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Abstract 
Modern CAD systems need to be enriched by knowledge about the design process for classes 
of artifacts of a given design domain. This paper presents a generic model to capture 
knowledge about the product and its design process. This integrated model is made of a 
process model, describing the sequence of design tasks and states, and a product model, 
describing features of the product from different points of view. 

Keywords 
CAD systems, product, design process, design task, generic model. 

1 INTRODUCTION 

The future success of CAD systems will depend on their capabilities to help and assist as 
much as possible designers in their design activity. In the past, these systems placed the 
priority on the description and reusability of the structural and geometrical characteristics of 
the design object components. However, this approach appears to be insufficient because of 
increasing needs for a better and precise description of the different design tasks. The needs 
are now expressed in terms of the design process capability to be taken into account and, at 
the same time, by the different aspects of the designed object or artifact. 

The design activity of a product consists in defining all its characteristics (structural, 
functional, geometrical, parametric, regarding different points of view) in the case of a new 
and innovative design. It also concerns the adjustment of a set of information elements from 
an existing database in the case of a design modification using some previous design plans. 
The design process is a·set of steps defining all product design phases. 

Our approach consists in defining as completely as possible the designed product, its 
design-process and the associated knowledge. This is achieved by the specification of two 
different types of models: a product model and a design process model. The integration of 
these two models have already been introduced by Yoshikawa in (Takeda et aI., 1990) where 
it's specified: " ... intelligent CAD systems will be fully realised only when the representation 
of design objects and the representation of design processes are integrated". The design of a 
given product is performed on the basis of different points of view by which it is perceived. 
The two models are made generic by introducing three conceptual levels: the meta, 
specification and instantiation levels, in order to avoid to restrict the design to a unique 
application area. The meta level is generic and the instantiation level is domain-dependent. 
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So, compared to other existing systems (Trichon, 1991), this genericity provides the two 
models with extensibility improvement and reusability capabilities. A product model and a 
design process model can also be found in DEKLARE (Saucier et aI., 1995). In opposition to 
DEKLARE, the models in our approach are generic and the execution of the different steps in 
the design process can be done in a parallel way. In addition, our approach provides the 
possibility to involve several designers in the same design process. 

For the description and the management of design tasks, our approach resides somewhere 
in between general problem solvers like SCARP (Willamowski, 1994), general expert 
systems like SMECI (SMECI, 1991), and object-oriented task representation tools like MAD 
(Scapin et aI., 1989). 

Our interests meet the needs of the software engineering field where the product model is 
used to specify the execution and evolution needs of the designed software. The design of a 
software engineering environment is equivalent to the specification of the design process in 
our approach (Oquendo, 1991). 

2 THE PRODUCT MODEL 

This model is devoted to the representation and collection in the same knowledge base of all 
the information items used in the definition and characterization of the product already 
designed or to be designed. In fact, this model is structured in such a way that it allows the 
definition of the product during its design (i.e. on-the-fly) and the storage of the product 
information already designed for an eventual utilization. The product to be designed is 
defined by a set of characteristics useful for its description and for the specification of its 
design process. These characteristics are modeled by the product-parameters concept. 

Regarding the type of product to be designed, one can use different points of view of this 
product. These points of view can be functional, structural or geometrical. This relates to the 
multi-representational aspects of design artifacts and is modeled by the point of view concept 
of the designed product. 

To support the definition of the product model, different concepts have been introduced. 
All concepts of the model are implemented as object classes using an object-oriented 
approach. They include: 

2.1 The "product" concept 

This concept represents the information about the design artifact. It allows the specification of 
the structure which will handle all the product information to be saved during the design 
process. 

The properties of this concept are: the name of the product, the type of the product 
(finished: the designed object; component: a part of a finished product), the set of parameters 
defining the product, the set of points of view used for the description of the product, the time 
points for the beginning and end of its design process. 

The following concepts detail two properties of the product concept and are used to 
present the characteristics of the designed product and its description. 

2.2 The "product-parameters" concept 

This concept specifies the characteristics (mechanical, electrical, mathematical, etc.) of the 
product or of its components. This is done by several methods of calculation, estimation or 
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other techniques. So, a value is obtained for each method used. This perception of parameter 
design has also been used by Chen and Kusiak (1994). 

It is very important in the product design history to keep track of the way by which the 
calculation of the parameter has be done. The properties of this concept are: 
• the name of the parameter, 
• the type (numerical, boolean, etc.), 
• the local integrity constraints used in the verification of the calculation technique and for 

the correctness of the obtained values for this parameter (for example: a rule might be 
used to describe a threshold value), 

• the list of the methods used in the calculation of this parameter (for example: the engine 
"iron-gap" can be estimated using three different formulas depending on the selected 
theory : e.g. Liwschitz, De Pistoye or Eie (Trichon, 1991 », 

• the name of the method used among all the possible methods, 
• the value obtained after the execution of this method. 
These properties will be evaluated at different times according to the steps followed in the 
design process (See section 4). 

2.3 The "point of view" concept 

The concept of points of view allows to consider the different and possible perceptions that a 
designer can have of a product. A point of view is an abstraction through which an expert or a 
designer looks at a given product focusing on some aspects while at the same time ignoring 
others (Marino Drews, 1993). 

In this work, we consider, but not only, the structural, functional and geometrical points 
of view. The structural point of view describes the physical structure of the product giving its 
list of components. The functional point of view concerns the purposes or the objectives the 
product should accomplish. The designer can also describe the geometrical features of the 
product using the geometrical point of view. Other points of view as expressed by the 
different experts involved in the design process can also be defined if required. To illustrate 
these points of view see Figure I. 
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Figure 1 Structural and functional points of view of a security 
clamping system for a snow-board. 
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The properties of this concept are : the name of the point of view, the type (structural, 
functional, geometrical, etc.), and a property called "equivalence" allowing the definition, 
when it is possible, of a relationship between different points of view. 

The point of view concept has graph-based structure. In the structural point of view, the 
nodes represent the components of the product (part-of relationship). In the functional point 
of view, the nodes represent a top-down decomposition of the product objectives. 

3 THE DESIGN PROCESS MODEL 

This model describes the different phases of the product design and the actions made by the 
different participants in the process, be they machines or humans. Using this model, the 
designer can define the structure of the design process. Then, during the execution of this 
process, s/he will be able to specify all the information about the product being designed. 
Finally, s/he will be able to keep track of the process used in the design phase. 

The designer describes the process by mean of a task diagram (linear sequence, loops, 
nested sequences, etc.) high-lighting all the important phases of the design activity (Rieu et 
a!., 1994). SIRe has also the possibility to progressively build the design process by 
specifying the main tasks, which can be made step by step. 

The design tasks can be elementary tasks, i.e. not decomposable tasks and directly 
executable, or composite tasks. Because they exhibit a chain of execution tasks, the composite 
tasks are then decomposed in a task hierarchy. Chandrasekaran has defined design as a 
complex task which can be decomposed into sub-tasks, themselves decomposable or not into 
other sub-tasks (Chandrasekaran, 1990). 

Each process is then a set of linked design tasks able to be, themselves, composed of a 
set of elementary tasks. This chaining is dynamic in order to allow the description of 
structured, semi-structured and unstructured processes. According to Bussler (1993), a 
process is a structured process if the control flow between the process elements (tasks) is fully 
specified at specification time. A semi-structured process is a process where the control flow 
between the process elements is specified only for some of them. At last, an unstructured 
process is a process where process elements are specified without any control flow. 

3.1 The "design-process" concept 

This concept allows the description of the different tasks to be executed and their ordering for 
designing a given product. It specifies the first task and, in the case of semi-structured or 
unstructured processes, it gives the set of tasks that could occur in the design process. In this 
case of structured processes, the tasks control flow is included in the definition of the tasks 
themselves (See section 3.2). 

The properties of this concept are: the name of the design-process, the name of the 
designed product, the first task of the process, the list of the tasks that should be executed by 
the designer without any predefined control flow (this list highlights the undeterministic 
property of the design process), the times of the beginning and end of the design process. 

3.2 The "task" concept 

The task concept represents the execution of certain steps included in the design process. As 
indicated earlier, the design of a given product consists of the execution of a set of tasks with 
predefined control flow. 
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In the design process, the task is considered as an entity which allows the execution of a 
design step. In this process, a task could be represented alone or aggregated with other tasks 
in another process than the principal one, see Figure 2. These two types of tasks are also 
defined by Baldwin (1995) as terminal tasks (which is commonly called a tool invocation and 
represents a run of an application program) or abstract or nonterminal task (i .e. it is composed 
of other tasks). 
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Figure 2 Example of a synchronous electrical engine design process (Trichon, 1991). 

The task properties are: the name of the task, a "chaining" property to specify the name 
of the next task to be executed, a state graph corresponding to the execution steps of the task, 
the list of the tools executing this task, the programming code that the task may have. 

The controlflow operators: 
To allow the specification of the task control flow by the designer, we provide a set of control 
flow operators (sequence, parallel, conditional or stochastic choice, join, loop or back 
tracking structure) that determine the order in which design tasks in the design process must 
be executed. This set is not restrictive and can be extended to face special needs. To model 
these control flow operators, we need to define some task states in the process-state concept 
(See section 3.4.) like the start, finish, stop or wait states. This formalization is inspired from 
Bussler's work (Bussler, 1995). A language and a grammar have been defined for the 
description of the control flow structure using these operators, see Figure 3. An example of an 
integrated circuit design process is given in Figure 4 with the corresponding grammatical 
ex ression . 
Sequence 
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Sequence (A, B) ::= start (A) ; 
If finish (A) = true 
Then start (B) 

Parallel (A, (B, C)) ::= start (A); 
If finish (A) = true 
Then start (B) and start (C) 

Parallel-Join «A,B), C) ::= y : If finish (A) = true 
Then wait (finish (B) = true) 
Else IF fini sh (B) = true 

Then wait (tinish (A) = true) 
Else goto y; 

start (C) 

Fork (A, B" ... , Bnll ::= start (A) ; 
If finish (A) = true 
Then start (Bil or .. . start (Bn) 
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Cond-Fork (A, condl(Bt), ... , condn(B,» ::= start (A); 
If finish (A) = true 
Then Case ( cond I = true; strat (B t) 

... condn = true; start (B,)) 

Fork-Join «cond (A), B), C) ::= If finish (A) = true 
Then start (e) 
Else If finish (B) = true 

Then start (C) 

Loop (A, cond (B), C) ::= When finish (A) = true 
If cond = false 
Then start (e) 
Else start (B) 

where e recedes A or e=A. 
Back-track (P, name) ::= save-context; 

start (P); 
If stop (P) = true 
Then restaure-old-context; 

start (P) 
where P can be a task or a sub-process. If it's a sub-process, 
then from any task it's possible to back-track and re-execute the 

rocess with the old context. 

Figure 3 Task control flow operators 
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where Begin and End are two tasks that respectively starts and finishes the design process but 
don't perform any action in opposition to the other tasks. 

Let P denote the principal process, Pi the different sub-processes, Bi the conditioned sub­
processes (for i=l to n) and finally the task T represented by its behaviour. The control flow 
grammar is: P .. - Sequence (PI, P2) / 

Parallel (PI, (Pz, P3» / 
Parallel-Join «PI, P2), P3) I 
Fork (PI, P2, ... , Pn) / 
Cond-Fork (PI, B" B2, ... , Bn» I 
Cond-Fork-Join «B, P2), P3) / 

Loop (P, B, P) / 
Back-point (name P) / 
Back-track (name) / 
T 

B .. - cond (P) 
T .. - behaviour 

where behaviour represents the programming code and cond is a condition that should be 
verified. 

The control flow operators of the design process shows in Figure 4 are: 
(0) : sequence operator 
(I) : loop (verification, OK(net-list generation), circuit layout) 
(2) : loop (verification, OK(net-list generation), specification of the CDC) 
(3) : loop (optimal point search, OK(simulation), parameter definition support) 
(4) : loop (simulation, OK(results analysis), parameter definition support) 
(5) : loop (results analysis, OK(end), parameter definition support) 
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Figure 4 Integrated circuit design process 

and the corresponding grammar for Figure 4 is: 
P ::= sequence (begin, PI) 
PI ::= sequence (specification of the CDC, P2) 
P2 ::= sequence (circuit layout, P3) 
P3 ::= cond-fork (verification, condl(P4), cond2(Ps), OK(P6» 
P4 ::= loop (verification, OK(net-list generation), circuit layout) 
Ps ::= loop (verification, OK(net-list generation), specification of the CDC) 
P6 ::= sequence (net-list generation, P7) 

P7 ::= sequence (parametrisation, Ps) 
P8 ::= cond-fork (optimal point search, Not-OK(P9), OK(P IO» 
P9 ::= loop (optimal point search, OK(simulation), parameter definition support) 
PIO ::= cond-fork (simulation, Not-OK(P II ), OK(P12» 
PI1 ::= loop (simulation, OK(results analysis), parameter definition support) 
P I2 ::= cond-fork (results analysis, Not-OK(P I3), OK(end» 
P 13 ::= loop (results analysis, OK(end), parameter definition support). 

3.3 The "design-tool" concept 

ano 

This concept describes the set of tools used in the design process. These tools can be drawing 
software packages, calculation or estimation algorithms, simulation tools or 3D modelers, etc. 
The user must choose one or another of these tools regarding the functionalities offered. 

The properties of this concept are: the name of the design tool, a property called 
"functionality" which covers the set of functions that the tool provides, and a state describing 
the status of the given design tool: free, busy, etc. 

3.4 The "process-state" concept 

In this approach, we associate to each task a state-graph that keeps track of its execution steps. 
In fact, these graphs will not only inform about the state of the designed product (by giving 
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the list of parameters estimated or not by the task and the set of rules applied or not by this 
task) but also give information about the state of the design process itself (at a giving time, if 
a task has some problems to be performed, the design process will be suspended). The 
designer is free to consider only graphs corresponding to the most important tasks of his/her 
design process in order to prevent from a large and systematic save of all task graphs. 
Figure 5 shows the different states that a task can have during its execution (the graph has 
been inspired by the work of Bussler (1995) and Ceri et al. (1995». 

Figure 5 Execution states of a task. 

Possible states of a task are: 
• ready: all the tasks which are ready to be executed by the processor are in this state, 
• running: a task which is currently executed by the processor is in this state, 
• stopped: when a task is in this state, this prevents the task from being processed further, 
• finished: tasks which are finished are in this state. 
We consider that a task can only be in one state in a given moment and transitions allow a 
task to pass from a state to another one. These transitions are: 
• start: this operation makes a task into the ready state where it waits for further processing, 
• stop: this operation stops a task from further processing, 
• resume: this operation puts back a task to the running state, 
• execute: this operation selects a task which is ready and processes it, 
• done: if all the data of the task are processed, then the task is finished itself. 

The properties of the "process-state" concept are: a state graph as mentioned above, a list 
of parameters obtained in the execution of the task which generates this state, and the rules 
fired or violated during the execution of the given task. 

4 MODEL GENERICITY 

To allow genericity for the design phase and to avoid any specialized model, only useful in 
specific cases, three conceptual representation levels for the two models have been introduced 
as described earlier, see Figure 6. Moreover, this genericity allows the reusability of models 
already defined and makes the design task easy and more simple to be performed. 

The first level is a meta-level where all the necessary concepts establishing the 
architecture of the two models are defined. At this level, all the properties relatives to each 
concept are defined in order to be valuated in the specification level. The second level, or 
specification-level, is used to specify the design process. Starting from the concepts defined in 
the previous level (meta-level), the designer writes down the product model for the product to 
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be designed. Then, he defines the different design tasks and figures out the design tools 
involved in the execution of each task and finally orders them by defining a control flow 
using the set of operators presented earlier. The third level, or instantiation-level, concerns the 
activation or enactment of the design process for a given product instance as defined in the 
specification level. 

Regarding the type of product to be designed, the designer selects a design procedure 
from the specification level to help him in hisdesign task. He must not necessarily follow this 
procedure step by step but can change it by including his own specifications. He can also 
decide to include these specifications in the existing design procedure or to create a new 
design procedure. 
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Figure 6 The three conceptual levels of the models. 

5 CONCLUSION 

The generic models presented in this paper are the result of a deep analysis of existing models 
dedicated to integrated design for CAD such as DaMoCLES (Trichon, 1991) and DEKLARE 
(Saucier et aI. , 1995) and (Vargas et aI., 1994). By introducing the product model, we allow 
the description of the designed product under different points of view by which the product 
can be perceived. Using the design process model, the representation of the design process in 
an incremental way is made possible. This is also accomplished giving the genericity of the 
two models. These models are under implementation and they will certainly evolve but we 
believe that they represent the minimal template set for a model dedicated to the development 
of new applications for integrated design. 
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