
7 

System-Level Hardware Design 
with j,t-Charts 

Jan Philipps, Peter Scholz 
Technische Universitiit Munchen, Institut fUr Informatik 
D-80290 Munchen, Germany 
Tel.: ++49-89-289 {22398,28129}, Fax: ++49-89-28928183 
E-Mail: {philipps.scholzp}@informatik.tu-muenchen.de 

Abstract 
It-Charts are a synchronous specification language for reactive systems with 
a compositional semantics. We show how a It-Chart can be implemented in 
hardware, using a register and a combinational logic block that represents the 
transition relation of the system. 

Keywords 
System-Level Specification and Design, Formal Methods. 

1 INTRODUCTION 

The specification language It-Charts is a dialect of Statecharts based on a 
modular syntax and a compositional semantics. Previous work has been fo­
cused on the semantical foundation of It-Charts [5], on ways to extend them 
to a full-featured, flexible specification language, and on formal verification 
using model checkers [4]. 

In this contribution, we demonstrate how It-Charts can be used as a hard­
ware design language. Similar to the approach of Drusinsky [3] we aim at a 
single-block implementation, which uses a single combinational logic block and 
a state register. This eliminates the overhead of communicating finite state 
machines which results from approaches where each subchart is implemented 
as an independent state machine [2]. 

In contrast to Drusinsky's work, however, our approach is based on a com­
positional formal semantics. According to this semantics, each It-Chart can 
be translated into a collection of transition predicates encoded with binary 
decision diagrams (BDDs). The BDDs can then be used both for verification 
and - if the specification is determinisitc - for a hardware implementation. 

OIFIP 1997. Published by Chapman & Hall 



78 Part Two Verification Using Model Checking Techniques 

2 THE LANGUAGE 

The syntactic representation of JL-Charts is modular. A specification is a tree 
of sub charts built from sequential automata, parallel composition, hierarchical 
decomposition, and an explicit feedback construction for broadcast communi­
cation. Since the semantics of JL-Charts is compositional, the initial configu­
ration of a specification and its transition relation can be built hierarchically. 

Sequential automata are denoted by Seq(N, E, t7d,8), where N is a unique 
identifier, E denotes the nonempty, finite state set, and t7d represents the 
default state. 8 is a finite, total state transition function that takes a state 
and a finite set of signals and yields a - possibly empty - set of reactions. 
Each reaction consists of the subsequent state, paired with a finite set of 
output signals. 

With And(81 , 82) we denote the parallel composition of two JL-Charts 81 

and 82 . Informally, the charts 81 and 82 operate independently; the output 
of the composition is the union of the outputs of 81 and 82 • The following 
formulas, taken from [4], may give the reader an idea of how the semantics of 
parallel composition can be defined: 

IS«C1' C2)) = ISi (cd /\ IS2 (C2) 
1s«Cl,C2),X,(cL~),Y,o) = 
(3Y1, Y2.lsi (C1' x, cLyd /\ TS2 (C2' x, C2' Y2) /\ Y = Yl U Y2) V 
«JlY2, c.1s2 (C2' x, c, Y2» /\ lsi (C1' x, c1. y) /\ c2 = C2) V 

«,lIY1, c.18i (C1' x, C, yt}) /\ 182 (C2' x, C2, y) /\ c~ = C1) 

Here Is (c) is true whenever c is an initial configuration of the JL-Chart 8. The 
predicate Is (c, x, c' , y) is true whenever the JL-Chart 8 can transition from 
the configuration c to the configuration c' when input x is given; then, the 
output Y is produced. 

For finite signals sets, these Boolean predicates can easily be encoded as 
BDDs. The details of this translation, and the encoding of the configurations 
are presented in [4]. 

Neither parallel composition nor hierarchical decomposition introduce com­
munication between subcharts. Broadcast communication is introduced ex­
plicitly with the feedback operator. This construction is denoted by FB (8, L), 
where L is the set of those signals that can be communicated within the chart 
8. Broadcast communication is achieved by feeding back signals in L instan­
taneously; these signals are added to the environment input and can cause 
a reaction in other subcharts. Due to space limitations, hierarchical decom­
position is not considered here. As shown in [4], the formalism can easily be 
extended to incorporate a simple programming language on finite data states. 

The predicates can be input to the JL-calculus verifier JLcke [1]; using this 
tool, it is straightforward to verify properties of a specification, or to check 
whether it is deterministic, i.e. for each configuration and input, there is ex­
actly one successor configuration and output. 



System-level hardware design with J.I-charts 79 

3 HARDWARE GENERATION 

In contrast to the tool Statemate, we aim at a direct implementation, and not 
at a compilation to VHDL code. Two previous approaches for direct hard­
ware implementation of Statecharts were presented by Drusinsky in [2, 3]. 
The former implemented a Statechart as a network of communicating finite 
state machines; this scheme introduces considerable communication overhead. 
The latter realizes a Statechart as a single (possibly quite large) logic block. 
However, neither of these two approaches is based on a formal semantics. 
Thus, it is not possible to formally verify designs based on these approaches. 
Moreover, neither allows us to specify systems with data states. 

In our implementation scheme, implementations are generated from the 
same transition relations that are used for formal verification of J.t-Charts with 
symbolic model checkers. The logic block of the implementation is derived in 
the following way. The transition relation r is converted to a family of Boolean 
functions, one for each output signal, and one for each bit in the encoding 
of the configuration. The Boolean function for each bit is derived from r 
by existentially quantifying the other outputs. The conversion to Boolean 
functions is possible, since for hardware generation we restrict ourselves to 
deterministic J.t-Charts. 

Each Boolean function for an output signal contains an abstraction of the 
complete specification. This is the reason that our implementation scheme 
does not require explicit communication between the logic blocks. The ab­
straction contains those aspects of the complete system specification that are 
needed to calculate the signal's value - neither more nor less. This is the rea­
son the individual Boolean functions can be represented with comparatively 
small BDDs, much smaller than the complete transition relation r. 

REFERENCES 

[1] A. Biere. EjJiziente J.t-KalkUl-Modeliprii,fung mit biniiren Entscheidungs­
diagrammen. PhD thesis, University of Karlsruhe, 1996. To appear. 
(in German). 

[2] D. Drusinsky-Yoresh. Using Statecharts for Hardware Description and 
Synthesis. IEEE Transactions on Computer-Aided Design 8(7), pages 
798 - 807, 1989. 

[3] D. Drusinsky-Yoresh. A State Assignment for Single-Block Implementa­
tion of State Charts. IEEE Transactions on Computer-Aided Design 
10(10), pages 1569 - 1576, 1991. 

[4] J. Philipps and P. Scholz. Formal Verification of J.t-Charts. 1996. To 
appear in: TACAS'97. 

[5] J. Philipps and P. Scholz. Specifying Reactive Systems with J.t-Charts. 
1996. To appear in: TAPSOFT'97. 


