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Abstract 
This work addresses model-based evaluation of cell loss probabilities for an ATM switching 
element with a shared output buffer .. The incoming traffic to the switch is represented by the 
superposition of N bursty input sources, each of which is modeled as a two-state (On/Off) 
Markov chain. For such systems, we consider an integrated approach to their evaluation that 
employs both exact and approximate solutions. The exact method is based on a reduced 
Markov model obtained by lumping the states according to certain symmetries of the traffic 
model. However, even with such reduction, numerical solutions are feasible only if the switch 
dimensions involved, particularly the number of output ports, are reasonably small. We then 
introduce a new approximate solution algorithm that can be applied to larger switches. By 
comparing the results obtained with those of the exact method, we find that the errors of 
approximation are relatively small. Moreover, due to the iterative nature of the approximate 
solution algorithm, the two methods can be integrated so as to yield even more accurate 
results with less execution time. 
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1 INTRODUCTION 

Services both realized and planned for broadband, ATM-based, ISDNs impose extremely 
severe constraints on the performance of ATM switching elements. In particular, admissible 
cell loss probabilities as small as 10·9 (or even less) call for switch buffers that are sufficiently 
large to guarantee this quality of service. In this regard, it has been shown (see [1,2], for 
example) that the best utilization of buffer capacity is obtained by dynamically sharing cell 
storage among all the output ports of the switch. This permits a reduction of required capacity 
(for a specified admissible cell loss probability) relative to switches which employ dedicated, 
fixed-capacity queues at either the input or the output. However, the problem of evaluating the 
loss performance of a shared-buffer switch is difficult, due primarily to the large number of 
internal states that must be accounted for in the process, even when the switch dimensions are 
relatively small. Therefore, various studies have proposed approximate solutions to this 
problem, assuming further (see [3,4,5], for example) that traffic sources for the input ports are 
represented by independent Bernoulli arrival processes, thus precluding any correlation 
between cell arrivals. Among such investigations, perhaps the most widely cited is [3] which 
presumes an infinite buffer and approximates its steady-state occupancy distribution with a 
Gamma function. The parameters of the Gamma distribution are obtained analytically by 
computing the mean and variance of the shared-buffer occupancy distribution. This method 
provides a practical means of quickly estimating the required buffer capacity of a switch. 
However, since it matches only the first two moments of the actual distribution, it often fails 
to accurately estimate the distribution's "tail", i.e., the probabilities of large occupancies 
which have very low values. 

Another simple way to estimate the buffer occupancy distribution of a shared buffer with 
uncorrelated traffic is by convolving the individual distributions of a number of Geo/D/1 
queues. Since Geo/D/1 models are relatively easy to solve (as discussed ·in [6], for example), 
this method is also attractive. Other studies, such as those of [7,4], suggest more complex 
heuristic algorithms that typically lead to more precise solutions. 

Although Bernoulli sources are convenient by virtue of their simplicity, a more realistic 
arrival process should capture correlation that exists between successive arrivals at an input 
port. This is done in [8], for example, by employing a continuous-time model where each 
input source is modeled by an interrupted Poisson process. The investigation that follows 
considers two discrete-time models of a shared-buffer switch subjected to bursty (and hence 
correlated) traffic .. Jhey support exact and approximate solution algorithms, respectively; 
moreover, we find that these methods can be usefully integrated to achieve both greater 
accuracy and reduced execution time (when compared with exclusive use of the approximate 
method). 

The first method, referred to as Algorithm 1, provides an exact solution of the steady-state 
distribution of shared-buffer occupancy for switches of limited (but not trivial) size. This 
solution is based on an efficient representation of the state space that derives from certain 
symmetries implied by the underlying assumptions. Although its application is limited in the 
sense noted above (its execution time grows exponentially with buffer capacity), it is 
nevertheless very useful. In particular, in addition to providing exact results for the 
probabilities of rare cell-loss events, it can serve as a reference for assessing the nature and 
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magnitude of errors that result from approximate analytic models and/or solution techniques. 
Although simulation is often used for this purpose, such practice is reasonable only if the 
simulation results are themselves highly accurate (high confidence with respect to small 
confidence intervals). 

Further, as we emphasize in the development that follows, it is sometimes possible to 
integrate the use of exact solutions with certain types of approximation techniques, thereby 
extending the scope of the former. For example, if the approximation algorithm is iterative in 
nature (as in the case of convolution, or more specifically, the algorithm we consider below) 
then an exact solution can be usefully employed for the initial iteration. This leads to more 
accurate approximate evaluations, even for realistically large switches with bursty traffic. 

The approximation technique we propose is new (Algorithm 2) and is based on a 
decomposition of the system into smaller systems involving fewer output ports. Comparisons 
(see section 4) of algorithm-2 results with those of algorithm 1 (for small switch sizes and 
very low loss requirements) and with simulation data (for larger systems with relatively high 
losses) reveal that the approximations obtained are reasonably accurate. These results are then 
used to estimate the advantage, in terms of memory saving, of a shared-buffer architecture 
relative to a simpler architecture that employs a dedicated, fixed-capacity buffer for each 
output port. With such estimations, the required shared-buffer capacities for very low 
admissible cell loss probabilities can be likewise estimated. 

Assumptions concerning the switch and its traffic are discussed in section 2. This is 
followed by descriptions of the two algorithms, including their integration (section 3) and, in 
tum, a presentation of the results just mentioned (section 4). Section 5 then summarizes what 
was accomplished, with appendices A and B providing some solution details that were 
omitted in section 3. 

2 THESWITCH 

The switch considered has a typical shared-buffer architecture, i.e., memory space available to 
store ATM cells is dynamically shared among all the output queues. Incoming cells arrive 
from N input ports and are addressed to one of R output ports. Provided there is available 
space in a common buffer of finite capacity K (the maximum number of cells that can be 
stored), via an appropriate pointer structure (maintained in a separate memory space), a cell is 
then stored in a logical FIFO output queue corresponding to its address. A cell is lost if and 
only if no buffer space is available when the cell arrives. The switch is assumed to operate 
synchronously at the cell level; in a given time slot (the time required to completely 
transmit/receive a cell on a port of the switch), we presume that the following two operations 
take place in the order indicated. 

Send: For each non-empty logical queue, the least recently arrived cell cell is served 
and its buffer space is freed. 
Receive: Each incoming cell is stored in the buffer (if there is available space) and the 
pointer chain is appropriately updated; these cells will be served in the next slot. 

The traffic at each of theN input ports is represented by a 2-state (On/Oft) Markov chain 
where these individual sources are assumed to be statistically independent. In the On state, a 
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cell arrives with probability 1 while in the Off state there are no arrivals. The dwell times in 
each state (number of time slots between entry and exit) are geometrically distributed 
variables, with means Land I for the On and the Off states, respectively. 

The activity Pin of an individual source is the fraction of time the source is in the On state 
and is given by Pin= U(I+L). The destination address of each cell (i.e. the output port it is 
queued to) is a random variable that's uniformly distributed over the R output ports and is 
independent of the destinations of previously arrived cells. This assumption attempts to 
capture the situation where each input link carries the superposition of a large number of low 
bit-rate connections, each connection addressed to a possibly different output link. 

As is well known, a purely random (memory less) traffic model, where each input behaves 
as a Bernoulli source, is a special case of the model just described. Specifically, the above 
reduces to the Bernoulli case if L = 1/(1 - P;n) and I= 1/Pin· Finally, we let p denote the 
offered load, as reflected by the utilization of an output port (assuming no cell losses), i.e., 
p=NP;nl R. 

3 THE ALGORITHMS 

As mentioned in our introductory remarks, we choose to employ both exact and approximate 
model-based methods to determine the steady-state probability distribution of shared-buffer 
occupancy, given the switch/traffic assumptions stated above. (Other measures, such as loss 
probability are then based on this distribution.) These are described in the subsections that 
follow, with some of the mathematical details being deferred to appendix A (algorithm 1) and 
appendix B (algorithm 2). However, before proceeding with these descriptions, it is helpful to 
introduce some assumptions, terminology, and notation which are common to both 
algorithms. 

Time is assumed to be discrete, where a time instant t takes values in the set 
T = { 0, 1, 2, ... } . The duration between successive instants t and t + 1 is interpreted as the t th 
time slot, where the enumeration begins with time slot 0 and instant t represents the beginning 
of slot t, i.e., it occurs before the intraslot "send" and "receive" operations described in section 
2. 

M, number of sources in the On state during slot t 
X;,, = number of cells in the buffer at time t addressed to output port i, i = 1, 2, ... , R 

Y, I,:1 X;,, = number of cells in the buffer at time t. 

By these definitions, along with our earlier assumptions concerning switch dimensions N 
and K, for any t E T, these variables are thus constrained to have integer values in the ranges 

O~M,~N 

0 ~ X;,, ~ K; i = 1, 2, ... , R 
O~Y,~K 

(1) 

(2) 

(3) 

Since there is an arrival at an input port if and only if the source for that port is in the On 
state, M, is just the number of arrivals during slot t, including some that may be lost if the 
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buffer is full. However, if the buffer capacity is at least N (which we tacitly assume 
throughout the discussion) then, for all t E T, 

M,:o;Y, (4) 

3.1 Algorithm 1 (Exact) 

Let X,= (XJ,t, X2,1 , ... , XR,r) be the R-dimensional vector-valued random variable that 
represents the cell-occupancy of the shared buffer at time t. If, further, we let X denote the 
corresponding stochastic process, i.e., X = { X, I t E T } then, without simplification, the state 
space Q of X quickly becomes computationally intractable, even for relatively small values of 
R and K. For example, if R = 8 and K = 40 then IQI "'4 · 108 . (I Q I is the cardinality of the 

state space Q.) 
A key observation that drastically reduces the size of the state space (while still supporting 

an exact solution) is the following. Due to assumptions concerning i) the identical 
probabilistic nature of individual input sources and ii) the uniformity of cell routing, it is 
possible to lump (partition) the state space Q according to the following equivalence relation. 
Letting q; denote the number of cells in the shared buffer that are destined for output port i 
(i = 1, 2, ... , R), two states q = (q1 , q2 , ... , qR) and q' = (q1 ', q2 ', ... , qR') are equivalent (and, 
hence, in the same lump) if and only if q' is a permutation of q. Letting Q denote the 
resulting partition of Q, it then suffices to consider the corresponding reduced stochastic 
process X= {Xrlt E T} where, for all t E T, X, is the equivalence class (lump) that contains 
state X,. For various choices of queue capacity K, the extent of this reduction is indicated in 
Tables 1 and 2, where the number of output ports is R = 4 and R = 8, respectively. 
Specifically, these tables compare the size of the original state space Q with that of the 
reduced space Q , where we see that reductions of several orders of magnitude are possible. 

Table 1: State-space size reduction if R = 4. 

K=JO K=20 K=40 K=BO 

IQI 103 104 1.3. 105 1.9. 106 
@ 94 7.1. 102 7.3. 103 9.2. 104 

Table 2: State-space size reduction if R = 8. 

K=JO K=20 K=40 K=BO 

IQI 4.3 . 103 3.1. 106 3.8. 108 7.4. 109 

@ 1.3 . 102 2.0. 1Q3 7.3. 104 8.1 . 1Q5 

To obtain a feasible means of determining the steady-state probability distribution of X, 
each state q E Q can be conveniently represented by an ordered pair (b,e) consisting of a 
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sequence of "occupancy values" b and an "occupancy vector'' e (see appendix A). Using this 
representation, algorithm 1 is based on a functional formulation of transitions to intermediate 
states (during a slot) that result from the "send" operation and, in turn, each intraslot arrival. 
Beginning with state X,, which expresses the buffer occupancy at the end of slot t, and 
accounting for these intraslot transitions during slot t+1, the resulting state (following the final 
cell arrival) is then the next state Xr+I of the lumped buffer model. (Again, see appendix A for 
further details.) Accordingly, if we account for the behavior of the Markovian source model 
M = { M, It e T} then, given that X, = (b,e) and M, = m (the number of On sources during slot 

t), these functions, together with the transition probabilities of M, determine the conditional 
probabilities 

P[X.+t =(b',e'),Mr+t =m'IX, =(b,e),M, =m] (5) 

for all (b',e') e Q and all m' e {0,1, ... ,N}. In other words, if we let Z, be the pair of variables 

(X, , M, ) and consider the corresponding stochastic process Z = { Z, I t e T } then the transition 

probabilities of Z at time tare given by (5). Beginning with some arbitrary distribution for the 
initial state variable Zo = ( X0 , M0 ) the distribution of Zr+l can thus be determined iteratively 
from the distribution of z, and the transition probabilities (5) at time t, fort= 0,1,2, ... until a 
steady-state (stationary) condition is sufficiently well approximated. More precisely, the 
computation terminates when, for all (b,e) e Q and all me {0,1, ... ,N} the absolute value of 

the relative difference 

P(Zr+l =((b,e),m))-P(Z, =((b,e),m)) 

P[Z, = ((b,e),m)) 

is less than some very small positive number. Given that t satisfies this condition, the 
distribution we seek is then obtained by summing over the states of the source model M, i.e., 
for all (b,e) e Q, 

N 

P[ X,= (b,e)] = I,P(z, = ((b,e),m)). 
m=O 

Although application of this algorithm becomes intractable for large values of R and K, as 
indicated in tables 1 and 2, the reduction in state space size provided by the reduced model 
permits feasible solutions for switches with moderate dimensions. For example, when 
implemented on an HP9000 series 700 workstation, algorithm 1 can accommodate an 8x8 
switch with random traffic and a buffer capacity of K=60 or bursty traffic and a buffer 
capacity of K=40. Moreover, and as noted in section 1, exact models are likewise very useful 
if a large system can be approximately decomposed into smaller subsystems that admit to 
such representation. For instance, in addition to more obvious uses such as convolution, this 
type of "divide and conquer" approach was employed by the approximate method developed 
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in [3]. Details as to how algorithm 1 can be exploited in concert with algorithm 2 are 
presented at the end of the subsection that follows. 

3.2 Algorithm 2 (Approximate) 

This algorithm approximates the shared-buffer occupancy probabilities via an iterative 
procedure that considers, at each successive step, subsystems of growing size. Presuming an 
NxR switch with a shared buffer of capacity K, for a specified integer r, where 1 S r ~ R/2, we 
initially choose two disjoint subsets 1(r) and 2(r) of the set { 1, 2, ... , R} of all output ports, 
where each subset has cardinality r. Although just how these subsets are chosen is relatively 
arbitrary, to simplify the discussion we assume that both R and r are integer powers of 2. 
Moreover, without loss of generality, we can let 1(r) be output ports 1 through rand 2(r) be 
ports r + 1 through 2 r, i.e, 

1(r) = { 1, 2, ... , r} and 2(r) = { r+1, r+2, ... , 2r}. 

The shared buffer, together with the 2r output ports 1(r) u 2(r), will be referred to simply 
as an r-subsystem. In keeping with the notation of the exact method, the buffer state at a given 
time t is described by the random variables 

X;1,1,1= number of cells in the buffer at timet addressed to output ports in i(r), i =1,2 

and, to represent arrivals and departures in an analogous fashion, we let 

W;1,1,1 =number of incoming cells at timet addressed to ports in i(r), i = 1, 2 
Z;1,1,1 = number of cells that depart the buffer at timet from output ports in i(r), i = 1, 2. 

Relative to this model of an r-subsystem, and recalling that M1 is the number of sources in 
the On state at time t, let us now consider the following limiting distributions concerning 
arrivals (A,), combined buffer occupancy and source activity (B, referred to as the "buffer­
source" distribution), and departures (D,). 

A,(w~o w2im) = limP[Wt(r),r = W(, Wz(r),t = w2IM1 = m] 
t->-

B,(x~ox2,m) = limP[XI(r),t = X1,X2(r),t = X2,M1 = m] 
t->-

D,(zlx,m)= limP[Zl(r),r =ziXl(r),t =x,M1 =m] ,__,_ 
= limP[Z2(r),r = ziX2(r).r = x,M1 = m] 

t->-

(6) 

(7) 

(8) 

Computation of the conditional arrival probabilities A,(w1,w2 1 m) is straightforward since, 
by the uniform routing assumption,each arriving cell has a probability 1/R of being addressed 
to a given output port. Hence, as both 1(r) and 2(r) have cardinality r, for either subset i(r) 
(i=l,2), the probability of an arrival being addressed to a port in i(r) is simply r/R. With this 
observation, let Bln,p denote the binomial distribution having parameters n and p, i.e., for 
OSiSn, 
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Then in case all arrivals are accepted (the "no-loss" case), the formulation of A, is 
immediate, i.e., 

(9) 

To extend (9) so that it can account for cell losses, we assume further that there is no 
statistical dependence between the address of an arriving cell and the event that it is one the 
cells discarded among the m that arrive. In this case, the extension is easily obtained. 

The departure distribution D,., on the other hand, is more difficult to determine once the 
value of r is greater than 1. It is here that we choose to introduce an approximate computation 
based on the following recursive formulation of D, in terms of Drt2 and Br12 (where r > 1). 
(The inexact nature of this formula will be discussed in a moment.) 

X Z 

D,(zlx,m) = L I,D,n(ziixhm)D,n(z-ziix-xi>m)E,n(xJIXI +x2,m) (10) 
x1=0z1=0 

where Er(x1 I x1 + x2, m) is the probability that x1 cells in the buffer are addressed to output 
ports in l(r), given that i) x1 + x2 are addressed to ports in l(r) u 2(r) and ii) m sources are 
active, i.e., 

B,(x1>x2,m) 

I,B,(i,j,m) · 
i.jli+j=Xt+Xl 

(11) 

The knowledge of A, and D, permits the formulation of the transition probabilities for any 
pair- of states in the model determined by r, i.e., the model that represents an aggregation of 
output ports according to sets l(r) and 2(r). This, in tum, permits the computation of the 
steady-state buffer-source distribution B,., using an iterative method similar to that employed 
by algorithm 1. This method relies on both A, and D, in the sense mentioned above. 
Accordingly, for a given value of r (i.e., a given iteration of algorithm 2), the calculations of 
A, and D, must precede that of B,. Once B, is computed, if 2r = R then the computation 
terminates since, in this case, the r-subsystem accounts for all the output ports. If not, the 
number of ports considered is doubled (i.e., r is replaced by 2r) and the computations are 
repeated for this larger r-subsystem; in particular, the new values forD, are obtained using the 
recursion given by (10). For additional details concerning the computation of B,., please see 
appendix B. Accordingly, algorithm 2 can be summarized as follows. 

Step 1: r= 1. ~(Oix,m)= and ~(llx,m)= . {1 ifx = 0 {1 if X > 0 
0 else 0 else 
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Step 2: Compute Ar (see (9)). 
Step 3: Compute Br (see appendix B). 
Step 4: If 2r = R, exit; otherwise continue. 
Step 5: r ~ 2r. 
Step 6: Compute Dr (see (10)). 
Step 7: Go to Step 2. 

257 

This algorithm yields a fairly good approximation of. the steady-state occupancy 
probabilities of a shared-buffer switch with bursty traffic. The two principal sources of 
approximation error are the following. 

1. In solving each r-subsystem model (Step 3), we assume that the storage capacity for cells 
addressed to the 2r ports in 1(r) u 2(r) coincides with the buffer capacity K. In reality, this 
capacity is shared among cells destined for all R ports. 

2. In the same step, we assume that the number of depart]Jres from ports in 1(r) is 
independent of the number of departures from ports in 2(r), i.e., for all t E T, the random 
variables Zl(r),r and Z 2(r),r are statistically independent. This is not generally true. 

The number of main iterations of this algorithm is clearly log2R. However, it's important to 
note that this number can be reduced if an r-subsystem can be solved directly for a value of r 
that is greater than 1. This can be done by applying algorithm 1 to a special Nxr shared-buffer 
system, where sources in the On state transmit cells with probability r/R. Accordingly, Step 1 
of (modified) algorithm 2 then begins at a valuer> 1, where data for this value is supplied by 
algorithm 1. This combined use of both algorithms (the "integrated" approach referred to in 
the title and introduction) obviously reduces the execution time. Moreover, it also improves 
the precision of the results, since each iteration introduces an error of approximation. Further 
discussion of the nature of such errors is deferred to the end of section that follows. 

4 RESULTS 

Recalling some of the motivation that was mentioned at the outset (see section 1), because of 
the severe requirements imposed on ATM cell loss probabilities, highly accurate results (with 
high levels confidence) are difficult to obtain by simulation. Although there has been some 
progress in the development of fast simulation techniques for rare events, e.g., various forms 
of "importance sampling", these typically rely on very special knowledge of the system in 
question. If approximate analytic methods are used instead then, even though they often 
provide reasonably accurate results in the higher probability region of buffer occupancy, they 
tend to be much less accurate for large occupancy values. In other words, the asymptotic 
behavior of the distribution (its tail) is not well approximated. However, for purposes such as 
determining buffer dimensions that insure satisfactory loss performance with respect to 
stringent cell loss probability requirements, accurate knowledge of this tail is crucial. 

To pursue this matter in terms of the development of the previous section, we first examine 
the use of algorithm 1 as it applies to two of the logical output queues of an NxN shared 
buffer. Further, we suppose that the capacity of this buffer is large enough so that, effectively, 
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it can be regarded as infinite. This situation can thus be represented by an (exact) model of an 
Nx2 shared-buffer switch, where On sources transmit cells with probability 2/N. To satisfy the 
"effectively infinite" assumption, we take the buffer capacity K to be large enough to insure 
cell loss probabilities that are less than 10·15• Due to the small number of output ports, this 
model can be efficiently solved using algorithm 1. The purpose of the analysis is to study the 
correlation among the occupancy distributions of two queues in an NxN system. For the 
random (Bernoulli) traffic case, the joint occupancy distribution of the two queues was 
obtained in both [3] (using z-transforms) and [5]. The analysis here is similar to the latter, but 
is extended to the case of bursty sources. 

0.2 

0.1 

0 
C\1 0 x. 0.1 0.2 0.3 

x -o.1 
> ------- L=40 
0 
() 

·0.2 
--D-- L=20 

-•-L=10 

·0.3 ---o--- Random Traffic 

-0.4 

Offered Load 

Figure 1 Covariance between the length of two queues. 

Figure 1 displays the covariance (between two queues) as a function of offered load, for 
random and bursty traffic and N equal to 16. Among other things, it is interesting to note the 
sign of the covariance. For the random traffic case, the covariance is always negative, while in 
the case of bursty traffic it is positive for low loads and becomes negative as the load 
increases. 

The knowledge of the joint distribution of the occupancy probability of the two queues, 
together with the assumption of a effectively infinite buffer, permits the variance of the 
buffer's occupancy distribution to be formulated as follows. Let Y~ denote the random 
variable whose probability distribution is the limiting distribution of Y1 as t ~=,i.e., Y~ is the 
steady-state number of cells in the shared buffer. Similarly, let X1.~ and X2.~ be the random 
variables representing the steady-state occupancy of queue 1 and queue 2, respectively, in the 
Nx2 system described above. Then, taking the subscripts = to be implicit (context should 
suffice to convey the steady-state interpretation), the mean and variance of Y = Y~ can be 
formulated as follows in terms of X1 = X1.~ and X2 = X2.~, where we let queue 1 be 
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representative of single-queue behavior. Note that since X1 and X2 are identically distributed, 
X2 could likewise serve this purpose. 

E[Y] = N · E[Xd 
Var(Y) = N · Var(X1) + N(N-1) · Cov(X1.X2) 

(12) 
(13) 

Formula (13) can also be used to determine the error (with regard to variance) introduced 
by assuming that the queues are statistically independent. (The latter assumption is convenient 
since it permits the distribution of Y to be obtained via the N-fold convolution of the 
distribution of a single queue.) Assuming such independence, Var(Y) = NVar(X1) and, 

accordingly, the error due to this assumption is given by b = N(N-1)·Cov(X1,X2). Further, 

since the sign of b is clearly the sign of the covariance, an approximation based on 
convolution underestimates the variance if Cov(X1,X2) > 0. Since there is no error with regard 
to the value of E[Y], we can reasonably expect that, by using convolution, the results are 
conservative only if the covariance is negative. Also, it appears that this approximation gets 
worse for growing values of 1Cov(X1,X2,)1 and becomes useless when this value approaches 

that of NVar(X1). This is borne out by Figure 2, which compare occupancy distributions 

obtained by convolution with corresponding (and more accurate) results determined by 
simulation. Specifically, this plot demonstrate that convolution provides an overly optimistic 
estimate of the distribution of Yin the case of heavy, bursty traffic and, hence, cannot be 
relied on for practical applications. 
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Figure 2: Comparison between convolution and simulation. 
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It is also worth noting that the knowledge of mean and variance of the shared-buffer 
occupancy distribution permits another approximation of loss performance. As mentioned in 
section 1, for the case of a shared buffer submitted to random traffic, [3] has proposed 
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approximating the occupancy probability of an (infinite) shared buffer with the density of an 
appropriate Gamma distribution. This particular distribution was considered because of the 
exponential asymptotic behavior of its density function, which is typical of many queueing 
systems. More precisely, by computing the mean and variance of the occupancy distribution 
of an infinite shared buffer, this Gamma distribution is chosen such that its first two moments 
match the computed values. The loss probability of a K-capacity buffer is then estimated as 
the probability that a random variable with this Gamma density has a value greater than K. 
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Figure 3: Comparison between exact results and Gamma function approximation. 

Figure 3 displays the occupancy distributions of a 4x4 switching element, with K = 50 and 
offered loads p equal to 0.2 and 0.8, respectively. The Gamma distribution's density function 
is then compared with the distribution obtained from algorithm 1, indicating that the Gamma 
density provides a fairly good approximation for the higher probability states. On the other 
hand, one can see that it fails to capture asymptotic behavior in the low probability region. 
Moreover, we see that the estimation errors in this region are load-dependent, with values 
being overestimated in case p = 0.2 and underestimated if p = 0.8. 

We now turn to the analysis that utilizes algorithm 2. As noted earlier, this algorithm 
estimates the loss probability of a shared-buffer system with bursty traffic, even in cases 
where the buffer is large. To validate this approach, we compare the results obtained by 
algorithm 2 with those obtained by simulation (for large buffers and high loads) and by 
algorithm 1 (for smaller buffers). 

Figures 4 and 5 plot the loss probability as as function of buffer capacity K for both an 8x8 
(Figure 4) and a 16x16 (Figure 5) switch. In each case, we consider random traffic and three 
different values of offered load (p = 0.2, 0.7, 0.8). 
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Figure 4: Comparison between exact and approximate results; random traffic. 
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261 

80 

80 

Comparisons of the model result (straigth line) with simulation data and with exact analytic 
results (both plotted as circles) reveal that the error increases as the capacity K gets larger. 
However, in all the cases considered, the error's value is less than an order of magnitude. 
Included in the same figures are some plots of results obtained from the algorithm described 
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in [5] (dashed lines). In all cases, it can be seen that algorithm 2 provides a more accurate 
estimate of cell loss probability. 
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Figure 6: Comparison between exact and approximate results; L = 100. 
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Figure 7: Comparison between exact and approximate results; L = 100. 
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Figures 6 and 7 are similar to Figures 4 and 5, respectively, except that we now consider 
traffic sources that are bursty. Specifically, the mean burst length of a source is L=lOO and, 
again, two instances of offered load are considered, namely p = 0.2 and p = 0.8. 

To illustrate another application that integrates the use of an exact method (algorithm 1) 
with an approximate formulation (described below), we estimate the advantages, in terms of 
required storage capacity, of a shared-buffer architecture as compared with a (simpler) switch 
having dedicated output queues (no sharing). For given values of N, R, L, and Pin along with 
an admissible (maximum allowed) cell loss probability p., let K be the capacity of the shared 
buffer and let K be the capacity of each of the output buffers in the dedicated case. Hence, 
RIC is the total capacity of the latter. Further, lets denote the fraction of this capacity that is 
required in the case of a shared-memory switch (presuming the same value of Pa for each), 
i.e., s =KIRK. Thus the value of s (the "relative saving") can vary from a minimum of l!R 
(corresponding to the greatest theoretical reduction in required memory) to a maximum of 1 
(no reduction). 
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Figure 8: Memory saving afforded by buffer sharing. 

160 

Figure 8 illustrates how this relative saving varies as a function of the mean burst length L 
for different choices of N = R (4, 8). The activity Pin of a source is equal to 0.8 and two loss 
probability targets are considered. As indicated by the figure, we have the following 
observations with respect to the combinations of parameter values considered. 
a) The advantage of buffer sharing increases (as reflected by smaller values of s) as the 

number of ports gets larger. 
b) Likewise, buffer sharing is more advantageous as the loss probability target becomes 

lower (more severe). 
For very low loss probability targets p., observation b) suggests an empirical means of 

obtaining a quick and conservative estimate of the required capacity K of a shared-buffer 
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switch. Let K(p.), K'(p.), and s(p.) be the the values of K, K', and s that result from a particular 
choice of p •. Then, from the definition of s, it follows that 

K(p.) = s(p.)RK'(p.). (14) 

If the value of Pa is relatively high (in an ATM context, p8 ?. I0·6) then K(p.) can be 

obtained by simulation. As for K'(p.), algorithm I can serve to determine its value (letting 
R = l), even in cases where Pa is much smaller (as we exploit below). Then, to "scale up" 
these calculations to a more severe loss requirement, let Pa' denote a lower admissible cell loss 
probability, i.e., p 8' <p •. Then by observation b) it follows that s(pa') < s(p0) and hence, 

applying (14), we have 

K(pa') = s(pa')RK'(pa') < s(p.)RK'(pa') =K(p.)K'(pa')/K'(p3). (15) 

Given the value of K'(pa'), which again can be accurately determined using algorithm 1, 
(15) thus provides a conservative estimate of shared-buffer capacity in cases where the target 
loss probability is much lower (e.g., pa' ~ I0·9), namely 

Kest(pa') = K(p.)K'(p.')IK(p.) 

For both a 4x4 and an 8x8 switch (R = 4, 8) and as a function of traffic burstiness, Figure 9 
illustrates the extent to which Ke,1(pa') overestimates the actual values. 
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Figure 9: Validation of the empirical dimensioning rule. 
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Here, the original and modified target loss probabilities considered are Pa = w-6 and 
Pa' = 10·9, respectively, under an assumed offered load of p = 0.8. As can be observed, the 
relative error of the estimate (Le., the quantity (Kest - K)IK) is somewhat smaller for R = 4 as 
compared with R = 8. For both switches, this error increases slowly as the mean burst length L 
becomes larger_ In particular, for an 8x8 switch with L = 160, the relative error is 
approximately 0-2 (20% ). 

5 SUMMARY 

By employing an exact solution method (algorithm 1) along with a new approximate method 
(algorithm 2), we have shown that a synergistic use of both can be beneficial in the context of 
shared-buffer switch evaluation. Aside from the usual advantages associated with comparing 
exact vs. approximate results, we find that true integration, where both are employed for a 
single purpose, can likewise be very useful. Further, we have shown that algorithm 2, 
particularly if used in concert with algorithm 1, can provide reasonably accurate results even 
for realistically large switches in the presence of a bursty traffic environment. Finally, by 
examining the reduction in buffer capacity, relative to a dedicated-buffer architecture, that 
results from buffer sharing, we have found that memory saving increases as the target loss 
probability decreases. In turn, this suggested an empirical means of conservatively 
dimensioning a shared-buffer switch such that, even in the case of extremely low target 
probabilities, the capacity so determined is reasonably close to what's actually required. 
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APPENDIX A 

Recalling notation introduced in section 3.1, we let Q be the set of possible (buffer 
occupancy) states of the R logical queues of a shared buffer of finite capacity K, i.e., if qi is 
the number of cells stored in logical queue i (0 :5 qi :5 K, 1 :5 i :5 R) then 

In tum, we identify states that are permutations of one another via an equivalence relation 
on Q, letting Q denote its corresponding partition (set of equivalence classes). As noted in 

section 3.1, the shared buffer can then be represented by the reduced stochastic process X = 
{ X1 I t E T}, where X1 is the equivalence class that contains state X1• 

In what follows, we show how the transition structure of X can be described, in part, by a 
convenient representation of the elements of Q. Specifically, if q = (qi>q2, ... ,qR) E Q, let q 
denote its equivalence class, i.e., the state in Q that contains q. Then an occupancy value for 
q is the value of some coordinate qi of q. If, further, we let b = (bi>b2, ... ,br) be a listing, in 
increasing order, of all the different occupancy values for q (where 1 :5 r :5 R), we can define 

the occupancy vector of q to be the r-tuple e = (ei>e2, ... ,er), where, e1 is the number of 
different logical queues having occupancy value b1 (1 :5 e1 :5 R). Note that, by the definitions of 
Q and q, it follows that of both band e are invariant relative to the choice of a representative 

state q E q. It is also easily shown that if q and q' are distinct states in Q then the 
corresponding ordered pairs (b,e) and (b',e') are likewise distinct. In other words, this pair of r­
tuples provides a unique representation of a state in Q. Moreover, the set of all such 

representations is just the set of all ordered pairs ·(b,e), with b = (bi>b2, ... ,br) and e = 
(e~oe2•· .. ,er), such that 

1 :5 r :5 R, 
0:5 bi :5 K, 

b1<b2< ... <bro 

L:=1e1 = R, and 

I.:=I b1e1 :5 K 

From this point on, a state of the process X will be identified with its corresponding pair 
(b,e), where the latter is now regarded as an element of Q. In these terms, the transition 
structure of the process can be formulated as follows. 

Given that the system is in a state Xr = (b,e) at the beginning of time slot t, the state of the 
system after departures caused by the "send" operation in slot t (this is an intermediate state 
that precedes the subsequent arrivals; hence, it is not an explicit part of the behavior of X) is 
given by the function d(b,e), where 
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l((ht -1,bz -1, . .. .br -1),e) 

d(b,e) = ((ht,bz -1, ... ,br -1),e) 

((0,~ -1, .. . ,br -1),(el + ez,e3, ... ,er )) 

ifht >0 

ifbt=Oandbz>1 

if ht = 0 and bz = 1 

Suppose now that (b,e) is the intermediate state so determined by the function d. The next 
state X1+1 is then a function of the arriving cells as well as (b,e). Assuming that each cell is 
randomly addressed to one of the output queues, the probability that an incoming cell is 
addressed to one of the ej logical queues (each with bj cells) is clearly ejR. In a manner similar 
to how dis defined, a function a (suggesting "arrival") then determines an intermediate state 
(unless it's the last arrival during slot t) that results from an entry of an arriving cell to one of 
these ej queues. Specifically, the function a (whose arguments are the intermediate state (b,e), 

along with the value j that identifies the queue subset containing the arrival's destination 
queue) can be expressed as follows. 

a((b,e)J) = 

l((ht , .. . ,bj ,bj + 1,bj+l,. . . ,br ),(e1, .. . ,ej-J,ej -1,1,ej+l , .. . ,er )) 

_ ((ht , .. . ,bj-1 ,bj + 1,bj+l , .. . ,br ),(e1, .. . ,ej-1 ,l,ej+h· .. ,er)) 

- (b,(eJ, .. . ,ej-l,ej -1,ej+l + 1,ej+2·· . . ,er )) 

((ht , .. . ,bj-J.bj+l , .. . ,br ),(el , .. . ,ej-1 ,ej+l + 1,ej+2•· . . ,er )) 

if bj+l > bj + 1 and e j > 1 

if bj+l > bj + 1 and e j = 1 

ifbj+l =bj +1 andej >1 

ifbj+l =bj +1 andej =1 

As described in section 3.1, these functions then serve to formulate the transition 

probabilities of the composite process Z ={ ( X1 , M1+1) I t E T}. 

APPENDIXB 

The key step of the approximate method proposed in section 3.2 consists of finding the 
steady-state distribution Br(x1,x2,m), given the distributions Dr(zl x,m) and Ar(w"w21 m) of the 
departure and arrival processes, respectively. Recalling the exact meanings of each, we have 

Br(x" x2, m) the steady-state probability of having x1 cells in the buffer addressed to 
output ports in the set 1(r) = { 1, 2, ... ,r}, x2 addressed to output ports in the 
set 2(r) = {r+1, r+2, ... , 2r}, and m sources in the On state. 

Dr(z I x, m) the steady-state probability of having z cell departures during a slot from 
ports in 1(r) (alternatively 2(r)), given that x cells are addressed to these 
ports and m sources are active. 

Ar(w" w2 I m) = the steady-state probability of having w1 cell arrivals during a slot 
addressed to ports in 1(r) and w2 addressed to ports in 2(r), given that m 

sources are active. 

To compute Br(x" x2, m), we employ an iterative algorithm similar to the one used for the 

exact model. Let B; (x" x2, m) be the probability distribution, at timet, which, in the limit (as 
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t ~ oo), yields the steady-distribution B,(XJ, Xz, m). Further, let c: (XJ, Xz, m) be the probability 
distribution of the intermediate state, during slot t, that results from cell departures (but is 
prior to slot t arrivals). Then it can be shown that, for all t E T, 

min(x1+r.K) min(x2+r,K-i) 

c:(XJ,Xz,m) = L LB;(i,j,m)D,(i- Xtli,m)D,(j- Xzlj,m) 
i=x1 +min(x1,1) j=x2 +min(x2 ,I) 

N 

L c:(i,j,l)A,(xt- i,Xz- jlm)S(mll) 
i=max(x1-m,O) j=max(x2-m+x1-i,O) 1=0 

where S(mll) is the (time-invariant) probability that m sources are active in a slot, given that l 
were active in the previous slot. As earlier, we then iteratively compute B; (xh x2, m) for 
growing t until we reach a time t that yields a sufficiently close approximation of the steady­
state distribution B,(x1,x2,m). Again, the specific criterion for termination is a value oft such 
that the maximum relative difference between the probabilities for slots t and t+ 1 is less than 
some very small number. 
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