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Abstract 
The principle of Maximum Entropy (ME) and the notion of system decomposition are 
combined towards the creation of an iterative cost-effective approximation algorithm for the 
performance analysis of packet-switched buffered Banyan Multistage Interconnection Network 
(MIN) based Asynchronous Transfer Mode (ATM) switch architectures with arbitrary buffer 
sizes, multiple input/output ports and Repetitive Service (RS) internal blocking. 

Traffic entering and flowing in the MIN is assumed to be bursty and it is modelled by a 
Compound Poisson Process (CPP) with geometrically distributed bulk sizes and Generalised 
Exponential (GE) interarrival times. The GE distribution is also adopted to represent the 
random nature of the effective service times of packets due to the combined effects of traffic 
burstiness and RS blocking. 

Entropy maximisation implies decomposition of the Banyan network into individual building 
block queues of switching elements, represented by shared buffer cross bars, under revised 
GE-type interarrival and service times. Each building block queue is analysed in isolation by 
applying ME techniques and classical queueing theory, subject to marginal mean value 
constraints, in order to obtain a product form solution for the joint queue length distribution 
and typical performance metrics of the network. 

Numerical results are included to validate the credibility of the ME approximation against 
simulation, define experimental performance bounds and perform a buffer capacity 
optimisation across the entire network. 
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1 INTRODUCTION 

During the past decade, a considerable amount of effort has been made towards the design and 
development of Asynchronous Transfer Mode (ATM) switch architectures, which are widely 
considered as the preferred packet-oriented solution of a new generation of high speed 
communication systems, both for broadband public information highways and for local and 
wide area private networks (e.g., Tobagi [25]). 

Amongst the many types of ATM switch architectures, of particular interest are the so 
called space division switches which are primarily based on Multistage Interconnection 
Networks (MINs) (e.g., [1,2,19]). Such switches are composed of smaller switching elements 
represented by shared-buffer crossbars. Main features of a MIN include non-centralised 
switching control and multiple concurrent paths in tandem from input ports to output ports. 

MINs are also widely employed in parallel processing systems as a means for processor -
memory (and interprocessor) communication. The nature of traffic in ATM switches, 
however, is quite different from that observed in typical parallel machines in the sense that, 
regarding the latter, there is basically only one type of service, namely, high speed data (not 
considering "probe" and "acknowledgment" signals observed in inter-stage transmissions), 
whereas for the former, there exists a greater variety of integrated services including voice, low 
and high speed data, teleconferencing, TV distribution and video on demand, all of which share 
the same communication medium with different cell loss and delay requirements. 

The integration of such ATM services implies considerable variability in terms of 
transmission speed and holding times. Moreover, the flow of cells through one switching 
element may be momentarily blocked (halted) if the downstream switching element has reached 
its buffer capacity. Thus, credible analytical tools are essential for the cost-effective 
performance modelling prediction of such complex ATM switches. 

An increasing number of earlier papers concerning with the performance modelling and 
analysis ofMINs have appeared in the literature (e.g., [4-6, 8, 20, 24, 26]) and such trend is 
likely to continue towards the design and development of more appropriate ATM space 
division architectures. In this context, analytic performance models of shared buffer ATM 
switch architectures, based on both continuous-time and discrete-time queueing models, have 
received particular attention. Pinto and Harrison [4, 5] proposed approximate algorithms for 
the analysis continuous-time asynchronous buffered Banyan networks with 2x2 switching 
elements using Exponential interarrival times and 2-phase Coxian (C2)and Generalised 

Exponential (GE) service time distributions, respectively, with Blocking After Service (BAS) 
(i.e., service is suspended at the output port for a cell which attempts to enter a destination 
switching element with a full buffer). Hong et al [6] .and Yamashita et al [26] described 
approximate algorithms for the performance evaluation of discrete-time and continuous-time 
queueing models of shared buffer A TM switches under both Interrupted Bernoulli and 
Interrupted Poisson arrival processes, respectively. In terms of computational implementation, 
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these works tackle the problem by either solving global balance equations numerically [4, 5], or 
by decomposing the switch into several subsystems, each of which being analysed numerically 
in isolation [6, 26]. However, as the number of input (or output) ports increases, so does the 
size of the system's state space, and therefore, further approximations are required in order to 
achieve, if at all possible, tractable solutions. Thus, there is a great need to apply alternative 
methodologies leading to both accurate and cost-effective approximations for the performance 
modelling and evaluation ofMIN-based shared buffer ATM switches. 

The principle of Maximum Entropy (ME), a probability inference method (c.f., Jaynes [7], 
Shore and Johnson [22]), has been used successfully, in conjunction with queueing theoretic 
mean value constraints, for the approximate analysis of both continuous time and discrete time 
arbitrary Queueing Network Models (QNMs) with single general queues of finite or infinite 
capacity (e.g., [10-17]). In particular, the principle has been utilised in the study of general 
multibuffered and shared buffer queues and closed form expressions in both continuous-time 
and discrete-time domains have been obtained for Queue Length Distributions (QLD), Cell 
Loss Probabilities (CLP) and mean delays [14, 15]. More recently, a new product from 
approximation has been established by Kouvatsos and Wilkinson [ 17], towards the cost­
effective performance analysis of arbitrary open discrete-time QNMs of shared buffer queues 
with cell loss. In the afor mentioned studies the arrival process at each queue has been 
assumed to be highly variable and was modelled by Compound Poisson (CPP) or Bernoulli 
(CBP) processes, both with geometrically distributed bulk sizes. In this context, the burstiness 
of the arrival process is characterised by the squared coefficient of variation (SCV) of the 
interarrival times or, equivalently, the average size of the incoming bulk. The CPP and CBP 
arrival processes imply GE and Generalised Geometric ( GGeo) interarrival-time distributions, 
respectively, whose pseudo-memoryless properties facilitate the analysis of complex queues 
and networks (e.g., [11, 13, 16]). The choice of GE and GGeo distributions has been further 
motivated by the fact that measurements of actual traffic or service times are generally limited 
and so only few parameters can be computed reliably. Typically, only the mean and variance 
can be relied upon. In this case, the choice of distributions which imply least bias (c.f., [7]) 
(i.e., introduction of arbitrary and, therefore, false assumptions) is that of a GE or GGeo 
distribution within a continuous-time or a discrete time context, respectively. 

In this paper queueing network modelling and entropy maximisation are employed towards 
the performance analysis of Banyan MINs with GE-type external traffic pattern and stage-to­
stage transmission times, arbitrary switching element sizes (RxR, R ~ 2) and buffer capacities, 
K, under Repetitive-Service (RS) (or communication) internal blocking. Such MINs provide 
full connectivity between a set of input sources and a set of destination nodes. In a Broadband 
Integrated Services Digital Network (B-ISDN) environment, Banyan MINs can support 
several different types of traffic concurrently (e.g., data, voice, video). Consequently, traffic 
models must be able to capture various flow characteristics such as burstiness (e.g. video 
traffic which has to be hatched). In this context, the GE distribution is adopted to represent (in 
an appropriate fashion) the random nature of the interarrival times and effective service times 
of packets in the MIN due to the combined inflence of traffic burstiness and RS blocking. 
Note that in tandem configurations RS blocking occurs when a cell upon service completion at 
queue tc attempts to join a downstream queue e whose buffer capacity is full. Consequently, 
the cell is rejected by queue e and immediately receives another service at queue tc . This is 
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repeated until the cell completes service at queue K at the moment where the destination 
queue £ is not full. 

Entropy maximisation implies a decomposition of the Banyan network into individual 
multiple input GE-type shared buffer queues of switching elements with revised (effective) 
interarrival and transmission times. These queues are solved in isolation and together with GE­
type formulae for the first two moments of the cell interdeparture and aggregated arrival 
processes at each output port queue, play the role of cost effective building blocks towards the 
performance analysis of the entire network. 

The ME formalism is introduced in Section 2. The GE-type distribution is described in 
Section 3. An ME QLD of a multiple input shared buffer building block queue is outlined in 
Section 4. An ME product form approximation for a arbitrary QNM of a buffered Banyan 
MIN together with a description of the traffic flow through the switching elements are 
presented in Section 5. ME Analysis of three types of switching elements, acting as building 
blocks, together with appropriate GE flow formulae are presented in Section 6. Section 7 
presents the ME approximation algorithm for the performance analysis of arbitrary size Banyan 
networks. Numerical results and concluding comments follow in Sections 8 and 9, 
respectively. 

2 MAXIMUM ENTROPY FORMALISM 

Consider a system Q which has a set S of possible discrete states {S0 , S1, S2 , .•• } which may be 
finite or countably infinite and state Sn, n = 0,1,2, ... may be specified arbitrarily. Suppose 
that the available information about Q places a number of constraints on p( Sn ), the probability 
distribution that the system Q is in state Sn. Without loss of generality, it is assumed that these 
constraints take the form of mean values of suitable functions {f1 (Sn ),f2 (Sn ), ... ,fm (Sn)}, 
where m is less than the number of possible states. The principle of maximum entropy [7] 
states that, of all distributions which satisfy the constraints, the minimally biased distribution is 
the one which maximises the system's entropy function 

H(p)=- LP(Sn)lnp(Sn), (2.1) 
s. eS 

subject to the constraints 

(2.2) 

Lfk(Sn)p(Sn) = (fk), k = 1,2, ... ,m, (2.3) 
s.es 

where { ( f k ): k = 1,2, ... , m} are the prescribed mean values defined on the set of m functions 
{fk(Sn):k = 1,2, ... ,m}, where m is less thatn the number of states inS. The maximisation of 
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(2.1), subject to the constraints (2.2) and (2.3), can be carried out using Lagrange's method of 
undermined multipliers and leads to the solution 

(2.4) 

where {fJ k: k = 1,2, ... m} , are the Lagrangian multipliers determined from the set of constraints 
(2.3) and Z, known in statistical physics as the "partition function", is given by 

(2.5) 

where {flo} is the Lagrangian multiplier determined by the normalisation constraint (2.2). 
Jaynes [7] has shown that, if the prior information includes all constraints actually operative 

during a random experiment, the distribution predicted by the maximum entropy can be 
realised in overwhelmingly more ways than by any other distribution. The principle of 
maximum entropy has also been shown by Shore and Johnson [22] to provide a "uniquely 
correct self-consistent method of inference" for estimating probability distributions based on 
the available information. 
Maximum entropy formalism can be applied in the performance analysis of queueing systems 
because expected values of various distributions of interest are usually known in terms of 
moments of the interarrival and service time distributions. A review of entropy maximisation 
for approximate analysis of queueing systems and networks can be seen in Kouvatsos [ 16]. 

3 THE GE DISTRIBUTION 

The GE distribution is of the form 

F(t) =P(X5o t)= 1-re-ot, t;?: 0 (3.1) 
where 

a= rv, 

X is a mixed-time random variable (rv) of the interevent-time, while 1/v is the mean and C 2 is 
the SCV ofrv X (see Figure 1). 
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Figure 1 The GE( v, C2 ) distribution with parameters t and cr. 

For C2 ~ 1, the GE model is a mixed-time probability distribution and it can be interpreted 
as either 

1. an extremal case of the family of two-phase exponential (M) distributions (e.g., 

Hyperexponential-2 (H 2 )) having the same v and c 2 , where one of the two phases has 
zero service time, or 

2. a bulk type distribution with an underlying counting process equivalent to a Compound 

Poisson Process (CPP) with parameter 2v I C2 + 1 and geometrically distributed bulk sizes 

with mean= (C2 + 1)1 2 and SCV = (C2 -1} I (C2 + 1}given by 

{

n i ( 1) ""' a -u n- ;(·1 )n-i L....-e -r --r 
P(Ncp=n)= ;~ui! i-1 ' 

e , 

ifn~1, 
(3.2) 

if n = 0, 

where N cp is a Compound Poisson rv of the number of events per unit time corresponding to a 

stationary GE-type interevent rv. 
The GE distribution is versatile, possessing pseudo-memoryless properties which make the 

solution of many GE-type queueing systems and networks analytically tractable (e.g., 
Kouvatsos [16]). Moreover, it has been experimentally established that the GE model, due to 
its extremal nature, defines pessimistic performance bounds on typical performance measures 
over corresponding estimates based on two-phase distributions having the same first two 
moments as the GE. The GE distribution is completely characterised in terms of mean rate, v 
and, SCV, C2 and it can be interpreted as an ME solution (c.f., Jaynes [7]), subject to the 
constraints of normalisation, discrete-time zero probability and expected value. In this sense, it 
can be viewed as the least biased distribution estimate, given the available information in terms 
of the constraints. 

For C2 < 1, the GE distributional model (with F(0)<1) cannot be physically interpreted as a 
stochastic model. However, it can be meaningfully considered as a pseudo-distribution 
function of a flow model approximation of an underlying stochastic model in which negative 
branching pseudo-probabilities (or weights) are permitted. To this end, all analytical GE-type 
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exact and approximate results obtained for queueing systems and networks when C2 < 1 can 

also be used - by analogy - as useful hetiiistic approximations when C2 < 1 as long as they 
satisfY basic queueing theoretic constraints (c.f [16]). Note that utility of other improper two-

phase type distributions (with C2 < 1) in the field of systems modelling has been proposed by 
various authors (e.g., Nojo and Watanabe [21], Sauer [23]). 

4 ME ANALYSIS OF A SHARED BUFFER QUEUE 

Consider a general queueing model of a shared buffer switching element with bursty arrivals, 
depicted in Figure 2. The queueing model consists ofR parallel single server queues, where R 
is the number of output ports. Each server represents an output port and each queue 
corresponds to the address queue for the output port. There are RxR bursty and heterogeneous 
GE-type interarrival streams of cells, R (multiple) streams to each of R input ports. Each 

stream has a mean overall arrival rate, Aji, of cells and a SCV of interarrival time, CaJi , for 

stream (j,i), i,j=1,2, ... ,R (n.b., subscript} is dropped in the case of a single stream per input 
port). Similarly, the transmission (or service) time of a cell at queue i follows aGE distribution 

with mean rate fl.,, and SCV Csl, for stream i, i=l,2, ... ,R. Let K be the size of the total 
shared buffer. A cell is lost if it arrives at a time when there is a total ofK cells in the R queues. 
Without loss of generality, it is assumed that any of the R queues may attain the maximum size 
K. 

A Ca 2 
!l1,Cs 1 

2 11 1 11 

~ . 
AR1'Ca !1 . 

f-J . 
• • 
• • 
• • !lR,Cs R 

2 

1\R • Ca ~R 
. 9 . . p 

ARR'Ca !R 
Shared Capaciy=K 

R 

:Ln, 5,K 
i=1 

Figure 2 The SRxR ( GER I GE I 1 I K) queueing model of a shared buffer switch. 
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The queueing model of the shared buffer switching element is denoted by 

SRxR (GER I GE 11 I K), such that 

I. The overall interarrival times and service times at an RxR shared buffer queue are 
heterogeneous and GE distributed, 

2. Each output port has a single server, 
3. The total shared buffer capacity of the switch is K. 

Moreover, let the state ofthe system at any given time be represented by a vector 

n == (n" n2 •• ·, nR), where n;is the number of cells in queue i,i=1,2, ... ,R, and 

n ES(K,R) == {n == (n"n2, .•• ,nR): ±ni ~ K, 0 ~ ni ~ K,i == 1, ... ,R}. 
1=1 

Also let p( n ), n E S(K, R ), be the joint state probability distribution. 

Note that the ME solution of the SRxR (GER I GE I 1) I K queueing system, p(n) is of the 

same form as the ME solution of an SRxR (GE I GE 11) I K queueing system with a single 

(merged) arrival stream at each of the R input points (c.f Kouvatsos[l4]), subject to a 
common set of mean value constraints. Both solutions are presented below. 

4.1 An ME Solution for the SRxR(GEIGEI 1)/ K Queueing System: an Outline 

The form of the ME solution of an SRxR (G I G 11) I K queueing system, subject to 

normalisation and the constraints: server utilisation, U;, O<U;<l; MQL L;, U;-::L;<K.; 

conditional aggregate probability rp; of a full buffer subject to 0 < (/J; < I, n; > 0 , 

i == 1,2, ... ,R, is given by the method ofLargrange's undetermined multipliers as (c.f (2.4)) 

where Z is the normalising constant 

R z =: "" f1 s;(n) n; f;(n) 
L. gi xi Yi , 

neS(K,R) i=l 

s;(n) and f;(n) are auxiliary (indicator) functions defined by 

{
1, 

s;(n) == O, 
n; >0, 

otherwise, 

(4.1) 
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R 

:~>J = K 1\ S;(n) = 1, 
j=l 
otherwise, 
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and {g;, X;, Y; : i = 1,2, ... , R} are the GE-type Largrangian coefficients corresponding to the 
constraints {U;, L;, (/J;: i = 1,2, ... ,R}, respectively. 

Lagrangian coefficients {g;,X;:i=1,2, ... ,R} are obtained by making asymptotic 

connections with the :ME solution of a stable GE/GE/1 queue (c.f.,[11]), namely 

p.(I-x) g.= I I 

I X;(1- P;), 

L-p 
X;=~, P; =A; I Jl;, i = 1,2, ... ,R, 

l 

h L = P; (I Cal + p;cslJ . = 1 2 R w ere ; + , 1 , , ... , , 
2 1-p; 

(i.e., g; and X; are assumed to be invariant to the buffer size K). 

Moreover, Lagrangian coefficients {yf i=1,2, ... ,R} can be computed by 

1. Focusing on the flow balance equations 

where 1t; is the cell loss probability for an attempted arrival to the output port queue i, 

2. Deriving recursive expressions for 1t; and Uj, 1,2, ... ,R, and 

(4.2) 

(4.3) 

3. Solving numerically the resultant non-linear simultaneous equations, (n.b., for R=2, these 
equations can be solved analytically- see formulae (4.18)). 

The normalising constant can be determined by applying the generating function approach 
and can be computed recursively by [14] 

K-1 

Z = L C1(v) + C2(K), (4.4) 
v=O 

where { C1 ( v): v = 0,1, ... , K- 1} and { C2 ( K)} are determined via the following recursive 
formulae: 

C1(v)= C1R(v), v= 0,1, ... ,K-1, 
C2 (K) = C2R(K), 
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where 

for k = 1,2, r = 2, ... ,R, v = 1,2, ... ,K-2+k, with initial conditions 

v=O, 

v = 1,2, ... ,N-2+k, 

r=2, ... ,R, 

Similarly, the utilisation Ui can be expressed as 

where 

cii)(v) = (1- Bk,;)x;Cki)(v-l)+Bk,ix;Ck(v -1), V= 2, ... ,K -2+k, 

k = 1,2, i = 1,2, ... , R, with initial conditions qi)(l) = Bk,;X;. 

(4.5) 

The marginal state probabilities {p;(f;):£; = O, .. ,K} can be determined by using ME 
solution (4.1) and the recursive expressions for qi)(v). Let n(i) be the random variable for 
the number of cells at queue i, i = 1,2, ... , R . Then the marginal state probabilities are given by 
(c.f (14]). 

p;(f;) = Pr[n(i) ~ £;]- Pr[n(i) ~ l; + 1], (4.6) 

i = 1,2, ... ,R, l; = 1,2, ... ,K. 
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Finally the aggregate state probabilities {p( n ): n = 0, .. , K} are given by 

n=O, 
1 

z 
1 

p(n)= zCI(n), n=1,2, ... ,K-1, 

1 -C21 (n), n = K. z 

(4.7) 

4.2 An ME Solution for the Saxa(GER /GEil)IK Queueing System: An 
Extension 
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Earlier applications of entropy maximisation (e.g., [10, 12, 13,17]) on arbitrary QNMs and 
shared buffer queues imply a decomposition into individual queueing systems with revised GE 
or GGeo-type interarrival and service time processes. These processes utilise analytic 
functions describing GE or GGeo-type flows amongst the queues of the network. Flows are 
split when going to different destinations and merged when converging from different sources. 
The formulae used to split flows are exact in the case of random routing. For GE or GGeo 
merging flows a two moment matching function is used to approximate the resultant stream 
with a GE or GGeo-type stream. This last operation may lead to some inaccuracies in extremal 
cases, where there are large differences in the size of the SCVs of the merging flows. 

In this work, a :ME QLD is proposed for an SRxR(GER IGEI1)1K queueing system 

which employs multiple input streams. This :ME solution is ofthe same form as (4.1), subject 
to mean value constraints { U;, L;, th i = 1,2, ... , R } . The Lagrangian coefficients g; and X; of 

:ME solution ( 4.1) are assumed to be invariant of the buffer size and are thus of the same form 

as these of a stable GER IGEI1 queue (see Appendix I) i.e., {g;,X;:i=1,2, ... ,R} are 

determined by making asymptotic connections with the :ME solution of a stable GER I GE I 1 
queue and, clearly, are given by 

P·O-x·) 
g.= ' ' 

I X;(1- P;)' 
i = 1,2, ... ,R, (4.8) 

where L; is the MQL of a stable GER I GE I 1 queue (see Appendix I) and is given by 

R 

with Ca]; the SCV of stream i, PJi = Afi I J.l.;, j = 1,2, ... ,R and Pi= LPJi. 
j=l 

(4.9) 
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Equating g, and X; of the ME solution of a stable GER I GE I I queue with those of a 

stable GE/GEII queue with overall (merged) interarrival parameters A; and Cal, the 
following relationship can be established: 

R 
A;Cal = LAj;CaJ;, i=I,2, ... ,R. (4.IO) 

j=l 

Thus, the ME solution of a stable GER I GE I I queue can be considered as an ME solution 
of a stable GE/GE/I with merged arrival processes having as parameters 

R 

A;=LAji> i=I,2, ... ,R, 
j=l 

and 

(4.11) 

(4.12) 

Note that expressions (4.11) and (4.I2) tum out to be identical with those sugested in by 

Gelenbe and Pujolle [3]. Moreover, the interdej>arture process of a stable GER I GE II queue 
has a SCV given by (c.f [IO, I6]) 

(4.13) 

Let {1r ji: i,j = I, .. ,R} be the CLPs of input streams U} at output ports {i} of a shared 

buffer SRxR (GER I GE II) I K queue. These probabilities can be obtained by using similar 

GE-type arguments as those applied in the case of the shared buffer SRxR (GE I GE II) I K 
queue (c.f [I4]) and are given by 

(4.I4) 

where (iJ), ij = I ,2, ... R, is the jth flow to output port i, and 

K-1 K-1 
Fj;(K) = oji L C1(v)(I- u ji)K-v +(1-oji) L cfil(v)(I- uji l-v' (4.I5) 

v=O v=1 
where 

o .. = rsi ' 
1' r3;(I-uj;)+uji 

with 
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2 2 
r,; = C' 2. +1' uii =--2-, 

r; Caii +1 
i,j=1,2, ... R, K~2. 

Lagrangian coefficients {Y;:i = 1,2, ... ,R} of the SRxR(GER I GE/1)1 Kcan be determined 
by using the flow balance conditions, 

R 
LA ji{l-1r ji) = U;fJ;, i = 1,2, ... R. 
j=l 

(4.16) 

Substituting (4.14) into (4.16) the following system of R non-linear equations with R 
unknowns {y;: i = 1,2, ... ,R }, is obtained: 

K=I R K-I 

di)(K)=p; 'I.C1(v)- LPijF';j(K)- L.di)(v) , (4.17) 
v~ j~ v~ 

for all i = 1,2, ... , R and ~2. 

System (4.17) can be solved by applying the numerical algorithm of Newton-Raphson, 
which is generally expected to give quadratic convergence. One significant limitation of this 
method is the requirement that the partial derivatives of the Jacobian matrix must be calculated 
at each iteration. However, this requirement may be avoided by applying an efficient recursive 
scheme suggested in [14]. Thus, because of the recursive nature of the z-transforms which are 

used in the computational implementation of the ME solution, the SRxR (GER I GE I 1 I K) 
queueing model can be used as an effective building block in the analysis oflarge MINs. 

Note that in the special case of R=2, these equations (4.17) can be solved analytically 
yielding the following closed-form expressions 

YI =-1-(JA-B), 
2glxl 

(4.18) 

where 

A=[ xt -xf ]2 +[q2l(K)-C~Il(K)]2[ xi -x2 ]2 +"rq2l(K)+q'l(K)] x, -x2 , 
xf 1-xf 1 xf-xf 1 · xf 1-xf 1 

(4.19) 

Proofs of equations (4.18} and (4.19) are given is Appendix ll. 
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5 ME ANALYSIS OF BANYAN MINs WITH ARBITRARY SWITCH SIZES 

Consider a packet-switched finite buffered ATM switch with a Banyan MIN-based architecture 
depicted in Figure 3. The ATM switch consists ofL levels and M stages and employs as basic 
building blocks R-input and R-output shared buffer switching elements (RxR crossbar 
switches). 

Let switch-(l,m) denoting a switching element located at the lth level and mth stage of the 
MIN. Each output (input) port is connected to a ouput (input) pin. The input and output pins 
of each switching element are labelled (including the MIN's external input and output pins) as 
"input-k'' and "output-k'', k=O,l, ... , R-1 from top to bottom, respectively. In regular Banyan 
MINs, where all switching elements are the same size, M = lo~ N, where R is the size of each 
switching element and N is the number of exteral inputs (or outputs). Regular Banyan MINs 
form an array of switching elements and in this case the number of switching elements in a row 
is referred to as the level L, where L=N/R. 

The input/output ports of the MIN form an array of 'pins' which are indexed by a row then 
column. There are N pins at each stage. Each output pin is linked to a single down stream 
input pin at the next stage. Connections from output ports pins to input port pins can be made 
in an arbitrary way. These connections form the topology of the network and are represented 
in the forwards (FTM) and backwards (BTM) topology matrices. Note that in a Banyan MIN 
only one path exists between an external input pin and an external output pin. The FTM and 
BTM have both M columns and N rows representing the grid of output and input port pins, 
respectively. Element (n, m) holds the number of the input {output} port pin at the (m+ 1 )th 
{(m-1)th} stage that is connected to output (input) port pin nat the mth stage, respectively. 

The traffic arriving at the external input pins of the MIN is assumed to be bursty and is 
represented by GE interarrival times. The service (transmission) times at the output ports are 

also assumed to be GE distributed with mean, 1 I J.lk and SCV, cs'f.. The flow to external 

input pin k is parameterised by the overall mean arrival rate, A.. and the SVC of interarrival 

times, Cai. Incoming cells traverse the network according to both the network's topology 
matricies and {r,_,} NxN , the routing probability matrix, where rks is the probability that a cell 
originating at external input pin k has external output pin s as its destination. Cells arrive in 

geometrically distributed bulks, with an average bulk size of ( Cai + 1) I 2 . Cells that arrive in 
the same bulk will take the same route across the MIN i.e. the routing decission is made on a 
per bulk basis. It is assumed that stage 0 switching elements at the input edges of the MIN 
may have infinite or finite capacity buffers, {Kto: C=O,l, .. ,L-1}. Moreover, switching elements 
in the interior or last stage of the MIN each have a fixed finite capacity buffer, 
{K£m: m=l,2, .. ,M-l; £=0,1, .. ,L-1}. A cell is lost if on arrival at a stage 0 switching element 
finds a full buffer. However, every cell that enters the MIN is guaranteed delivery to its 
destination. This constraint along with the finite buffers of internal switches, implies that the 
MIN internally operates a blocking mechanism, which in this paper is based on RS blocking 
( c.f., Introduction). 
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Suppose at any given time, the joint state of the network is denoted by n=(n 11 , ... ,n IM ), where 

nij = (nijb nijl···· nijR )is the joint state of shared buffer queueing model of the switch-(iJ) and 

n ifk is the number of cells queueing for output port k, k=1,2, ... ,R. Moreover, let p(n) be at 

any given time the joint state probability of the network. The form of a ME solution, p(n), of a 
Banyan MIN, subject to normalisation and the marginal constraints of shared· buffer queueing 
systems used in Section 4, namely utilisation, Uijk, O<Uijk<I, MQL, Lijk, Uijk<Lijk<Kij , and 

conditional aggregate full buffer probability with nijf2>0, 'Pijk> 0 < 'fijk <I, j = I,2, ... , R, 

i = I,2, ... ,IM, is given- via the method ofLagrange's undetermined multipliers- as 

L M R 
p(n)=~f]f]f]gifks;;k(n;;)Xifkn;;k Yy/'ik(n;;), 

i=l j=lk=l 

(5.1) 

where Z is the normalising constant and { gifk, xifk• Y!ik }, are the Lagrangian coefficients 

corresponding to constraints { Uifk,Lifk•'l'ifk}, respectively and sifk(nif) and fifk(nif) are 

appropriate indicator functions such that sifk(nif) =1, if nifk > 0, or 0, otherwise and 
R 

fifk(nif) =I, if Ln!ik 5. K!i, or 0, otherwise, k=I,2, ... R. The form of ME solution (5.I) 
k=l 

clearly suggests a product form approximation, namely 

L M 
p(n) = f1f1pif(nif), (5.2) 

i=l j=l 
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where p ii ( n ii) is determined by the ME solution ( 4.1) of each shared buffer queueing model. 

The ME solution (5.1) can be implemented computationally by decomposing the network 
into individual building blocks of shared buffer switches-(ij) with modified arrival and service 
parameters which capture the characteristics of the Banyan MIN. 

5.2 Flow Through the Switching Elements of a Banyan MIN 

The flow rate from each input pin through to each output pin of a Banyan network is 
calculated from the flow rate entering each input pin and the routing probability matrix 

{rk.!} NxN . Let 1 k.! be the effective flow rate from external input pin k to external output pin s. 

Then, it follows that 

(5.3) 

where rr k = rr ai, i is the input port of a switch at stage 0 that corresponds to input pin k and 

rr0 ;is the aggregate CLP of input port i, i.e., the probability that an arriving cell via external 
input k will be turned away (c.( Section 6.1 ). 

In Banyan networks only one path exists between k and s, so 1 k.! is the contribution of flow 

given to each switch on the path from k to s. The effective flow rates, {A ii }, across input­

output pin pairs {G,i): ij=1,2, .. ,R} of a switching element can be obtained by appropriate 

summation of flows { 1&. }. For each input pin j, it is necessary to know the set of external 
input pins which connect to it (generally through other switches). Likewise, for each output 
pin i, it is necessary to know the set of external output pins which ultimately connect to it. Let 
these sets be denoted by InpinsG, m) and Outpins(i, m), where G, m) and (i,m) represent input 
pin j of a switching element and output pin i both at stage m, respectively. Any path that 
originates from an input pin in lnpinsG, m) and terminates at a output pin in Outpins(i,m) must 
pass through input j to output i. Thus, the effective flow rate from input pin j to output pin i, 
A ii , is given by 

Aj;= :L1k.!, i,J=1, ... ,R. (5.4) 
kelnpins(j,m) 
seOutpins(i,m) 

The method of calculating InpinsG, m) and Outpins(i, m) is given is Appendix ill. 

Note that the shared buffer SRxR(GER /GE/1)/K queueing model and product form 

approximation ( 5.1) are applicable to the performance analysis of packet switched finite 
buffered MINs with arbitrary configuration. However, in this more general case, there are 
more than one paths through the MIN, connecting an external input pin with an external output 
pin, and thus, some form of routing description is needed, in addition, to specifY the flow. 
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6 ME ANALYSIS OF SWITCHING ELEMENTS WITHING THE BANYAN 
NETWORK 

This section presents an approximate ME analysis of three types of shared buffer queueing 

models of switching elements within Banyan network, based on the SRxR (GER I GE 11) I K 

buliding block queue and GE-type flow formulae. Note that for presentational purposes, only 
subscripts for, input/output ports and related flow streams are denoted in this and subsequent 
section. 

6.1 Case 1: Switching Elements at the Input Edges of the Network 

When a switch is at the input edge of the Banyan network, the actual (overall) arrival 
parameters are known. However, due to potential RS blocking from second stage switching 
elements, the perceived (effective) service time (i.e., total transmission time experienced by 
each packet) has to be calculated. The effective service time can be expressed in terms of the 
blocking probabilities. A service completer which finds its downstream buffer full repeats its 
service. As each output port is connected to only one input pin of a downstream switching 
element, it is appropriate to calculate the effective service time in terms of the overall blocking 
probability that a service completer at output port queue i experiences at its downstream queue 
switch. This overall blocking probability is clearly given by 

R 

Ak = LAkl• i,k = 1,2, ...• R. 
1=1 

(6.1) 

where k is the input pin of a switching element at the next stage which is connected with 
output pin i (defined in FTM}, l is an output pin of the same element which is connected with k 
and Akl is the overall arrival rate from input pin k to output pin l , l = 1,2, ... , R . 

By considering GE-type probabilistic arguments, the effective service time parameters can 
be expressed by (c.f, [12]} 

(6.2) 

and 

A 2 2 
Csi = 1lci +(1-?rci)Csi, i = 1,2, ... ,R. (6.3) 

The arrival rate from the external input stream j to output pin i, A;; , is obtained by multiplying 

input rate, A 1, by the sum of the appropriate routing probabilities (i.e. adding together the the 

probabilities from j to all external (destination) output pins that pass through i}, namely 

A Ji = A j L r19 , i, j = 1,2, ... , R. 
seOutpins(iJ) 

(6.4} 
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Moreover, the SCV ofthe interarrival process from input streamj to input pin i is the same as 
that of the external SCV ofinterarrival time, as routing occurs on a per bulk basis (see Section 
5) i.e., 

i,j = 1,2, ... ,R, (6.5) 

where Cay is the SCV of the overall interarrival time at external input pin i. 

For first stage switching elements with infinite capacity, the SCV of the interdeparture 

process is clearly given by (cf, (4.13) [10, 12] 

C·~2 A ( A ) A 2cA 2 ( A )c 2 
u; = P; 1- P; + P; s; + 1- P; a; , i= 1,2, ... ,R, (6.6) 

where 

2 LR Aji 2 Ca = -Ca·· 
I A· 1" 

j=J I 

and P; =A; I it;, i= 1,2, ... ,R. 

Note that in this case, each output port behaves as if it were an independent 

Ge I GE I 1 queue with marginal ME QLD, Pr ( nr ), nr = 1,2, ... , K, given in Appendix I. 

For first stage switching elements of finite capacity, the SCV of the interdeparture process 
is clearly given by (c.f, (4.13), [10, 12]) 

C 2 A ( A ) A 2cA 2 ( A )cA 2 a; = P; I- P; + P; s; + 1- P; a; ' i = 1,2, ... ,R, 

where 

A fi = A J;(l- "fi ), 
R 

A;= LAJi, 
j=l 

and 

A 2 2 
Cafi = " 1,. + (1- "fi )Ca1,., i, j = 1,2, ... , R, 

A 2 R It ji A 2 
Ca,. = LT.Ca1,. i=1,2, ... ,R, 

J=l 1 

Pi= It; I jt,., i = 1,2, ... ,R, 

The CLP "Ji can be determined from the ME solution of the shared buffer 

SRxR(GER IGEII)IK queue(c.f, Section4.2), namely, 

(6.7) 
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F1;(K) + C2(K) 
7!ji = K-1 ' (6.8) 

L;C1(v)+C2(K) 
v=O 

where Fji{K) is given by equation (4.16) incorporating parameters AJi,ca;;,it;,Cs?, as 

appropriate. 

The aggregate blocking probability, 7! aJ, at input pin j is clearly given by 

R A .. 
-"' Jl ·-12 R 1!aj-£...7!j;-,j-,, .. ,. 

i=l AJ 
(6.9) 

Note thatC1(v) is a function of the Larangian coefficients { g;,X;: i = 1,2, ... ,R} (which can 
be calculated from the input parameters), whilst C2 (K) is dependent upon all Lagrangian 
coefficients {g;,X;,Y;:i=1,2, ... ,R}. The {y;}coefficients are obtained by solving the non­
linear equations which are of the same form as the ones determined by (4.17), ifR>2 or (4.18)­
(4.19), ifR=2. The solution of these equations along with those of Section 4.2 give the QLDs 
of switching elements at stage 0 of the MIN together with other performance metrics. 

6.2 Case 2: Switching Elements at the Interior of the Network 

When a switching element is internal to the Banyan network at stage m, m=1,2, ... ,M-1, the 
throughput (effective arrival rate) can be determined in terms of the effective arrival rates of 
the external input ports, the routing probabilities and the network topology. The SCV of the 
effective interarrival process is obtained from the SCV of the output process of the previous 
stage. The values of the Lagrangian coefficients of the ME solution p(n), n ES(N,R), can be 
computed in terms of parameters of the overall flow which are related to the parameters of the 
effective flows and the blocking probabilities. These form a set of additional equations to those 
in Section 6.1 which (in addition) need to be solved to produce the QLD and other 
performance metrics for each internal switching element. 

Let the effective flow rate that enters an input pin j be denoted by A. 1, j=l,2, ... R, with its 

component flow G,i) going to output port i be denoted by A. Ji, i=1,2, ... ,R. Let Ca]i, 
i,j=1,2, ... ,R, be the SCV of flow G,i) and 7! JP i,j=1,2, ... ,R be the blocking probability that flow 

G,i) will find a full buffer. Using these parameters, the overall flow from each input pin to each 
output port can be calculated, as follows: 

The overall flow rate, A Ji, is clearly given by (c.f [12]) 
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A·· 
A--=--1'- , i,j=1,2, ... ,R, 

1' 1-ni; 

and from the GE-type splitting flow fonnulae 

~ 2 
Ca~. = Caji- n fi 

1, , j,i = 1,2, ... ,R, 
1- .?rji 

(6.10) 

(6.11) 

where n ii is calculated from the ME solution of the shared buffer SRxR (GER I GE II) I K 

queue as described in Section (6.1). 

The total effective arrival rate at input pin j, A j is expressed as 

R 
Ai=LA-9, }=1,2, ... ,R, 

k=I 

whilst the transition probability of a job going from input pin i to output pin j is clearly given by 

Ai; .. 
a ii = -, l,J = 1,2, ... ,R. 

Ai 
Packets that arriving in the same batch follow the same route through the network. This 

means that within the network, splitting of departing flows (from individual servers) may be 
complex, but fall within two schemes. In the first scheme individual packets choose their own 
downstream queue, upon service completion, according to a Bernoulli filter. In the second 
scheme the routing decission is made on a per bulk basis where the head of the bulk (i.e. the 
first packet in the bulk) chooses its downstream queue according to a Bernoulli filter and 
subsequent members of the bulk follow in its path. The second scheme produces bigger 
arriving bulks that the first scheme. To this end, the effective SCV of the arrival process is 
determined from the GE-type splitting flow fonnulae, namely 

Ca~; =1+(Cd;red{j)-1)aji, i,J=1,2, ... ,R, (6.12) 

where cd;red(i) is the scv of the interdeparture process from the upstream port/switch 

connected at stage m-1 to input pinj whose location is given by vector BTM (i,m), i=1,2, ... ,R, 
m=1,2, ... , M-1. 

If the protocol indicates that the entire departing bulk will be directed to the same 
destination input port, then no splitting takes place and 

~ 2 2 . 
Caji = C pred(J), ] = 1,2, ... ,R. (6.13) 
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Finally, the interdeparture process from output port i is given by (4.13), namely 

Cdf = P;(l- P;) + .P7Cs; +(1- P;)Ca7, i = 1,2, ... ,R, 

where 

A2 RA_ .. A2 
Ca; = L / Ca1; and P; = 2; I P;, i = 1,2, ... ,R. 

j=] I 
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(6.14) 

As only the effective arrival parameters are known, the overall arrival parameters are given 
in terms of the blocking probabilities, which are themselves given by equation (4.14). These 
equations together form RxR non-linear simultaneous equations with RxR unknowns (i.e. the 
1r ji 's). Writing these equations as functions of the 1r ji 's gives 

F1;(K)+C2(K) 
J1;=7rJi-K-l , i,J=l,2, ... ,R. (6.15) 

L C1(v) + C2(K) 
v=O 

Assuming that the value of C2(K) is known, the equations are solved using Newton­

Raphson's method to give the value of 1r Ji 's. After the 1r ji 's are calculated, the {Y;} 

coefficients are obtained by solving the non-linear equations (4.17), ifR > 2 or (4.18), ifR=2. 
In the case ofR>2, a new value for C2 (K) is calculated. This process is repeated until there is 
no change is the value of C2(K). The solution of these equations along with those of Section 
4.2 give the QLDs of switching elements internal to the MIN together with other performance 
metrics. 

6.3 Case 3: Switching at the Output Edges 

When a switching element is at the external edge of the MIN, then its performance analysis 
follow from the ME solution of the shared buffer SRxR (GER I GE I 1) I K queueing model of 
an internal switching element, except that the mean rate and SCV of the service time of each 

output port i are; respectively, are the actual parameters (J.I.;, cs; ) , i = 1 ,2, ... , R. 

7 AN ME APPROXIMATION PROCEDURE FOR THE PERFORMANCE 
ANALYSIS OF BANYAN MINS 

In this section an approximate procedure for obtaining the ME QLDs and other performance 
metrics at each building block of a Banyan MIN based shared buffer ATM switch is described. 
The procedure for infinite and finite first stage building blocks differ only in that the later 
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includes the calculation of the first stage blocking probabilities and the flow rates through the 
network which are depended upon these probabilities. It is assumed that and the 
interdeparture processes to be of GE type. When these processes split into a number of 
streams distributed, to different output ports, it is assumed that the splitting is Bernoulli. These 
assumptions give rise to interarrival processes which are approximately the superposition of 
GE streams. Thus interarrival processes can be determined and their parameters evaluated. 

7.1 An ME Algorithm the Analysis of Banyan Networks 

Begin 
Step 1. Initialise all cell loss probabilities. Set SCV of inter-arrival times to 1; 
Step 2. Calculate effective flows across Banyan MIN and at each switching element (c.f. 

section 5.2); 
Step 3. At the first stage represent each of its switching elements as a shared buffer building 

block queue sRxR(GER(A 1;,CaJ;)I GE(,U;,Cs?)ll}l oo, i,j = i,2, ... ,R, in the case 

of infinite capacity, or as SRxR(GER(A Ji,CaJ; )I GE(,U;, Cs?) 11) I K, i,j = 1,2, ... , R 

for the case of finite capacity, and calculate for each output pin i the SCV of the 

interdeparture process Cd?, i=1,2, ... ,R, to be used in the next stage using equations 
(6.6) and (6.7), as appropriate; 

Step 4. From left to right do until last but one stage: 
represent each stage switching element as a shared buffer building block queue 

( R "2 • "2 ) SRxR GE (),_Ji,CaJi)/GE(J.t;,Cs; )/1 /K, i,j=1,2 ... ,R, and calculate for each 

output pin i the SCV of the interdeparture process Cd?, i = 1,2, ... R, for the next stage, 
using equation (6.14) 

Step 5. Analyse the performance of each switching element by solving a shared buffer building 

block queue SRxR(GER(A, Ji,CaJ;)I GE(J.t;,Cs?)l 1)1 K, i,j = 1, ... ,R. 

For first stage switching elements with infinite capacity repeat Steps 3-5 and for the 
corresponding case of finite capacity repeat Steps 2-5 until convergence of the calculated 
values of the SCV of the interdeparture times and the blocking probabilities of the first stages 
(as appropriate). Print out ME QLDs and typical performance metrics. 
End 

Remarks 
The main computation effort of the ME algorithm is at every iteration between steps 3 and 5. 
The non-linear system of equations, {y;: i=1,2, ... ,R}, for each switching element can be written 
as Y=F(Y), where Y and F are column vectors of dimension Q, where Q is the cardinality of 
the set {yi}. Similarly the non-linear equations {1t;{ ij=1,2, ... ,R} can be written as II=G(II), 
where II and G are column vectors of dimension Q', where Q' is the cardinality of the set 
{1t;j}. It can be verified that the computational cost ofthe algorithm is O(ML(Q3+Q' 3)), where 
M is the number of stages and L is the number of levels of the MIN, 0 3 is the number of 
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manipulations for inverting the Jacobian ofF with respect to Y and Q' 3 is the number of 
manipulations for inverting the Jacobian of G with respect to II. 

The existence and unicity for the solution of the system of non-linear equations is difficult to 
prove analytically due to the complexity of the expressions of the blocking probabilities { 1tij} 

and the expression of Lagranagian coefficients{yi}. Furthermore no strict mathematical 

justification can be given for the convergence of { Cdf: i = 1,2, ... , R } ; nevertheless, numerical 
instabilities or non-convergence have never been observed in many experiments that have been 
carried out. If, however, at some iteration it is observed for at least one queue j that 
p 1 = (A. 1 I J.l. 1 ) ~ I, then there exists only one trivial solution with ,. iJ = I, i E {I,2, ... , R}, which 

is outside the domain at validity of the model. 
When switching elements of infinite capacity are present at the first stage 0, necessary 

conditions for the stability of the entire network are not obvious due to the constraining 
influence on a output port's service rate by downstream blocking. In essence, the stability 
condition for a single output port is that the effective arrival rate be less than its effective 
service rate which can only be approximately determined. This subject merits further research. · 

In cases of hot spot routing, cells are directed towards one particular output with a high 
probability. As this probability approaches unity, the MIN becomes equivalent to an arbitrary 
network with blocking and has an inverted tree configuration. 

8 NUMERICAL RESULTS 

This section presents typical numerical results in Tables I-I2 focusing on 8x8 (c.f, Tables I­
ll) and 27x27 (c.f, Table I2) Banyan MINs with 2x2 and 3x3 switching elements, 
respectively. The aims of the study is to (i) validate the relative accuracy of the ME 
approximation algorithm against simulation (SIM) (c.f, Tables I-8) (ii) define experimental 
bounds (c.f, Table I2) and, (iii) perform a buffer capacity optimisation across the entire 
Banyan Network (c.f, Tables 9-II). 

In all experiments, external input ports of the Banyan MIN at stage 0 receive traffic with 
identical parameters. In total, three different routing schemes are adopted, namely uniform 
routing (regular traffic) towards the external output pins at final stage 2 (c.f, Tables I-3, 6-
I2), and moderately or substantially biased routing towards an external output pin referred to 
as a warm spot (c.f, Table 4) or hot spot (c.f, Table 5), respectively. Note that in the case of 
uniform routing all switching elements belong to a particular stage will have the same output 
statistics. However, in the general case of non-uniform routing, switching elements within a 
stage will have different performance metrics. For each input port at stage 0, and without loss 
of generality, identical routing probabilities biased towards the warm or hot spot are used in 
Tables 4 and 5, respectively. As a consequence, switching elements at each stage of the 
decode tree (i.e., the tree composed from the routes connecting external input pins with the 
warm or hot spot external output port) will have identical performance metrics. Thus, in both 
cases of uniform and non-uniform routing, performance metrics are only reported once in 
Tables I-I2 respectively. 
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Tables 1-8 present a validation study of the ME algorithm against simulation which includes 

aggregate MQLs {L;:i = 0,1,2} at stages 0, 1 and 2, throughputs {A-2 } of either a typical 

external output port under uniform routing (c.f., Tables 1-3, 6-8) and warm/hot spot external 
output port (c.f., Tables 4 and 5), and also the aggregate CLP of a typical switching element at 
stage 0. Moreover, Tables 6-8 display aggregate and marginal state probabilities for a typical 
8x8 Banyan network under uniform quoting. Note that the simulation results in Tables 1-8 
were produced at 95% confidence intervals by using the Queueing Network Analysis Package 
(QNAP-2). It can be observed that the ME solutions are consistently comparable with those 
of simulation (SIM) for a wide range of parameterisation, including deterministic transmission 
times applicable to ATM switching elements. Note that confidence intervals are of small 
magnitude e.g., typically± 0.01 for MQLs. Moreover, percentage differences for MQLs are 
generally less than 10% and error tolerances for state and blocking probabilities, (i.e., absolute 
differences between ME and SIM results) are less than 0.05. The accuracy of ME 
approximations begin to deteriorate as the value of SCV s increases. This can be attributed to 
further violation of renewality assumptions of the various flow in the network. 

The ME algorithm is utilised in performing a buffer capacity assignment optimisation across 
the Banyan MIN ( c.f. Tables 9-11 ). Given an overall buffer allocation for the entire network, it 
is possible to carry out buffer assignments to individual switching elements in order to optimize 
the throughput or the end-to-end delay. Three different buffer allocation policies are 
considered by assigning more of the allocated buffer capacity to the first, second and third 
stages, respectively. From Tables 9-11, it can be observed that by placing more of the buffer 
allocation at the first stage of the network, the throughput can be increased whilst the end-to­
end delay is not adversely affected. This behavoir is intuitively correct since the CLP is smaller 
than in the other two cases, thus allowing more packets into the network. 

Finally, Table 12 focus on 27x27 Banyan networks with 3x3 switching elements under 
regular traffic. Relative performance comparisons are carried out between the ME solutions 
produced incorporating the routing of entire bulks within the network (c. f., (6.14)) and SIM 
results produced using specially designed programs written in C. It can be seen that the 

analytic solutions for first stage MQL, {L0 } and aggregate CLPs, { 1r a}, are comparable in 

accuracy to those of simulation, as in the examples of Tables 1-8 (n.b., both ME algorithm and 
simulations use identical external inputs at stage 0). However, the ME solutions define 
(experimentally) pessimistic bounds over the corresponding SIM results produced concerning 
the MQLs of output ports at stages 1 and 2. This behaviour is due to the fact that the ME 
approximation overestimates the size of the bulk transitions in the interior of the network, and, 
subsequently, the SCV of the interarrival time of each internal and last stage output port. The 
study of analytic performance bounds merits further research. 

9 CONCLUSIONS 

A cost-effective approximate algorithm, based on the principle ofME and the notion of system 
decomposition, is proposed for the performance analysis and prediction of packet-switched 
buffered Banyan MIN-based ATM switch architectures with arbitrary buffer and building block 
sizes, GE-type interarrival and service times and RS internal blocking. Analytic ME solutions 
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T bl U ":6 R a el ru orm outmg 
Banyan Input Data 

MIN {rif=0.125,iJ=O,J, ... ,7}; Output Statistics 
No. N=8;JJ.=l;K=9 

A Ca' Cs' Lo ~ L.z 2z 7ra Method 
1 0.5 3 3 3.1760 2.6261 2.3536 0.4387 0.1226 ME 

3.1100 2.7210 2.3530 0.4440 0.1211 SIM 

2 0.5 5 5 3.4429 2.7746 2.3691 0.3869 0.2263 ME 

3.4620 2.9050 2.3300 0.3877 0.2229 SIM 

3 0.5 7 7 3.5240 2.8164 2.3376 0.3502 0.2995 ME 

3.6990 2.9180 2.3020 0.3466 0.3020 SIM 

4 0.5 11 11 3.5525 2.8112 2.2586 0.3020 0.3959 ME 

4.0030 2.8840 2.0940 0.2912 0.4175 SIM 

5 0.5 15 15 3.5372 2.7735 2.1887 0.2711 0.4578 ME 

4.1590 2.8510 1.9650 0.2559 0.4862 SIM 

for the QLD of a shared buffer SRXR (GER/GE/1)/K. queue in conjunction with GE-type 
formulae for the first two moments of the effective service times and traffic flows in the 
network, play the role of effective building blocks in the decomposition process of the entire 
network. Numerical results are included to illustrate the relative accuracy of ME 
approximations against simulation, define experimental MQL bounds in the interior and last 
stage of the network and to investigate the buffer capacity optimisation across the entire MIN. 
This study has shown that the ME approximation algorithm is a credible analytic tool for the 
cost- effective performance modelling and optimisation of complex MINs represented by 
Banyan networks. The ME algorithm can be extended towards the approximate analysis of 
ATM switch architectures with space and service priorities. Moreover, closed form 
expressions for queueing models of ATM networks with both bursty and correlated traffic can 
be derived based on the stochastic analysis of single finite queues with batch renewal arrival 
processes (c.f.,[18]). Extensions of this kind are the subject of current study. 
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T bl 2 Unifi R . a e orm outmg 
fnputData 

Banyan {r1;=0.125,iJ=O,l, .. , 7}; Output Statistics 
No N=8;p=l;K=9 

A I ca~ I Cs2 Lo ~ L2 ~ A a Method 
10 0.3 7 7 2.1278 1.6379 1.3560 0.2451 0.1829 ME 

1.9580 1.5800 1.3510 0.2537 0.1497 SIM 

11 0.5 7 7 3.5240 2.8164 2.3376 0.3502 0.2995 ME 

3.6990 2.9400 2.2480 0.2467 0.3020 SIM 

12 0.7 7 7 4.7570 3.7642 2.9907 0.4081 0.4169 ME 

5.2130 3.7750 2.6850 0.3847 0.4502 SIM 

T bl 3 U 't1 R . a e ru orm outml!; 
Input Data 

Banyan {r!i=O.l25,iJ=0,1, .. ,7}; Output Statistics 
No. N=8;p=l;K=5 

A I Ca2 I Cs2 ~ ~ L2 11.2 1ia Method 
13 0.5 5 0 1.600 1.111 0.8952 0.3253 0.3493 ME 

1.269 0.8553 0.8404 0.3000 0.2899 SIM 

14 0.5 5 1 1.7507 1.2776 1.0493 0.3237 0.3526 ME 

1.4280 1.1590 1.0640 0.3463 0.3026 SIM 

15 0.5 5 3 1.9570 1.5271 1.2600 0.3164 0.3671 ME 

1.9450 1.5920 1.2760 0.3254 0.3487 SIM 

16 0.5 5 5 2.1163 1.7074 1.3837 0.3071 0.3859 ME 

2.3160 1.7810 1.2890 0.2965 0.4109 SIM 
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Tbl H S R a e4 ot spot outmg 
Input Data 

Banyan {r11=0. 02,i=O, !, ... , 7 J= 1,2, ... 7}; Output Statistics 
No. {r11=0.86, i=O, 1, ... , 7, j=O}; 

N=8;J.t=l;K=9 
A Ca2 Cs2 Lo ~ 12 A.2 1ra Method 

16 0.1 3 1 0.4705 0.9920 2.5333 0.6926 0.0078 ME 

0.4763 1.0240 2.6470 0.7062 0.0062 SIM 

17 0.1 7 3 0.7625 1.6055 2.9622 0.6384 0.1076 ME 

0.7720 1.7230 3.0470 0.6431 0.1034 SIM 

Tb15W StRf a e arm ~po oumg 
Input Data 

Banyan {rif=O.Jl, i=0,1, ... ,7,j=1,2, ... ,7}; Output Statistics 
No. {ry=0.23, i=O, 1 ... , 7, j=O}; 

N=8;J.t=l; K=9 
A Ca" Cs2 Lo ~ 12 A.2 1ra Method 

18 0.3 7 3 1.9505 1.6403 1.8753 0.4523 0.1805 ME 

1.5670 1.4740 1.8440 0.7180 0.1432 SIM 

19 0.5 5 5 3.6797 4.2865 4.5339 0.6926 0.2472 ME 

4.0050 4.4510 4.0750 0.6663 0.2733 SIM 

Table 6 First Stage QLDs 
Input Data: {Ca 2 =5, Cs 2 =3, A=0.5,p=l,K=5,N=8}; 

{r;=O.J25, i.i=O,J, .. ,7} 
Aggregate QW Margina/QW 

n ME SIM ME SIM 
0 0.3770 0.3565 0.6351 0.5864 

1 0.1230 0.1412 0.1025 0.1417 

2 0.1190 0.1300 0.0849 0.1111 

3 0.1130 0.1189 0.0694 0.0793 

4 0.1070 0.1064 0.0558 0.0501 

5 0.1610 0.1470 0.0525 0.0313 
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Table 7 Second Stage QLDs 
Input Data: {Ca 2 =5, Cs 2 =3, A=0.5, p=1,K=5,N=8}; 

{r11=0.125, ij=0,1, .. , 7} 
Aggregate Q_W Marginal QW 

n ME SIM ME SIM 
0 0.4220 0.3904 0.6589 0.6211 

2 

3 

4 

5 

0.1740 0.1859 

0.1360 0.1420 

0.1040 0.1082 

0.0790 0.0804 

0.0840 0.0931 

0.1346 

0.0887 

0.0576 

0.0364 

0.0237 

0.1605 

0.1006 

0.0609 

0.0348 

0.0222 

Table 8 Third Stage QLDs 

Input Data: {Ca 2 =5, Cs 2 =3, A=0.5, p=1,K=5,N=8}; 
{r;=0.125, i,j=0,1, .. ,7} 

Aggregate OW Marginal QW 
n ME SIM ME SIM 
0 0.4570 0.4572 0.6814 0.6734 

2 

3 

4 

5 

0.2000 0.2019 

0.1370 0.1368 

0.0920 0.0894 

0.0600 0.0583 

0.0530 0.0564 

0.1479 

0.0841 

0.0471 

0.0257 

0.0138 

0.1575 

0.0858 

0.0459 

0.0236 

0.0137 

Table 9 Buffer Assignment Biased for Stage 0 
Input Data: {Ca~ =Cs 2 =5, A=0.1, p=1, N=8}; 

{r;=0.125, i, ·=0,1, .. ,71 
Ko Ki K2 End-to-End CLP 

Delay 
9 9 9 9.0565 0.1170 

11 8 8 9.5461 0.0838 

13 7 7 9.9613 0.0616 

15 6 6 10.3868 0.0472 

17 5 5 10.9864 0.0392 

19 4 4 12.1656 0.0384 

21 3 3 15.3603 0.0541 
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Table 10 Buffer Assignment Biased for Stage 1 

Input Data: {Ca 2 =Cs 2 =5, A=O.l, p=l, K=5, N=8}; 
{r,=0.125, i,j=O,l, .. ,7} 

Ko Ki K2 End-to-End CLP 
Delay 

9 9 9 9.0565 0.1170 

8 11 8 8.7827 0.1380 

7 13 7 8.4496 0.1648 

6 15 6 8.0488 0.1984 

5 17 5 7.5768 0.2401 

4 19 4 7.0342 0.2923 

3 21 3 6.4185 0.3585 

Table 11 Buffer Assignment Biased for Stage 2 

Input Data: {Ca 2 =Cs 2 =5, A=O.l, p=J, K=5, N=8}; 
{r;=O. 125, i, ·=o,J, .. , 7} 

Ko Ki K2 End-to-End CLP 
Delay 

9 9 9 9.0565 0.1170 

8 8 11 8.7324 0.1415 

7 7 13 8.3474 0.1716 

6 6 15 7.8941 0.2088 

5 5 17 7.3679 0.2553 

4 4 19 6.7560 0.3142 

3 3 21 6.0386 0.3904 

APPENDIX I DERIVATION OF AN ME QLD FOR A STABLE GER/GE/1 
QUEUE 

Consider a stable FCFS GER I GEl 1 single server queue i depicted in Figure 4. The queue 
receives a multiple input ofR streams with GE-type interarrival parameters. 

(A Ji,Ca]; ), j = 1,2, ... , R. Moreover, the server provides GE-type service time with 

parameters (J.I.;, Cs/ ). 
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Table 12 Analytical Bounds over Simulation for 27x27 MINs 
Input Data 

Banyan {r;1=0.037, ij=0,/, ... ,26}; Output Statistics 
No. N=27;p=I; K=9 

A Ca2 Cs2 Lo ~ ~ 1la Method 
18 0.10 1 1 0.3330 0.3330 0.3330 0.0000 ME 

0.3339 0.3331 0.3333 0 SIM 

19 0.25 1 1 0.9999 0.9999 0.9999 0.0001 ME 

0.9969 1.0330 0.9997 0.0001 SIM 

20 0.10 7 1 0.8925 0.9937 0.8475 0.1241 ME 

0.9000 0.5600 0.4800 0.1234 SIM 

21 0.25 7 1 1.9750 2.2800 1.8069 0.1973 ME 

2.2020 1.3600 1.2203 0.2022 SIM 

22 0.10 3 7 0.7200 0.7021 0.6927 0.0112 ME 

0.7541 0.6918 0.6378 0.0126 SIM 

23 0.25 7 3 2.1780 2.4270 1.9477 0.1921 ME 

2.3981 1.8912 1.5398 0.2091 SIM 

• 

Figure4. Astable (GER /GE/l)Queuei 
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Suppose all that is known about the GER IGE/lqueue is that the server utilisation, P;, 

and MQL, l; . Entropy maximisation, subject to normalisation, utilisation and MQL 

constraints, implies that the QLD of the GER I GE I I queue is given by 

(AI) 

where Z; = I I P; ( 0) is the normalising constant, h( ni) is an auxiliary function defined by 

h(n;) =I, if n; >0 or, 0, otherwise, and {g;, X;} are the Langriangian coefficients 

corresponding to utilisation and MQL constraints, respectively. 
The server utilisation, P; is clearly expressed by 

R 

Pi= LPJi• Pji = Aji I f.J.;, j = I,2, ... ,R. (A2) 
i=l 

Moreover, an expression for the MQL, l;, can be obtained from the generalised P-K 

expression for a stable MBIGII queue [9], namely 

(A3) 

where b is the mean and Cb2 is the SCV ofthe bulk size distribution. 

In the case of a number of arriving bulk Poisson streams with parameters b Ji and 

CbJ;, j = I,2, ... , R, respectively, the overall arrival stream is another bulk Poisson stream with 

mean, b;, and SCV, Cbf . The later parameters can be determined via the law of total 
moments, namely, 

R 
b; = LbJiPJi• i = I,2, ... ,R, 

J=l 

where 

A.. R 
P}i = :.~'A;= LAJi• i = I,2, ... ,R, 

I j=I 

(2) 2 
Cb2 = b; - b; . 12 R 

I 2 ·• 1 = ' , ... , ' 
b; 

(A4) 

(A5) 



318 Part Six Models of ATM Switches 

where hf2) is the second moment of the bulk size of the overall stream, namely 

bf2) = fb~f)Pji, i = 1,2, ... ,R, 
j=l 

where b~f) is the second moment of the bulk size for steam j. 

Manipulations lead to relations 

R 

(Cbl +l}A;h; = L(CbJ; +l}Ajibji' i = 1,2, ... ,R. 
j=l 

(A6) 

(A7) 

Substituting into the generalised P-K expression (A3) the following formula for the MQL of a 

stable M 8 I G I 1 queue with an aggregate ofR multiple input streams is obtained: 

(AS) 

Note that the superposition of R GE-type streams results into an overall bulk Poisson 
process, but the bulk size distribution is determined by a sum of geometries. Moreover, the 

individual parameters of each bulk size distribution b ji and CbJ; can be expressed by 

Ca~- +1 
bji =-t-, i,j=1,2, ... ,R, (A9) 

and 

2 Ca~- -1 
Cbji =-+-· i,j=1,2, ... ,R. 

Caji +1 
(AlO} 

Using expressions (A9) and (AlO), formula (AS) becomes identical for MQL expression 

(4.9). Moreover, subtituting (A1} into the constriants of utilisation, p;and MQL, L;, and 

carrying out some manipilations, Lagrangian coefficients K; and x; are determined via 

expressions (4.14}. 
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APPENDIX II DERIVATION OF THE LARGRANGIAN COEFFICIENTS 
{y;:i = 1,2, ... , R} FOR THE CASE OF R=2 

319 

The Largrangian coefficients {y;: i = 1,2, ... , R} of the SRxR ( GE R I GE 11) I K are determined 
by solving the set of nonlinear simutaneous equation ( 4.17). These can be written as 

(i)( )[ ] - (i)( ) . -C2 K Y - C2 K , 1 -1,2, ... ,R, (All) 

where [Y] denotes the vector of Y;'s. In the case of R = 2, equation (All) can be solved 
analytically as follows: 

(A12) 

and 

(Al3) 

which leads to 

(A14) 

Equation (A.14) can be simplified by using the identitiy 

( K-1 K-2 K-1\i ) ( K K) x1 + x1 x2 +. .. +x2 f\x1 - x2 = x1 - x2 . 

To this end, solving (A.14) with respect to the Largrangian coeffcient y 2 , it follows that (4.19) 
holds. 

Substituting y 2 into (A.l4), the following equation is obtained: 

(A14) 
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Solving equation (A16) for y 1 and taking the positive root yields expression (4.18). 

APPENDIX III METHOD OF CALCULATING THE INPINS AND OUTPINS 
SETS 

Let Inpins[i,m] be the set of external input pins of the Banyan Network which are connected to 
an interior input-port pin at position (i,m) ofthe array of input pins. Likewise let Inpins'[i,m] 
be the set of external input pins that are linked to an interior output pin at position (i,m) of the 
array of output pins. Let S be the set of input pins that constitute the inputs of a particular 
switch. Each switch fully connects all its input-pins to its output pins, therefore the sets 
Inpins[i,m] and Inpins' [i,m] are related as follows: 

Inpins' [i, m] = U Jnpins[k, m]. 
kES 

Each interior input-port pin is connected to one output pin from the previous stage, which can 
be determined from the backwards topology matrix (BTM), i.e., 
input-pin at position (i,m) connects with output pin located at BTM [i,m ], which is of course at 
stage (m-1). 
Thus, each input pin 'inherits' its Inpin set from the output pin that it is connected to, i.e., 
Inpins[i,m] = Inpins'[BTM [i,m],m-1]. 
The input pins at the input edge of the network have only one element in their Inpins set, as 
they correspond to a particular external input pin, i, i = 0,1, ... ,N-1 i.e., 

Inpins[i,O) = {i}. 

Thus lnpins sets at each level are obtained via the following procedure: 

fori= 0 to N-1 
Inpins[O,i] = {i}. 

forM = I to M-1 
fori= 0 to N-1 

end i 

Inpins'[i,m-1) = U lnpins[k,m-1] 
kES 

for i = 0 to N-1 
Inpins[i,m] = Inpins' (BTM [i,m], m-1]} 

end i 
endj 

The method of calculating the Outpins sets is similar to the one for determining the Inpins sets 
but is applied in reverse order. 
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