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Abstract 
We describe a diffusion approximation model for an ATM statistical multiplexer using the 
instantaneous return model approach (Gelenbe, 1975). Two Cell Loss Estimates are proposed 
for multiclass traffic. Our aim is to provide a novel conservative, accurate and computation­
ally efficient method for predicting cell loss probabilities which we call the Finite Buffer 
Diffusion Cell Loss Estimate (FBDCLE) and Infinite Buffer Diffusion Cell Loss Estimate 
(IBDCLE). We evaluate their accuracy by comparing them with simulation results using a 
wide variety of input traffic characteristics. In particular we test the model with traffic which 
is a mixture of different "On-Off" sources with varying loads. Both homogeneous and het­
erogeneous aggregated arrival processes have been taken into account. These comparisons, 
which include evaluations of the statistical confidence of the simulation runs, show that our 
model predictions are very close to the simulation results. In particular, FBDCLE is a con­
servative upper bound to cell loss ratio, while the other (IBDCLE) provides an accurate 
predictor which may slightly under-estimate or over-estimate cell loss. 
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1 INTRODUCTION 

ATM provides a universal carrier service that can carry voice, data and video using the 
same cell transport arrangement. This technique allows complete flexibility in the choice of 
connection bit rate and enables the statistical multiplexing of variable bit rate traffic streams. 
On the other hand it also introduces a risk of overload, due to traffic variations which may 
cause network capacity to be exceeded. Overload is the main cause of cell loss and jitter in 
such systems. Thus the performance analysis of ATM multiplexers is critical to the design 
and analysis of appropriate control mechanisms for call admission, bandwidth allocation and 
bandwidth adaptation. Although much work has been done on the computation of cell loss 
ratios or probabilities which will result from a given ATM multiplexer in the presence of 
a given traffic (Kobayashi et al., 1993) (Heffes et al., 1986) (Sriram et al., 1986) (Akimaru 
et al., 1994), there is still much room for improvement in the methods used for finding 
computationally effective, fast and tight estimates of cell loss. 

Typically, call admission and bandwidth adaptation controls use estimates of cell loss 
ratio for a given description of the incoming traffic at an ATM multiplexer or along a path 
traversing a series of multiplexers. For instance the call admission control policy used i'n 
IBM's ATM architectures (Guerin et al., 1992) bases its bandwidth allocation conservatively 
using the minimum of two cell loss estimates: one based on equivalent bandwidth and the 
other on a Gaussian approximation of cell loss probability. Therefore more accurate estimates 
of cell loss probabilities will necessarily lead to better decisions for call admission. Thus it 
is important to be able to estimate cell loss ratios within a very wide range of variations 
ranging from 10-1 at the high end to less than 10-7 at the low end. It is important that the 
estimates obtained be conservative, i.e. that they be upper bounds, so that any bandwidth 
allocation based on these estimates does result in higher cell loss ratios. However, it is also 
essential that the estimate be a tight upper bound so that it will not result in the wasteful 
allocation of excessive bandwidth. Another consideration for any tool used for estimating 
cell loss is its computational cost. Many of the decisions making processes which use such 
estimates will have to be carried out in real time at low computational cost. Therefore our 
research aims at obtaining a tight, conservative and computationally effective method for 
estimating cell loss in an ATM multiplexer from given traffic characteristics. This paper uses 
diffusion approximations to contribute: 

• a conservative cell loss ratio estimate we name FBDCLE (Finite Buffer Diffusion Cell 
Loss Estimate), 

• and a tight estimate we call IBDCLE (Infinite Buffer Diffusion Cell Loss Estimate), 

for superposed multiclass "On-Off" traffic. We use simulations to show the validity of FBD­
CLE and IBDCLE in the cell loss ratio range between IQ-1 and IQ-5 • 

We describe the diffusion model in Section 2. In Section 3 and Section 4 we derive the 
FBDCLE and the IBDCLE. In section 5 we use the two estimates to compute cell loss ratios 
for multiple class "On-Off" traffic, and compare the analytical reliults with simulations for 
a wide variety of input traffic characteristics and different loads. 
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2 THE DIFFUSION MODEL 

Diffusion approximations are continuous approximations to the discontinuous arrival and 
service processes in queueing models. They have long been used in queueing theory to model 
traffic and service. Their advantage is that they will generally result in computationally 
more tractable models of performance for more detailed traffic representations, that what 
can be obtained from a direct study of the corresponding discrete processes. In the past, two 
different approaches to diffusion approximations for queueing models have been proposed. In 
both cases whenever the queue length is non-zero and the maximum buffer capacity has not 
been attained, the queue length distribution is approximated by solving a partial differential 
equation. However the two methods differ according to the choice of boundary conditions. 
The simpler one uses reflecting boundaries (Kobayashi, 1974) (Kobayashi et al., 1993) so that 
no probability mass accumulates at the boundaries. Clearly this approach will not be totally 
satisfactory if the boundaries themselves are very important to the process being modeled. 
The more sophisticated approach is based on the "instantaneous return process" (Gelenbe, 
1975) (Gelenbe et al., 1976) (Duda, 1986) which combines the partial differential equation 
formulation for the process strictly inside the boundaries, with a discrete state-space model 
at the boundaries themselves (Gelenbe, 1975). This leads to a more accurate model of the 
queueing behavior of the system when the load is low, or when the queue length is close to 
the maximum value allowed by a finite buffer. 

Diffusion approximations require that the first two moments of the interarrival and service 
times be known. These can be directly deduced from measurements or from other traffic 
models, such as the "On-Off" model often used in the literature (Heffes et al., 1986) (Sriram 
et al., 1986). The diffusion approximation approach we take for an ATM multiplexer buffer 
of size B, considers a random process {X(t), t ~ 0} to represent the buffer contents. In the 
open interval]O,B( (excluding the two boundaries) it is a continuous random variable with 
probability density function f(x, t) defined as: 

f(x,t)dx = Pr(x ~ X(t) < x + dx],x E]O,B(, 

while at the boundaries we have: 

m(t) = Pr(X(t) =OJ, 

M(t) = Pr(X(t) = B]. 

(1) 

(2) 

(3) 

The parameters for the diffusion process inside in ]O,B( are the "drift" or instantaneous 
average rate of change: 

= lim E(X(t + ~t)- X(t)IX(t) E]O, B( J 
1-' <l.t-o ~t (4) 

and the instantaneous variance of the change in X(t): 

a= lim Var(X(t + ~t)- X(t)IX(t) E]O, B[] 
<l.t-o ~t 

(5) 
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and a will depend on the variance of the intera.rrival and service times at the ATM multi­
plexer. Since the service time is constant due to the fixed length of the cells being transmitted, 
a will only depend on the variance of interarrival times. Assuming time-independent traffic 
characteristics, let the mean aggregate cell arrival rate to the buffer be A and the multiplexer 
cell transmission rate be C, both given in cells per second. Then we will have: 

p. =A- C. (6) 

In the instantaneous return process model, when queue length reaches the lower boundary 
of the interval at x = 0, it remains there for a random length of random time which we 
denote h. This time clearly represents a period when the buffer is empty, and it ends as soon 
as a cell arrives to the multiplexer. At that time, say r, the process X(t) will jump from 
X ( T) = 0 to X ( r+) = + 1. Similarly for the upper boundary at x = B where the random 
time spent at the boundary will be denoted by H, while the jump of the queue length process 
will be from the value B to the value B- 1 representing the end of a service or transmission 
epoch for a cell, resulting in a decrease of buffer length by 1. This behavior results in the 
following system of equations for the ATM multiplexer queue length process as derived in 
(Gelenbe, 1975) in steady state, where we have dropped the dependence on t: 

8 a82 m M 
-p. 8xf(x) + 2 8x2f(x) + E[h]c5(x- 1) + E[H]c5(x- B + 1) = 0 

lim [-p.f(x) + ~2 ()~(x)] = Em[h] lim jf(x)dx = 0, 
Z-+0+ UX z-+O+ 

lim [-p.f(x) + ~2 ()~(x)] = _EM[H] lim jf(x)dx = 0, 
z-+B- ux z-+B-

where c5(x) is the Dirac Delta function. Also the probabilities must sum to 1: 

B-
m+M + { f(x)dx = 1 lo+ 

(7) 

(8) 

(9) 

(10) 

These equations have a simple interpretation. Equation (7) represents the stationary be­
havior for the motion of the queue length process in the interval ]0, B[, and the effect of 
the jumps of the process X(t) from 0 and B into the interval. On the other hand (8) rep­
resents the depletion of the probability mass m at the lower boundary due to the jumps to 
+1 at the end of the holding time at the lower boundary, as well as the flow of probability 
mass from inside the interval]O, B[ towards the lower boundary. Equation (9) has a similar 
interpretation. 
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2.1 Queue length distribution of finite capacity 

The above equations may be solved directly (Gelenbe, 1975) to obtain: 

0<x:S1 
1:Sx:SB-1 
B-1:Sx:SB 
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(11) 

with m and M the probability masses at 0 and at B, respectly, at stationary state being: 

m = -pE[h]<ll, (12) 

M = -pE[H]<Ile-r(B-1) (13) 

where 1 = ~' and 

1 
<II= . 

(1 - pE[h])- (1 + pE[H])e-r(B 1) 
(14) 

2.2 Queue length distribution of infinite capacity 

If we consider a diffusion process on the whole non-negative real line, i.e. as if the queue 
length were infinite, with holding time h only at x = 0, we will have the following formula 
for an unbounded queue diffusion approximation model: 

(15) 

m= 1-<11 (16) 

<II= 1 
(1 - pE[h]) 

(17) 

In the following sections, we will derive the practical applications of diffusion approxima­
tion models both for bounded queue and unbounded queue: 

• Finite Buffer Diffusion Cell Loss Estimate (FBDCLE); 
e Infinite Buffer Diffusion Cell Loss Estimate (IBDCLE). 

In order to make use of these diffusion models we will need to determine the parameters p, 
a, E[h] and E[H] from the arrival and service characteristics of the ATM multiplexer. From 
engineering application viewpoint of diffusion approximation models, various strategies can 
be used to obtain E[h] and E[H]. More detail will be presented when we derive FBDCLE 
and IBDCLE. 
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3 FINITE BUFFER ESTIMATE - FBDCLE 

In general the distributions for the residence times of moderately complex finite capacity 
queueing models at the upper and lower boundaries 0 and B are unknown. Their character­
ization can be quite complex and depends on both the arrival process, the buffer size, and 
the service process. Thus we will have to calculate E(h] and E(H] in a heuristic but plausible 
manner. 

3.1 Calculation of E[h] and E[H] 

If the arrival process can be approximated by a Poisson process with arrival rate A it follows 
that E(h] = _x-I. Since the arrival traffic to an ATM multiplexer is made up of many super­
posed sources, when the number of sources is large this approximation may be acceptable. 
In our simulations it turns out that this heuristic for E(h] slightly underestimates the actual 
value for superposed "On-Off" sources. 

Recall that the time for transmitting one cell is c-I. Now assume that at instant t the 
transmission of a cell begins and that X(t) = B- 1. At some instant t + Z before t + c-I 
another arrival occurs so that now X(t+Z) =B. Then H, the random variable representing 
the holding time at the upper boundary, has the following distribution: 

1 1 Pr(l-Z<vandZ<.l] 
Pr(H :5 v] = Pr(C- Z :5 viZ :5 CJ = 0 Pr[z :5 ~] - 0 (18) 

We make the simplifying approximation that the arrival process is Poisson of rate A so as 
to complete the computation, on the basis that it is justified when the arriving traffic results 
from the superposition of many independent sources. Then 

1 • 
Pr(Z :5 CJ = 1 - e-c, 

and 

1 1 1 1 • 
Pr(-- Z < v and Z < -] = Pr(-- v < Z < -] = e-c(e>.v -1]. c - -c c - -c 
Thus 

e>.v -1 
Pr(H :5 v] = -,--, 

e" -1 

with density function 

f ( ) - ,..-, 0 :5 v :5 0 { 
>.e•• I 

H V - •"-I 
0, elsewhere 

(19) 

(20) 

(21) 

(22) 
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We can now derive the estimate for the average holding time at the upper boundary: 

l 1 1 
E[H] = {c vfH(v)dv = ___s___,- \· 

lo 1- e-c " 
(23) 

Of course, the first and second moments of the interarrival times are also needed in order to 
compute the density function f(x) and the probability masses m and M. However, these mo­
ments will be available from the practical measurement and the precise traffic characteristics 
we shall use and will be discussed later in Section 5. 

3.2 Estimating the cell loss ratio 

The long run cell loss ratio L is the proportion of cells lost at the entrance to the multiplexer 
due to buffer overflow, to total cells arriving to the multiplexer. It is the primary measure 
of interest in this study and it needs to be estimated both accurately and in a conservative 
manner. Thus what is needed is in fact a tight upper bound, rather than a relatively accurate 
value which may underestimate L. Clearly cells will be lost only when the buffer is full, i.e. 
when buffer length has attained size B, in which case all the arriving cells will be lost. Thus 
the cell loss ratio in steady state may be written as: 

L = lim M(t)Pr[ N(t, t +H) ~ 1 I X(t) = B ], 
t-oo 

(24) 

where N(t,t +H) is the number of arrivals in the open interval (t,t +H). If the arrival 
process is stationary in time and independent of buffer size, in steady state the expected cell 
loss ratio is: 

L = M.Pr[ N(t, t +H) ~ 1 ]. (25) 

There are several difficulties with using this expression when one deals with real traffic, 
including the iss~e of estimating H and the probability of the number of arrivals in the 
interval when the buffer is full. However we do know that H ~ b· Thus we have found that 
L'FB given below, which we call the Finite Buffer Diffusion Cell Loss Estimate {FBDCLE), 
is a useful and tight upper bound which yields cell loss ratio values which are within the same 
order of magnitude as the value measured from simulation with various forms of "On-Off" 
traffic: 

L ~ Lj;.B = M.Pr[N(t, t +b)~ 1]. (26) 

The quality of this estimate L'FB has been tested by simulation with a very wide variety of 
"On-Off" traffic models, as shown in the simulation results we present. 

4 INFINITE BUFFER ESTIMATE - IBDCLE 

As indicated previously, the exact average residence times E[h] and E[H] of the finite capacity 
queueing model at the upper and lower boundaries are not known in general and are difficult 
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to obtain. Thus we consider an alternate formulation - infinite capacity queueing model 
where we only deal with the holding time at lower boundary x = 0. Now the key value used 
for estimating the cell loss probability will be the stationary probability that the diffusion 
process exceeds the value B: 

PB = Pr[X 2:: B] (27) 

From (15) we estimate the buffer overflow probability PB: 

(28) 

If R(t) is the instantaneous cell arrival rate, then the new diffusion cell loss ratio estimate L 
is: 

L = p E[(R(t)- C)+] 
B E[R(t)] (29) 

since cell loss will only occur if the arrival rate is greater than the multiplexer's service 
capacity C whenever the buffer length is at least B. 

4.1 Choice of E[h] 

It is known that for the GI/GI/1 queue with arrival rate..\ the average idle time E[h] satisfies 
(Medhi, 1991): 

E[h] 2:: E[h]* = ~-b (30) 

Thus we will approximate E[h] by its lower bound E[h]*, all other things being equal, the 
resulting probability PiJ that the queue length exceeds B will be larger than real value PB. 
This is because. the process will be spending less time at x = 0 and therefore will be more 
likely to exceed B. This can also be easily proved by applying inequality of (30) into (28). 

4.2 Estimating the cell loss ratio 

The estimate LiB, which we call the Infinite Buffer Diffusion Cell Loss Estimate (IBDCLE), 
which in turn is obtained by replacing E[h] by E[h]* in equation (28). IBDCLE will be: 

L* _ p• E[(R(t)- C)+] 
IB- B ..\ (31) 

since E[R(t)] = ..\if R(t) is stationary. 



A diffusion cell loss estimate for ATM 241 

5 CELL LOSS ESTIMATES FOR "ON-OFF" MULTICLASS TRAFFIC 

In this section we present the numerical and simulation results to evaluate the accuracy of 
FBDCLE and IBDCLE for a wide variety of "On-Off" traffic models. Much of the work on 
ATM traffic analysis and cell loss estimates is based on the "On-Off" traffic model and on 
the superposition of such traffic streams (Heffes et al., 1986) (Sriram et al., 1986). Thus it is 
of particular interest to evaluate the accuracy of our cell loss estimates (diffusion estimate) 
for this specific class of practically useful traffic models. In order to do so, we will first derive 
the appropriate traffic parameters to be used in the diffusion approximation. 

5.1 The traffic model 

Consider first a single user u whose traffic follows a simple "On-Off" behavior. This user u 
either sends traffic into the network at a constant peak rate Ru during the "On" period, or 
it sends no traffic at all during the "Off" period. The following notation describes this traffic 
model: 

• Ru - peak traffic rate during the "On" period, Tv. = 1/ Ru; 
• 6:;;1 - average length of the "Off" period; 
e {3:;;1 -average length of the "On" period; 
• av. = 6u/(f3u + 6v.) - source activity. 

The duration of the successive On and Off periods are assumed to be independent, so that 
the cell arrival process from a single such source is a renewal process. The cell interarrival 
time will be denoted by Yv., and let Fu(x) = Pr[Yu ~ x] so that (Heffes et al., 1986): 

(32) 

where U( x) is the unit step function. The Laplace-Stieltjes transform (LST) of the interarrival 
time density is given by: 

(33) 

The mean cell arrival rate of cells from source u is then: 

(34) 

Let Au(t) denote the number of arrivals of cells of user stream u in the interval [O,t). Then 
the squared coefficient of variation of the interarrival time from source u is (Cox et al., 1966) 
(Heffes et al., 1986): 

2 Var[Y,.] Var[Au(t)] 
cu = E2[Yu] = E[Au(t)] (35) 
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which leads to (Heffes et al., 1986): 

2 1 - (1 - (:J,.T,.)2 
c,. = ((:J,.T,. + 6,.T,.)2 . 

Since E(A,.(t)] = A,.t, we can write (35) as: 

l . Var(A,.(t)] _A Var(Y,.] _A 2 

~~~ t - " E2(Y,.] - ,.c,. 

(36) 

(37) 

Now if the total arrival process to the ATM multiplexer results from the superposition 
of N uncorrelated "On-Off" sources of renewal type as discussed above, A(t) the resulting 
counting process A(t) = E~=l A,.(t) has the obvious properties: 

N 

E(A(t)] = L E(A,.(t)], 
u=l 

N 

Var(A(t)] = L Var(A,.(t)] 
u=l 

and 

N 

E(A(t)] = L A,.t, 
u=l 

N 

Var(A(t)] = L A,.c!t 
u=l 

(38) 

(39) 

(40) 

(41) 

Let D(t, t + r) denote the number of departures in an interval (t, t + r) when the queue 
is non-empty. Note that if the multiplexer queue is non-empty, then the service or emptying 
process at the queue is independent of the arrival process. Thus we have: 

E(X(t + .6.t)- X(t)IX(t) > 0] = E(A(t + .6.t)- A(t)]- E(D(t + .6.t)- D(t)] (42) 

and 

Var(X(t + .6.t)- X(t)IX(t) E]O, B(] = Var(A(t + .6.t)- A(t)] + Var(D(t + .6.t)- D(t)](43) 

so that 

= lim E(X(t + .6.t)- X(t)IX(t) E]O, B(] = ~A _ C 
I' .O.t-+0 .6.t L.... u ' 

u=l 

o: = lim Var(X(t + .6.t)- X(t)IX(t) E]O, B(] = E A,.c2. 
.O.t-+0 .6.t u=l u 

(44) 

(45) 
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We now have all the parameters needed by the diffusion model described in Sections 2,3 and 
4 when it is used for superposed "On-Off" traffic sources, and can use it to calculate the 
IBDCLE and FBDCLE formulae given in (26) and (31). 

5.2 The distribution of the number of arrivals 

In order to calculate the FBDCLE, the quantity Pr[N(t,t + b)J must be obtained. To do 
so, we will consider the general case of arrival traffic composed of multiple "On-Off" sources 
of K different types. Each source of the same type will have the same set of parameters, and 
Nk will be the number of k-type sources, each with the same peak traffic rate Rk, activity 
ak. Notice that here we use the subscript k to denote a user type, rather than the subscript 
u to denote an individual user. The total number of users or sources is then N = Ef=1 Nk. 
The average arrival rate of cells will then be: 

(46) 

Now let Zk(t) be the random variable denoting the number of sources of type k which are 
"On" at some timet. Since the sources are independent and stationary we have for large 
enough t that: 

(47) 

On the other hand for small enough 1/ C : 

(48) 

so that: 

(49) 

which can be computed from the distribution (47). For homogeneous traffic, i.e. when all 
sources are of just one type, we simply have K = 1 and: 

(50) 

For the IBDCLE we need E[(R(t)- C)+] to be used in (31), which is computed for the 
superposed multiclass "On-Off" traffic as: 

E[(R(t)- c)+]= L (ntRl + ... + nKRK- c)+ Pr[Zt(t) = nt, ... , ZK(t) = nK] (51) 
n1, ••• ,nK~o 
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- Prediction with diffusion model of finRe buffer 

· - ·- Prediction with diffusion model of infinite buffer 

· · · · · Simulation with 98% confidence 
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For single On--Off source: ~~k. Rate A= 10 (MbRs/sec) 

ActiVitY a = 0.1 
Mean Burst Length = 13 (ms) 

Link Capacity C = 150 (Mbitslsec) 
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t~·-···-·t· ·-.. ¥·-· ·{-.. ·-·-~+-· " .. ~ ·-·-···-·· .............. ,.,,,1 
t .. ·.·~· .. -±... ___ .. ± ... ___ ,..:1: ... -~t-.JP~J f 1: 

T T T ·- ..... ~-.-........ '"""'l"'r···"""··-~.· ... 1. 

:t-... ·: ·-t:•::.:: .. ·.l:. ''"': +"'·:.:::. ·t: }?!d.?~>:S, ...... ···-+' ----.. -... -._. { 

E.·.:.-:.::.t.. •....... t ......... t. ! ~oa~~-o47 f 
10-4 ·t ·-· ·-·-·-=~:-·:.:..:,~ --·-·.·~· .. '-'::...:·.·"-·:.:.::.:.::··::..:. ... ~ ... -.;:-::.-:-·1 

"· 

10~~--~~--~--~----~--~--~----L---J---~ 
20 40 60 80 100 120 140 160 180 200 

buffer size B (cells) 

Figure 1 Cell loss probability vs. buffer size: comparison of simulation and DCLE for 
homogeneous sources under varying load (load= aggregate mean arrival rate /link capacity). 

5.3 Comparison of numerical and simulation Results 

In this section we present the numerical and simulation results to evaluate the accuracy 
of FBDCLE and IBDCLE. The validation of our new diffusion model is focused on the 
comparison of the cell loss probability predicted by the FBDCLE and IBDCLE and that 
obtained by simulations for a wide variety of "On-Off" traffic models. In our simulations, 
the runs were independently replicated 20 times, and each run included the transmission 
of 107 cells. Confidence intervals are calculated using the Student - t distribution with 
98% confidence so that the simulation results are of sufficiently high statistical quality. The 
resulting confidence intervals' width is also shown on the figures. 
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:.:--. t · ..... .:...·.·· ... 

:...:. . 
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- Prediction with diffusion model of finite buffer 
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source activity a 
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Figure 2 Cell loss probability vs. source activity (burstiness): comparison among sim ula­
tions and analytical approach using DCLE for the homogeneous sources under variant load 
(load = aggregate mean rate /link capacity). 

Figures 1 and 2 summarize the results for traffic with homogeneous sources. 
In Figure 1 cell loss probability (Pr[cellloss]) is plotted versus buffer size B for different 

load, which is >.fC. The ATM multiplexer we consider here is a high speed link with link 
capacity C = 150M bits/ sec and there are a collection of homogeneous traffic sources which 
are very bursty with an activity value of a = 0.1, which means that it is at its peak value 
10% of the time and is "Off" the rest of the time. Load is varied in Figure 1 simply by 
varying the number of sources. The results show that for cell loss ratio ranging from the high 
w-s to the 10-1 values, the FBDCLE (the solid line) provides a conservative upper bound, 
while the IBDCLE (the dashed and dotted line) is an accurate predictor which remains well 
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1~ .----.----.----.-----r----.----.----.-----r---< 
Source Type 1: a1 = 0.1; R1 = 10 (Mbits/sec) 
Source Type 2: a2 = 0.5; R2 = 2 (Mbits/sec) 
Link Capacity C= 150 (Mbits/sec) 

N1=68, N2 52, load =0.8 
..J 10-2 ~-.·- .. ·--$·-·-···-+--·--' ~--t··-~.·-~. ·1:'-~-· . .,.,· . ..-.·.,..,. ,.., ... ..., ... -:-.·.:-. t: .--::.-:-.-. ..-.·. :-:::-: .. -:-t 
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~ 
~ 
~ 10~~--~·.·""-t~~:~~~~~·-~ad~o.s t ····t······.,.,·1·· . ..,..·.-:-.·.:-.. :-::.-:-.-.-:-.-.-:-.·.:-:r.-.-:.-.-:-.-. ..-::-:::c- .... ,.t 

1 o-4 - Prediction with diffusion model of finite buffer 

· - · - Prediction with diffusion model of infinite buffer 

· · · · · Simulation with 98% confidence 

10~L_ __ _L ____ L_ __ _L ____ L_ __ _L ____ L_ __ _L ____ L_ __ ~ 

20 40 60 80 100 120 140 160 180 200 
buffer size B (cells) 

Figure 3 Cell loss probability versus buffer size: comparison between simulation and DCLE 
for heterogeneous sources with varying load (load = aggregate mean rate /link capacity). 

within the confidence intervals. Simulation results are shown by the dotted lines while the 
98% confidence intervals are vertical lines. 

In Figure 2 similar results are observed when source activity a (or burstiness) is varied 
widely for different values of the load. Here each individual source generates cells at an 
average rate Au = l(Mbitsf sec) and the buffer size is relatively small: B = 20 cells. Note 
that here we see that IBDCLE is an accurate predictor over cell loss ratio values ranging 
from 5 X 10-6 to 3 X 10-2 • 

Figures 3 and 4 compare FBDCLE and IBDCLE with simulation under heterogeneous 
traffic. We have chosen two types of sources - more bursty sources with a, = 0.1 and less 
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Figure 4 Cell loss probability versus load: comparison between simulation and the DCLE 
for heterogeneous sources (load= aggregate mean rate /link capacity). 

bursty sources with a, = 0.5. If N1 and N2 denote the number of sources with a, = 0.1 and 
a,= 0.5 respectively, and N = N1 + N2. 

In Figure 3 we show matched results of simulations and the diffusion predictions for two 
different values of the load, and under different combinations of N1 and N2 with varying 
buffer size B. Note that the two classes are also characterized by two much different values 
of peak traffic rate: R1 = 10(Mbitsfsec) and R2 = 2(Mbitsfsec). Again we see that the 
FBDCLE (the solid line) gives a bounded estimate while IBDCLE provides a very accurate 
prediction (the dashed and dotted line). 

In Figure 4 the cell loss probability is plotted versus traffic load for a fixed buffer size 
B = 100, the same two-class traffic as in Figure 3 and five different load values obtained by 
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varying the mixture of class 1 and class 2 traffic. The simulation results, together with their 
confidence intervals, show once again excellent agreement with our infinite buffer estimate 
(IBDCLE) while the FBDCLE is again an upper bound, for cell loss ratio values going from 
5 X 10-5 to 3 X 10-2 • 

We conclude from these results, and from others which are available but which are not 
reported here because of space limitation, that the FBDCLE can be used for a very conser­
vative estimate of cell loss, while IBDCLE is useful as an accurate predictor. 
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