Adet E.: «New Structural Invariants for Petri Nets Analysis».
15th Int. Conference on Application and Theory of Petri Nets, Valette R. (ed), Springer
Verlag, LNCS vol815, pp 199-218, Zaragoza, Spain, June 1994.

[Esp93] Esparza J.: «Model Checking Using Net Unfoldings>>. Science of Computer Program­
ming, vol23, pp 151-195, 1994.

[Esp96] Esparza J., Romer S. & Vogler W.: «An Improvement of McMillan's Unfolding Algo­
rithm>>. Proc. of 2nd Int. Workshop TACAS'96, Springer Verlag, LNCS vol 1055, pp 87-
1 06, Passau, Germany, March 1996.

[GB96] Grahlmann B. & Best E.: «PEP- More than a Petri Net Tool>>. Proc. of 2nd Int. Work­
shop TACAS'96, Springer Verlag, LNCS vol1055, pp 397-401, Passau, Germany, March
1996.

[GW94] Godefroid P. & Wolper P.: <<A Partial Approach to Model Checking». Information and
Computation, vol110, No 2, pp 305-326, May 1994.

[Jens86] Jensen K.: «Coloured Petri Nets>>. In Petri Nets: Central Model and their Properties,
Advances in Petri Nets 1986, Part I, Brauer W., Reisig W. & Rozenberg G. (eds), Springer
Verlag, LNCS vol254, pp 248-299, Bad Honnef, Germany, September 1986.

[KV92] Kaivola R. & Valmari A.: <<The Weakest Compositional Semantic Equivalence Pre­
serving Nexttime-less Linear Temporal Logic». Proc. of the 3th Int. Conference on Con­
currency Theory, Cleaveland W.R. (ed.), Springer Verlag, LNCS vol 630, pp 207-221,
Stony Brook, NY, USA, August 1992.

[Lam83] Lamport L.: <<What Good is Temporal Logic?», Proc. of the IFIP 9th World Computer
Congress, pp 657-668, 1983.

[McM92] McMillan K.L.: <<Using Unfoldings to Avoid the State Explosion Problem in the Verifi­
cation of Asynchronous Circuits>>. Proc. of the 4th Int. conference on Computer-Aided
Verification, Springer Verlag, LNCS vol 663, pp 164-175, Montreal, Canada, June 1992.

[Mur89] Murata T.: «Petri Nets: Properties, Analysis and Applications>>. Proc. of the IEEE, vol
77, No 4, pp 541-580, April 1989.

[Nielsen80] Nielsen M., Plotkin G. & Winskel G.: <<Events Structures and Domains>>. Theoretical
computer Science, vol13, No I, pp 85-108, 1980.

[Past94] Pastor E., Roig 0., Cortadella J. & Badia R.M.: <<Petri Net Analysis using Boolean
Manipulation». 15th Int. Conference on Application and Theory of Petri Nets, Valette R.
(ed), Springer Verlag, LNCS vol815, pp 416-435, Zaragoza, Spain, June 1994.

[Reisig95] Reisig W.: «Petri Net Models of Distributed Algorithms>>. In Computer Science Today:

[Val91]

[Var92]

[Wol89]

Recent Trends and Developments, Jan van Leeuven (ed.), Springer Verlag, LNCS vol
1000, 1995.

Valmari A.: «Stubborn Sets for Reduced State Space Generation>>. Advances Petri Nets
90, Springer verlag, LNCS vol483, pp 491-515, 1991.

Varpaaniemi K. & Rauhamaa M.: <<The Stubborn Set Method in Practice». 13th Int.
Conference on Application and Theory of Petri Nets, Jensen K. (ed), Springer Verlag,
LNCS vol616, pp 389-393, Sheffield, UK, June 1992.

Wolper P.: <<On the relation of Programs and Computations to Models of Temporal
Logic». Proc. of Temporal Logic in Specification, Banieqbal B., Barringer H. & Pnueli A.
(eds.), Springer Verlag, LNCS vol 398, pp 75-123, 1989.

