
7

Flowcharts, data flows, SADT, IDEF
and NIAM for enterprise engineering
M Zgorzelski
GMI Engineering & Management Institute
Flint, MI 48504, USA
Tel: (810)762-7841, e-mail: mzgorzel@nova.gmi.edu

P. Zeno
MIT Sloan School of Management
Cambridge, MA 02 I 09, USA
Tel: (61 7)367-8439, e-mail: pzeno@mit.edu

Abstract
Numerous modeling tools of diagrammatic nature are available today, whether for
incremental (TQM style) or radical (reengineering, BPR style) enterprise
improvement. In practice, two simple techniques dominate: flowcharts and data flow
diagrams. Very few reengineering specialists realize that these techniques are too
primitive and inadequate when used for large scale business process analysis. IDEFO
and IDEFlX, more sophisticated tools, have also been used extensively for BPR
purposes, but also with mixed results. The authors point out to the need of further
development work, and present an outline of their proposal (called NIDEF) based on
the synthesis ofNIAM, SADT and IDEFO.

Keywords
Reengineering, business process, IDEFO, SADT, NIAM, NIDEF

1 INTRODUCTION

Many modeling tools of diagrammatic nature are available today, whether for
incremental (TQM style) or radical (reengineering, BPR style) enterprise system
analysis, redesign and improvement. In practice, however, two simple but well known
techniques dominate: flowcharts (together with their modification known as workflow
diagrams) and variations of data flow diagrams (DFD's). Very few reengineering
practitioners seem to realize that these techniques are too primitive and inadequate
when used for serious, large scale business process rengineering. Activity modeling
with IDEFO and data modeling with IDEFlX, certainly more sophisticated, and

G. Doumeingts et al. (eds.), Modelling Techniques for Business Process Re-engineering and Benchmarking
© IFIP International Federation for Information Processing 1997

72 Part Two The Modelling of Business Process

somewhat standardized in the US tools, have also been used extensively in many BPR
undertakings, but also with mixed results.

2 FLOWCHARTING AND DATA FLOW DIAGRAMMING

Flowcharts
Flowcharts and data flow diagrams (DFD's) were introduced as computer software
design tools and serve this purpose to this day, at least in the domain of traditional,
procedural computer programming. When applied to real life business activities
modeling, flowcharts have serious shortcomings. Trying to use flowcharts to analyze
a business system and then to generate its reengineered model, we quickly discover
that these charts, especially in their popular versions can - of course - show the
sequence of events in a single process, but they do not provide any means to show
multiple potential process paths, as well as their parallelism, synchronization,
interrelationships of multiple processes or multiple thread feedbacks. Simple
traditional flowcharts also do not support multi-level, gradual decomposition of
processes and activities, needed to analyze and design new systems to a satisfactory
level of detail.
There do exist some more sophisticated versions of flowcharts, allowing multiple

process threads, and multi-level hierarchical decomposition of processes. These are
used mostly in computer control software design. They do not fit at all the purpose of
enterprise modeling at a high level of aggregation and abstraction. One can hardly
envisage their application to rather ambiguous and naturally fuzzy geneml enterprise
modeling.

Data flow diagrams
Data flow diagrams, the popular bubhlecharts, can show process parallelism and
interrelationships, but are limited to function as the desi!,rn tools of information
processing systems. They describe, in the functional (or procedural) way the
processing of data. DFD's are useless when it comes to the analysis of processing of
real world objects (products, parts, services, etc.). Furthermore, DFD's use only data
inputs and outputs. The ability to make the distinctions between activity inputs,
outputs, controls and mechanisms, inherent in SADT and IDEF, is missing in
standard DFD's, and this renders them almost useless for constraint limitations
studies, resource needs and utilization analyses .. Techniques such as Activity Based
Costing, indispensable in any transformation of a conventional business into a
reengineered enterprise, require the analytical tools allowing clear distinctions
between various types of resources and constraints.

DFD's, however, have an advantage of providing c.o.ncepts which are badly missing
in the approaches used by the other contender to the honorary title of The True
Toolbox ofReengineering: the SADT/IDEF family of methods. These are simply:
sources/sinks and storages. Representation of external and internal suppliers and
customers can be done through sources and sinks in DFD's (although obviously only
for data, not for real world objects!). DFD storages can be utilized to represent
inventories and databases. The availability of the source/sink and the storage symbol
in DFD's is one of the reasons for the practical success of this technique in
reengineering, in spite of its other limitations.

Flowcharts, dataflow, SADT, IDEF and NIAM

3 MODELING ACTIVITIES IN IDEFO AND DATA IN IDEF I X

The use ofiDEFO and IDEFIX is certainly beneficial and became quite popular in a
variety ofTQM and BPR undertakings in the US. IDEFs however, in their present
form exhibit serious difficulties in addressing some of the very common, typical
business system analysis problems, and need some more conceptual development

/Dt'FO problems
The impossibility to clearly identify (in "classical" IDEFO models) objects: vanous
groups of internal and external customers and suppliers of the business processes
diagrammed, is the first of the difficult problems in the business use of IDEFO. Its
shortcomings become particularly obvious here when, to design a customer-focused
lean/agile enterprise, a model of the activities occurring between vendors, suppliers
and final product manufacturers, as well as customers - has to be generated. Those
objects- fundamental components of the process cannot be clearly identified in a
standard IDEFO (activity-only) model, making it difficult, if not impossible, to study
the overall process. A business process, after all, is commonly defined as any group of
activities that takes an input, adds value to it, and provides an output to an internal or
external customer. Evidently, there exists a serious modeling problem, if we are
unable to model explicitly objects, such as a customer, because of IDEFO limitation to
activities only. In fact, data flow diagrams handle this problem slightly better,
external sources and sinks at least are among the readily available concepts in this
modeling technique, as we have mentioned earlier- thus external suppliers and
customers may be modeled in DFD's.

Another serious weakness may be defined as an inherent inability of IDEFO to show
the critical difference between traditional, functionally divided organizational
structure of an enterprise, and the modern process-oriented, teamwork-based
organization. Changing the organizational paradigm of an enterprise, from functional
to process oriented, is one of the most essential current trends in management
IDEFO, with its limitation to activities, irrespectively of who or what performs the
activity, is obviously unable to clearly expose the reasons for the ineffectiveness of
the functional organization as well as clearly show the sources of present day success
of the process/team approach. The only way in which "doers" of activities may be
shown in IDEFO is through the specification of their mechanisms, not as objects. This
limitation does not allow the analyst to show, in an IDEFO model, that functionally
organized systems fail because they exhibit convoluted communication patterns
between multiple objects (traditional functional organizational units, structured in
hierarchically positioned layers of management). In such organizations the
fragmented activities constitute eventually a process, which is, however, very
inefficient when compared with streamlined, process-focused organizations. Modern
self-managed teams show very tight coupling and short, effective communication
lines between the process and its "doers" - the process team. Modeling and analyzing
this issue and variations of possible organizational solutions for an enterprise is
impossible in IDEFO, as it does not provide the way to explicitly study objects -
people, organizational units, functional units, etc. combined with the activities they
perform. It may be worth to notice, that as far as this particular problem is concerned,
data flow diagrams are even less adequate than IDEF (as they do not provide the
mechanism concept and thus do not show "doers" of activities at all'). thus the issue

73

74 Part Two The Modelling of Business Process

just raised is rather a more general reflection about the current incomplete state of
development of enterprise modeling methodologies, not just a controversial score
point in the ongoing match between data flow diagrams and IDEF's.
The lack of a clear distinction (in IDEFO) between flows of material objects and

flows of information (or data) results in one more IDEF deficiency: its inability to
expose problems occurring when it comes to the separation of real life objects and
their related data, frequently their identi~ing data1 A very typical manufacturing
process, where a component is attached to a final product and the serial number of the
component is stored in a database together with other information related to that
particular unit of the final product- cannot be correctly modeled without the ability to
show the two flows: of parts flowing through the assembly line and of related data
simultaneously processed by the computer systems. Tracking the causes of inaccurate
data in the databases and improving on the process can be hindered by the inability to
identify the complete sequence of events, occurring in two separate chains of
activities: the product assembly process and the accompanying, but separate, data
manipulation process. To make the last paragraph possibly more clear: IDEFO is
capable of showing both - flows of data and flows of real objects. The problem with
IDEFO lies in the fact that both types of flows (semantically different) are shown in
this methodology with the same (syntactically) symbol: a simple solid line arrow. An
additional element of confusion here is created by the fact that arrows in the original
US Air Force IDEFO documents, are referred to as data; it is only in the recently
established IDEF standards that the dual role of the arrows (object/data) was finally
recognized and started to penetrate into everyday use of IDEFO. The solid line arrow
for the symbolic single representation of both objects and data remains, however, in
effect in the IDEFO federal standard.

Impossible mtegration of IDEFO and IDFFIX
There also do exist significant difficulties in integrating the two fundamental IDEF
methodologies: activities modeled in IDEFO and data modeled in IDEFIX. There are
two reasons for these difficulties:
1. Not all arrows in IDEFO represent in effect data in motion between activities; some
really do represent data (i.e they correspond to IDEFIX entities and their attributes),
others, however, indicate real life objects, which may only indirectly, if at all, be
represented by data and thus do not fit the IDEFIX f<>rmat. Suggestions, that in order
to integrate IDEFO and IDEFIX models, one should limit IDEFO arrows to 'pure'
data, amount simply to the avoidance of a serious problem. In present authors'
opinion this problem is unsolvable within the present conceptual framework of
IDEFO/IDEFI X.
2. Both: real life objects and data, while at rest (in an enterprise system) will sit inside
some appropriate storage facility (respectively, a warehouse and a database) The
structure of data at rest can be represented by IDEF I X entities, but we do not have,
within the IDEF family, a technique to show real objects, their structure and their
storage. IDEFO does not even provide a symbol for data storage, something readily
available in DFD's.

Flowcharts, data flow, SADT. IDEF and NIAM

I !Pl.'' A('. iVIT:

··'

;H o:1r-;''j,';
[!.:''

75

···~J'.Ifi - · r; ·~•• '~t.J' I
---~--

•)!. ',, \ ---- ~·~ ·sl,,.,:, ~·-
_ ·.:..:,_ ~·j(_ I :_:__ _.

I no~r ~

";Lq_~;l­
ff;j't-J•,,J1

"10•.),'1)1

.. •'• , ..

I ., ,: i "'··

Figure I The system modeling constructs ofSADT: basic box (a), activity-centered (b) and data­
centered (c) representations. after Ross. 1977. Combination of the two techniques, rather than
abandoning (c) in favor of(b). as done in IDEFO, is the cornerstone of authors' NIDEF proposal.

c•t.ject

suu,.:v
Il l '-~' t) l

I r·· ._y.~ ~:.
f \1 • I~ l

,{,:.1- :

P~RT

--

. •: -:');
P·l'l

Figure 2 Authors' NIDEF (NIAM-ized IDEF) proposal: traditional activity-centered (above) and
proposed new object-centered (below) diagrams. This modification may be extended into
combined object-activity models illustrated by the single box on the right. We also introduce here
symbols for the processed objects (e.g. raw material, part) flowing in the system through the
active processors (such as the machine tool shown).

4 NIAM AND OBJECT -ORIENTED METHODOLOGIES

NJAM
Among the widely known methodologies, only NIAM - Nijssen Infonnat10n Analysis
Methodology (Nijssen and Halpin, 1989, Wintraecken, 1990) clearly separates real

76 Part Two The Modelling of Business Process

life objects and data about them. NIAM, however, is primarily perceived and
developed today as an information modeling tool, aimed at the design of relational
databases, and it is used today mainly as the object-role database design technique in
some CASE tools, in effect an alternative to the entity-relationship modeling of the
IDEF I X type.

NIAM objects are potential entries into relational database fields, and thus they are
'atomic' in nature, i.e. they cannot be decomposed into constituents- subobjects (i.e.
NIAM does not support hierarchical decomposition of objects). Nijssen and Halpin
(1989) provide in addition to information modeling a rudimentary technique
(Information Flow Diagrams) to describe information processing activities. This
technique, in accordance with Nijssen's philosophy, also makes the critical distinction
between the processing of information flows and the transformations of real world
obJects, but unfortunately it does not provide any form of hierarchical decomposition
of activities, and thus it is rather not useful outside the information processing
domain. To provide this possibility NIAM has to be combined with some concepts
derived from SADT and IDEFO. Some preliminary ideas as to how this could be done
were proposed earlier by the present authors in the form of a modeling tool called
NIDEF (NIAMized IDEF) A brief outline of this concept is presented in this paper.

Oh;ect-onented programming methodologies
The object-orientation paradigm, which has currently a fundamental impact upon
computer programming, seems to have influenced only to a small extent the way we
think about, real world systems. There are obviously significant differences between
real life objects and abstract computer programming object concepts; but there are
also surprising similarities and some valid analogies. The concept of object class
seems to be valid both for the abstract and the real objects. Also the idea of
encapsulation is a valid approach both in object-oriented programming (when applied
to software objects) and in, say, business system analysis. It may be applied to a
machine tool, an assembly line, or a complete plant, again each of these encapsulating
its components, its attributes and its methods, i.e. its potential activities. Inheritance,
another element of the object paradigm, is not that easily translated into the real
world concepts from the computer abstractions.

There are also some significant differences, however, between the real world and the
information world. The only function of computer programmers' objects is to send
messages to other objects, resulting in their transformations (if they fit allowed
methods of the recipient object). Real life objects perform activities upon other
objects, transform them or -frequently- create new objects. To make things more
complicated, a real life activity performed upon real life 'things' may require the
cooperation of several objects: an object machine tool, together with several other
objects: tools and fixtures, and under the control of another object - operator -may be,
for instance, transforming the raw material object into a finished part object This,
common situation, cannot be translated into the present day computer programmers'
terminology of objects, methods and messages, without bending over backwards'

The object-orientation paradigm has not found -so far- its way in any significant
manner into into enterprise modeling. Although a huge number of object-oriented
methodologies exists today (see, for example Coad and Yourdon, 1991, Shlaer and
Mellor, 1992, Firesmith, 1993, Booch, 1993, Page-Jones, 1994), they all have
computer system analysis and design as the objective, and they do not apply readily, if

Flowcharts. data flow, SADT. IDEF and NIAM

at all, to direct modeling of enterprise systems per se, not of their information
processing subsystems

- .. J"r ,---- ----·------

--
+

,------, ! , ' . ' [\
-~-~-,;a-,- .. - "" ~ :

---- .. fAI_ II II~ ~.. I I

"'i ~, DA Af'A =- r
\ I I , ______ ,

----1

L ...!

.--- ----
-'

Figure I An example of a NIDEF model of a business process (upper diagram) with one object
("Sales & Shipping") hierarchically decomposed into the lower diagram. Solid lines represent
real objects flows, dashed - information flows.

5 THE NIDEF SYSTEM MODELING TOOL

NIDEF combines the lines of thinking about activity/object modeling proposed
originally by Munck and Braun (1992) with NIAM object-role modeling. Figure 2
illustrates the basic modification of Ross' 'datagrams' into ' objectgrams'. This leads
to the diagramming technique illustrated in Figure 3. NIDEF preserves basically
unchanged some of the powerful features of IDEFO: hierarchical decomposition, and
the input-control-output paradigm. SADT/IDEFO mechanisms disappear- objects
performing activities take on the mechanisms' function . Significant additions are in
fact limited to the use of: objects, in the roles of mechanisms supporting activities, as

77

78 Part Two The Modelling of Business Process

well as storages, sources and sinks - and two types of arrows: solid line for flows of
processed objects, and dashed for flows of information. Objects in NIDEF can be
linked then by flows of real objects, and flows of data. Objects can also enter into
relationships, NIAM style. The way in which NIAM-type modeling is represented in
NIDEF should be clear upon inspection of our Figure 4 and S.
We have to state very clearly here that NIDEF is not yet a complete methodology; it is
continuously under development. A careful reader will find certainly some
differences between the presentation given here and our earlier publications. We have
tried a number of ideas and approaches, and we try to react to various extremely
valuable suggestions we have received in the course of previous discussions of this
concept. By no means we want to create the impression that we claim here to have
found The True Toolbox ofReengineering.

NIAM

0-v1'-_kO_l_E --l._w_O_LE.......Ji-(~·~~)
f--

§-Vi ROl

~----,

I LABEL/ll l
' ' -T-

I ROLE I ROLE

Figure 2 For the purpose of combining object-rote (NIAM style) modeling with object­
activity modeling, and avoiding symbology confusion - NIDEF introduces some slight
modifications of the NIAM symbols as shown here.

6 REENGINEERING - ROADS WITHOUT MAPS, BRIDGES
WITHOUT BLUEPRINTS?

In a reassesment of the present situation we could say that in the absence of a
generally accepted graphical representation language, many ambitious enterprise
improvement and/or reengineering projects, resemble (at least from an engineer's
perspective) efforts to build bridges without blueprints or roads without maps. At best
these efforts may be described as doing sophisticated engineering without some
common, generally accepted, engineering drawing technique, the common language
of communications for all engineers. From the viewpoint of an engineer, this kind of a
careless approach is a guaranteed prescription for a disaster. Some catastrophes of
this kind the present authors had a chance to see with their own eyes in the very

Flowcharts, dataflow. SADT. IDEF and NIAM

recent past. Ambitious projects of the "Factory of the Future" type have been
abandoned, and installations costing hundreds of millions of dollars dismantled, to
much extent because nobody ever took time (and possessed the necessary skills and
techniques) to roadmap how these establishments were supposed to operate. These
reengineering disasters were certainly not as dramatic and spectacular as, for instance,
the failure of a poorly designed bridge. In fac.t, frequently these unfortunate disastrous
outcomes of some grandiose projects are hidden from the public by involved
managements, and almost never analyzed in detail as to their 'failure mode and
effects', as opposed to the - usually very rigorous - screening of the reasons of failure
of some typical engineering project or machine. It is thus usually rather impossible to
determine to what extent the lack of proper modeling tools and techniques may have
contributed to a particular disaster, and to what extent the negative outcome may be

,---, { ~A_E_ ,,- r....- · r, lli . Ar:. • '1
I
I
I
I

;----,
I ~ •r I
' '

I
I
I
I
I

79

- 0:• -
',j._:

I
I
I
I

-- .. s
I l? 1

I I Wl[r I
:::±> - 1

~ ~· . -- .. • r, -· . I,,_.

: Jr ' :
.1 .. 1111,, ·n ·- •
-- - "-,c: - ~ -· > -I

r----

> I'·· [,· .· ~· I c;.lOiJt' • \

,------, -.--
I ' ' \ I 1 • -'''e~·. 11 I

r-G c..~::· , ,)
> I

~ .;. ~ ~;v--~- - _._
I ' ' I
I ' ' I I f'~R' I I

I
I
I ' ' \ I , ______ ,

1 I
I I

- --- ·:· --- t ----------- --) l
~ ·]l t• J ' \ 1 , ___ ,

Figure 3 Further NIDEF-style hierarchical decomposition of the "Sales Monitoring & Database"
object from Figure 3 is shown here. This decomposed object contains numerous sub-objects, which
enter into typical object-role situations. Obviously, only a fragment of the model of information
within the database and the monitoring system is shown here for the illustration of the principles.

anributed to other factors.
It is generally known that TOM/Continuous Improvement and Business Process

Reengineering undertakings have failed in a huge number of cases. For TQM type of
efforts - failure rates are currently estimated at 60% (sometimes even up to 80%)- see
Brown et al. (1994). For BPR similar numbers are given - around 60% of failures, see
Hallet al. (1993). Unfortunately, among the many reasons given for failures, one
seldom finds the lack of precise modeling tools and the lack of use of correct,
sophisticated mapping techniques for business processes in question. These problems
are still rather rarely noted by the 'mainstream' business reengineering authors'
community, evidently happy with their sketchy and ambiguous analysis and design
tools.

80 Part Two The Modelling of Business Process

7 REFERENCES

Booch G. (1993) Ob;ect-Onented Analys1s and Des1gn, Benjamin/Cummings
Publishing Co.

Brown M.G., Hitchkock D.E., Willard M.L. (1994) Why lQM Fails and What To Do
About It, Irwin, New York.

Coad P , Yourdon E. (1991) Object Oriented Analysis, Prentice Hall
Firesmith D.G. (1993) Object-Oriented Requirements Analysis and Log1cal Design. A

Software Engineering Approach, Wiley. 1993
Hall G., Rosenthal J, Wade J (1993) How to Make Reengineering Really Work,

Harvard Business Rev1ew, Nov.-Dec.
Munck R., Braun C. (1992) ff)/:'F0-0: Object-Omnted SADT, Fall '92 IDEF Users

Group Conference Proceedings.
Nijssen G.M., Halpin T.A (1989) Conceptual Schema and Relational Database

Design. A fact oriented approach, Prentice Hall.
Page-Jones M. (1994) Object-Oriented Design Notation, Report on Ob;ect Analys1s &

Des1gn, Vol. I, No.I.
Ross D.T. (1977) Structured Analysis (SA) A Language for Communicating Ideas

11:'/:E TransactiOns on Software J:'ngineermg, Vol. SE-3, No.I pp 16-34.
Shlaer S., Mellor S. J (1992) Ob;ect Lifecycles: Modeling the World in States,

Yourdon Press.
Wintraecken JJ V.R. (1990) The NIAM InformatiOn Analys1s Method. Theory and

Practice, Kluwer Academic Publishers.
Zgorzelski M., Zgorzelska P. (1993) IDEF and NIAM: on the Po.wbllities of

Convergence of Two Outstandmg Methodologies, in Spring '93 IDEF Users
Group Conference Proceedings.

Zgorzelski M., Zgorzelska P (1994) On the Use of.'-.'AIJ?: IDEf; NIAM and Related
Methodologies in Lean Agile Manufacturing System Studies, in Proceedings of
lSA T A Dedicated Conference on Lean/ Agile Manufacturing in the Automotive
Industries, Aachen.

Flowcharts, dataflow, SADT. IDEF and NIAM 81

Dr. Maciej Zgorzelski was born and educated in Poland (he holds M.S. in Mechanical
Engineering and Ph. D. degrees from the Technical University in Warsaw). Following that he
did a post-doctoral study at the MIT. He taught at the Technical University in Warsaw for
several years, held visiting assignments in various countries, and managed industrial R&D. In
1983 he emigrated from Poland and settled permanently in the US. He is currently a Professor of
Mechanical Engineering at GMI Engineering and Management Institute (previously General
Motors Institute) in Flint, Michigan. Dr. Zgorzelski's primary fields of interest in research,
teaching and consulting are System Analysis, and Manufacturing Management. He teaches a
variety of undergraduate and graduate courses in Engineering and in Manufacturing
Management. He is an author of over sixty publications. Dr. Zgorzelski has been for many years
a member of the International Federation for Information Processing (IFIP) Working Group 52,
and was one of the founding members ofEurographics.

Paulina Zeno graduated from the University of Michigan in Computer Science in 1992.
Following that she worked as a Systems Engineer for EDS at the Cadillac Assembly Plant in
Detroit. Currently she is a graduate student at MIT Sloan School of Management. She is the
daughter of Dr. Maciej Zgorzelski

