
5

Verifying linear temporal properties of
data insensitive controllers using finite
instantiations

R. Hojati
University of California, Berkeley
hojati@eecs.berkeley.edu

D. L. Dill
Stanford University
dill@cs.stanford.edu

R. K. Brayton
University of California, Berkeley
brayton@eecs.berkeley.edu

Abstract

Data insensitive controllers (DICs) are systems where the datapath consists of
assignment gates moving the integer data around, and latches storing the data.
Memory controllers and communication systems .are examples of DICs. In [HB95], it

is proved that for DICs the property "when binary variable b becomes true, integer

variables x and y are equal" can be proved by down-scaling the integer variables x

and y to single-bit binary variables. In this paper, we generalize this notion and
consider the problem of verifying properties of DICs in a linear temporal logic whose
atomic propositions are finite variables and integer equalities. We show that for this
temporal logic, one can always use finite instantiations, although the number of
required bits varies with the complexity of the property.

Keywords

Formal verification, Computer-aided design and verification.

© IFIP 1997. Published by Chapman & Hall

Verifying linear temporal properties of data intensive controllers 61

1 INTRODUCTION

Data insensitive controllers are an important subset of digital systems in which a
controller moves the integer data around. The datapath consists of integer variables,

and assignment gates of the form y := x and z := mux (b, x, y) , where x, y and z are

integer variables, and the binary variable b is driven by the controller. No predicates

are applied to the integer variables, and there is no feedback from the datapath into the

controller (see figure 1). This concept was first defined in [WoI86], in which it was
proved that verifying properties of these systems in a specialized linear temporal logic

built up from propositional variables of the form x = a, where x is an integer

variables and a is a number, can be done using a few data values for the integer
variables, i.e. the property holds on the integer system iff it holds on the reduced
system. In [HB95], the same concept was formalized in the context of ICS models,

and it was proved that for verifying properties of the form "when b becomes true,

x = y", only two data values suffice. The results of [HB95] were applied to a

correctness problem of memory models in [HMLB95].

The data sensitive part generates the
control signals for the data insensitive
part. Changing the values of
variables in the data insensitive part
does not affect the values of the data
sensitive part.

Figure 1

In this paper, we generalize verifying properties of the form "when b becomes true,

x = y" and look at a linear temporal logic in which the propositional variables are
integer equalities and finite variables of the system (without loss of generality we can
assume that all finite variables are binary). We first show that all such properties can
be verified by assigning the integer variables a finite domain, whose size is the total
number of finite latches and integer inputs of the system. We then consider simple

invariance properties of the form G~, where ~ is a Boolean combination of
propositional variables of the logic (integer equalities and finite variables). For these
types of properties, we offer an algorithm which is independent of the system. For
example, we show that for verifying the property G (x = y v x = z) of any DIC, only

two data values are needed, whereas verifying G (xl = x2 V x3 = x4 V x5 = x6) requires

at most three values.
We then consider another important set of properties, invariance properties with

bounded look-ahead. These properties are of the form G~, where ~ involves the

62 Part Two Verification Using Model Checking Techniques

temporal next time operator X and Boolean connectives (AND, OR, NOT). We use
our algorithm for the invarlance case to get bounds for these types of properties as
well. The bounds are again independent of the system. For example, we show the
property G (x = y v X (x = z)) can be verified using only two values for integer
variables. We also consider liveness properties, and show that without system
dependent analysis, one cannot do better than the trivial bound (total number of integer
latches and constant creators), since there are systems on which verifying the simple
property F (x = y) requires the trivial bound.

Finally, we apply our results to a correctness problem of memory subsystems in
microprocessors. In this case, we consider the single, double, and multiple word load
and store instructions. In each case, we consider properties that test the correctness of
loads. For example, for verifying the correctness of double word loads, we use a
property of the form b ~ «x = y) A X (x = z» . Intuitively, this property says that for
any arbitrary double word (b signals the beginning of the verification process), the

data bus (x) will first contain the first addressed word (y) and then the second

addressed word (z). We use our result of section 2.3 to conclude that verifying this
property can be done using only two values.

The flow of this paper is as follows. Section 2 contains our main results. In Section

2.1, we show that for our temporal logic, finite instantiations can always be used, and
the bound is never worse than the total number of integer latches and constant creators

(trivial bound). In Sections 2.2 and 2.3, we give better bounds for invariance
properties, without and with bounded look-ahead. In Section 2.4, we present our result

for liveness properties. Section 3 details the application of our results to a correctness
problem of memory subsystems in microprocessors. Section 4 concludes the paper.

2 MAIN RESULTS

We assume the system is closed, and model integer inputs by constant creators
which produce a new symbolic constant whenever called (a symbolic constant can take
on any integer value). We also assume that the initial values for integer latches are
arbitrary symbolic constants. Two latches may be assigned the same initial symbolic
constant. For simplicity of exposition, we do not define our model in more detail, and
refer the interested reader to [HB95].

Verifying linear temporal properties of data intensive controllers 63

2.1 General Properties

Definition For a data insensitive controller M, let Mn denote a system where the

data insensitive variables of M are replaced by finite variables taking n values (i.e.

logn bits wide).

Lemma 2.1 Let $ be a general L TL formula whose propositional variables are
integer equalities and finite variables of a DIC M. Let n be the total number of
integer latches and constant creators in M. Then, $ holds of M iff $ holds of M . n

Proof We use some of the machinery developed in [HB95]. Derive ~b from ~ by

replacing each integer equality with a unique binary variable. Using the Tableau
construction ([WoI85]), ~b can be translated into a Buchi automaton Bb with the same

language, i.e. L(~b) = L(Bb)· Replace the newly introduced binary variables in Bb

with their associated integer variables to get the automaton B. We have that $ holds

of Miff L (M) ~ L (B). Construct B, the complement of B, by replacing the integer
equalities with binary variables, complementing the resulting oo-automaton, and
substituting back the integer equalities. We have L(M) ~L(B) iff

L (M) II L (B) = 0. This check can performed by verifying that the language of the

composition of M and B is empty. The composition of M and 8 is a system in which
the datapath contains assignment operators and equality predicates. In [HB95] it was
shown that checking the language emptiness of such a system can be done on a system
where integer variables take m values, with m being the number of integer variables.
Isles later made the observation that the bound can be reduced to the total number of

integer latches and constant creators ([ls\95]). Hence, we have L (M) II L (8) = 0 iff

L (Mn) II L (8) = 0 iff L (Mn) ~ L (B). We have shown the latter holds iff ~ holds

of Mn' Hence $ holds of M iff ~ holds of Mn (QED).

2.2 Invariance Properties

Let bl' b2, ... be binary variables, and xl' x2'''' be integer variables of a given DIC

M. Let ~ be an AND/OR combination of binary variables, their negations, and

integer equalities Xi = xj . An example of such properties is b ~ (XI = x2) which is

equivalent to b + (XI = x2). For now we do not allow general complementation,

64 Part Two Verification Using Model Checking Techniques

although we will shortly generalize to this case as well. Assume we are interested in

verifying the property G~ of M. We would like to do so using finite instantiations

with a minimum number of values for integer variables. In this section. we present a
heuristic algorithm for choosing the number of data values to use. which is dependent
only on the number of integer variables in the property and is independent of the
system.

In what follows. let a falsification for a formula ~ be an assignment to integer and

binary variables in , such that ~ becomes false. In many of the proofs which follow.

we use the concept of the source for a variable Xi in some state s. This is a constant

ck which has moved around and has ended up in Xi at state s. It was either the initial

value of some integer latch. or was created at some previous state by a constant
creator. The following lemma establishes a rough upper bound on the number of data
values needed.

Lemma 2.2 Let ~ be an AND/OR formula built from the binary variables. their
negations. and integer equalities of a given DIC M. Let n be the number of integer
variables in ~. Then. G~ holds of M iff G~ holds of Mn'

Proof Since L (Mn) !: L (M) • if G~ holds of M. it also holds of Mn' To show the

reverse. let xl' x2' ...• xn be the integer variables in G~. Let 1t = sl's2' ...• sk be a path

in M such that ~ does not hold at s k' which implies G~ does not hold of 1t. Let

cl' c2, ••• , cn be the sources for Xi' X2' ••• , xn in sk' Since ~ does not hold at sk' it is

possible to assign integer values il' i2, ... , in to cl' c2' ..• , cn and leaving the binary

variables as they are assigned in sk such that ~ is false. If we rename il' i2, ... , in to

take values from 0, 1, ... , n -1, , still remains false. Call this new set ~,t;, ... , i: .
Construct a path 1tn = s-I' s~, ... , ik in Mn from 1t such that the binary variables take

the same values as in 1t. C l' c2' •..• cn are assigned rl' i~ , i:. and the rest of the

constants take arbitrary values. Since the control variables in 1t and 1tn take the same

values. we have that cl' c2' •.. , cn contain i~, i~ •... , i: at ik • It follows that G, does

not hold of 1tn (QED).

Lemma 2.2 establishes an upper bound for how many values are needed. We will
now improve this bound. For example. we will show that for verifying the formula

G ((x = y v x = Z) A (w = y v w = Z» , only two data values suffice. Note that the

Verifying linear temporal properties of data intensive controllers 65

bound of lemma 2.2 for this formula is 4 values.

Lemma 2.3 Let cp be a disjunction of m integer equalities. Let n be such that

(~)~m«n; 1). Then, Gcp holds oftheDIC M iff Gcp holds of Mn'

Proof It suffices to prove that if Gcp does not hold of M , then Gcp does not hold of

Mn' Let 7t = sl' ... , sk be a path in M such that cp does not hold at sk' Let xl' ... , xp

be the variables in cp, and cl' ... , cp be the sources for xl' ... , xp at sk' Let CPc be the

fonnula which results by replacing each variable by its constant source. Since cp is

false at sk' there is no equality of the form cj = cj in CPc' Build a graph G with nodes

cI' ... , C ,and an edge for each equality c. = c .. G contains at most m edges and by
p I J

lemma 2.4 (below), it can be n -colored. Consider one such n -coloring c. Create an

assignment il'i2, ... , ip to cl' ... , cp by choosing values from

{O, 1, ... , n - I} such that two constants are assigned the same value iff they have

the same color in c. This assignment makes cp c false, since the variables in each

integer equality are assigned different values. Build a path 7tn = tl' ... , tk in Mn

from 7t by assigning the finite variables the same values as in 7t, and assigning to

C t ' ... , cp the values il'i2, ... , ip ' By construction, cjl does not hold at tk ,which means

Gcp does not hold of Mn (QED)

Example As an example, let cp be the formula (Xl = x2) v (x3 = x4) v (xs = x6) •

Let XI = cI ' x2 = c2 , x3 = cI ' x4 = c3' Xs = c2 ' and x6 = c3 . Substituting for the

variables in cp the corresponding constants, we get

CPc:; (c i = c2) v (c i = c3) v (c2 = c3). The graph G of lemma 2.3 has 3 edges, and is

3-colorable. Hence, 3 values are needed to verify cp. Also, note that 2 values are not

sufficient to verify Gcp. For example, assume M loads cl' c2' c3 in xl' ... , x6 as given

above, and never changes them again. With only 2 values used for integer variables,

Gcp holds of M , whereas with 3 it does not.

Lemma 2.4 Let G be a graph with m edges. Let n be such that G) ~ m < (n; 1) .
Then, G can be n -colored.

Proof We proceed by induction. If m = 1, then the lemma requires that a graph

66 Part Two Verification Using Model Checking Techniques

with one edge be 2-colorable. This is clear as each node can be assigned a different
color. Now assume the lemma holds for values up to m - 1 , and prove it for m. If

there are no vertices of degree greater than or equal to n (i.e. max degree < n), then the
lemma follows by Vizing's theorem ([Viz64]) which states that if the maximum
degree of a vertex in a graph is d, then the graph can be colored with d + 1 colors.

Now assume v EGis a vertex of degree greater n. Assign v a unique color, and

remove all edges adjacent to v from G. This new graph has at most m - n edges.

Since (~):s;m«n;l), we have (n;l):s;m_n«~), and by the inductive

assumption this new graph is (n - 1) -colorable, which implies G was n -colorable
(QED).

We now present an algorithm which returns the minimum number of data values
sufficient to verify the formula G«II, where «II is built using AND/OR combinations of
integer eqUalities, binary variables and their negations.

1. Express «II in product-of-sums format, where each conjunct is a disjunction of
integer equalities, binary variables and their negations.

2. For each conjunct, compute the number of data values needed to falsify the for-

mula using the bound of lemma 2.3.
3. Return the maximum among all numbers computed in step 2. This is the number

of data values sufficient to verify cp.

The correctness of the algorithm follows by the observation that if «II, expressed in
POS form, does not hold of M, then one of the conjuncts does not hold of M. The
algorithm guarantees there are enough data values to falsify that conjunct.

We now give an algorithm for general Boolean combinations of integer equalities
and binary variables by first solving the problem for formulas G«II, where «II is a

disjunction of integer equality and inequalities (of the form X#: Y).

1. Build equivalence classes for integer inequalities, where if Xl #: X2 and x 2 #: x3

appear in «II, then Xl' x 2 and x3 are all in the same equivalence class. Note that

a falsification has to assign the same value to all the variables in an equivalence
class.

2. From each equivalence class choose a representative variable.
3. Delete all integer inequalities from cp. Call the resulting formula cP E.

Verifying linear temporal properties oj data intensive controllers 67

4. Replace each variable in ~E by the representative variable from its equivalence

class. Call the resulting formula'll.

5. If an equality of the form Xi = Xi is in'll, ~ is a tautology, and holds of any sys-

tem. If not, find the minimum number of data values needed to falsify'll. This is

the number of data values needed to falsify ~.

To get an algorithm for general Boolean combinations of binary variables and
integer equalities, express the formula as a product-of-sums, and use the above
algorithm to find the minimum number of data values needed for each conjunct (after
the binary variables have been deleted from the conjunct). Take the maximum of all
these values.

Several remarks are in order. First, note that all bounds on the number of data values
needed are based just on the formula, and are independent of the system. Second,
Binary Decision Diagrams (BODs, [Bry86]) can be used to speed up finding a

compact P~S representation of a Boolean equation.1 Third, the complexity of our
algorithms given a P~S representation is polynomial. However, turning a formula into
P~S representation can be exponential. Also note that any valid P~S representation
will do, so one that gives the a smaller number may be sought.

2.3 Invariance Properties with Bounded Look-Ahead

In this section, we consider properties of the type Gq" where q, is a general Boolean

combination of atomic formulas of the form i b , i X = X' y and i x *" X' y , where b is

binary, x and y are integer, i denotes i applications of the next time temporal

operator X, and i, j and k are non-negative. We call such properties in variance
properties with bounded look-ahead, whose correctness at a state s can be established

by examining k successors of s, where the parameter k depends only on the formula.

Remark Using the tautologies X(fvg) =XjvXg, X(fAg) =XjAXg, Xi =xj,

where j and g are formulas, a more general logic in which the temporal operator X
can be applied to sentences can be handled.

The following algorithm returns the number of data values sufficient to verify G~,

1. To build the POS fonn for j, build the BDD for j, and create a SOP fonn for j by
generating all paths to the leaf O. By negating this SOP fonn, we get the POS repre­

sentation for f.

68 Part Two Verification Using Model Checking Techniques

an invariance property with bounded look-ahead.

1. For each term of the form Xix = Xj y, introduce two variables / and !, and

replace the integer equality t x = t y with xi = !. Similarly handle inequali­

ties of the form trtty .

2. For each term of the form Xib, where b is a binary variable, introduce a binary

variable bi , and replace t b with bi .

3. The resulting formula is an invariance property. Use algorithms of section 2.2 to
find the number of data values sufficient to verify this formula.

Example Consider the formula G~, where ~ = b -7 «x = y) y X (z = w». The

above algorithm produces the formula G (b -7 «x = y) y (/ = wI»)) , on which the
algorithms of the previous section return 2 data values. Hence, 2 data values suffices
to prove this property of any DIC. On the other hand if
~ = (x=y) YX(x=y) YX(x) =y, then the algorithm produces the formula

G ((x = y) Y (x l = y 1) Y (x l = y») , on which the algorithm of section 2.2 returns 3
data values.

The following lemma proves the correctness of our algorithm.
Lemma 2.5 Let M be a Ole, and <jl a general Boolean combination of atomic

formulas of the form tb, Xix = t y , and tx*ty . Let n be the number retuned by
the above algorithm. Then, G<jl holds of M iff G<I> holds of M n •

Proof Let bl' ... , bk and xl' ... , XI be the binary and integer variables occurring in

<1>. Let M be obtained from M and ~ by creating variables of the form b~ for each
]

term Xi bj in ~, creating variables x~ and ~ for each atomic formula t x k = t x I' and

ensuring in it that b; = Xibj and x; = x\. Let ~ be the formula resulting in step 3

of the above algorithm. Then, by construction, Ijl holds of M iff G~ holds of M. By

lemma 2.2, G~ holds of it iff G~ holds of Mn' By construction of M and ~, G~

holds of Mn iff G~ holds of Mn' So, we have proved G~ holds of Miff G<I> holds of

Mn as was required (QED).

Verifying linear temporal properties of data intensive controllers 69

2.4 Liveness Properties

In this section, we show that if the temporal operator F is used in the formula, then

no bound other than the trivial bound can be proved. Recall that the trivial bound is
the total number of latches and constant creators in the system.

Lemma 2.6 There is a system M, with the total number of integer latches and
constant creators being n, on which the property F (x = y) holds of M; for i < n, but

does not hold of Mn'

Proof M has no constant creators, but it has n integer latches xl' ... , xn' all of

which take a different initial symbolic constant, i.e. cl''''' cn ' Let x and y be two

integer outputs of M. At each time step, the system loads into x and y a new pair of

values {cp ck } • For i < n, there are two latches which take the same initial value in

M;. Therefore, at some point x = y, i.e. F (x = y) holds of M;. On the other hand,

for M n' F (x = y) does not hold for the trace where distinct initial values are assigned

to the integer latches (QED).

3 APPLICATIONS

In this section, we describe an application of the results of the previous sections to a
correctness problem of memory subsystems in microprocessors. Many instruction set
architectures allow for loading and storing of single words, double words, or multiple
words (for an example, see [PowerPC94]). In this section, we show how some
correctness properties of these instructions may be verified using results from the
previous sections.

Figure 2 shows a typical configuration for a memory subsystem. The environment,
which is an abstraction of the fetch-dispatch-execute core of the processor, sends load
and store instructions identified by their tags, addresses and data to the memory
subsystem. The memory subsystem (after some time) services these instructions.
When an instruction is serviced, the memory subsystem puts the instruction's tag on
the instruction tag bus. When servicing a load, the data is also placed on the data bus.
We assume that the data bus is 32 bits wide. So, double and multiple word loads take
several cycles to complete.

70 Part Two Verification Using Model Checking Techniques

Environment Memory
Subsystem

Figure 2

To verify the correctness of the memory subsystem, we assume that the number of
memory locations is finite, and augment the environment with a copy of every
memory location. This copy keeps track of what the values in memory should be by
monitoring the instructions issued by the environment. One simple property to verify
is that after any set of instructions, a load returns the correct value. This can be done
by having a non-deterministic signal which starts the checking process after an
arbitrary load. At this point, the copy of that memory location stops tracking the new
values. When the load is serviced, it is checked that the returned value is equal to the

copy. This property is of the form b ~ (x = y). This property can be checked using

just two values as shown in [HB95].
Similarly, verifying a double word load can be done using a property of the form

b ~ ((x = y) A X (x = z» , where x represents the data bus, y and z represent the

expected first and second words respectively. Noting that when expressed as a
product-of-sums, each conjunct has at most one integer equality, and using results of

section 2.3, this property is independent of the system being verified, and can be
verified using 2 data values.

Some architectures allow for loads with byte reversed ordering. For verifying such
instructions, one might use a property of the form

b ~ (((x = y) A X (x = z» v «x = z) A X (x = y))) , where x is the data bus, y and

z are the expected first and second words. Noting that when expressed as a product-of­

sums, each conjunct has at most two integer equalities, and using results of section 2.3,
we conclude this property can be verified using only 2 data values.

As a sanity check when doing a multiple word check, one might check that the last
word of the load appears on the data bus. This property can be expressed as

b ~ F (x = y) , where x is the data bus and y is the expected last word of the load.

U sing results of section 2.4, verifying this property using finite instantiations depends
on the system being verified. The upper bound on the sufficient number of data values
is the total number of integer latches and constant creators (integer inputs) of the

system. However, if one knows how many cycles it takes to get the last word, then F

can be replaced by Xi , and better bounds can be obtained.

Verifying linear temporal properties of data intensive controllers 71

4 CONCLUSIONS

In this paper, we considered the problem of verifying general linear temporal
properties of data-insensitive controllers, where the propositional variables are the
finite variables of the controller and integer equalities of the form x = y (using
complementation one can get integer inequalities as well). We first showed that all
such properties can be verified using finite instantiations, where the size of the domain
for integers is at most the total number of finite latches and constant creators. We
then considered invariance and invariance properties with bounded look-ahead, and
proved bounds which are independent of the system being verified. We then showed
that for liveness properties one cannot hope to do much better than the trivial bound
(the total number of integer latches and constant creators), since there are systems on
which verifying the simple property F (x = y) requires the trivial bound. We finally
showed how our results can be applied to a correctness problem of memory
subsystems in microprocessors.

5 REFERENCES

[Bry86] R. E. Bryant, "Graph Based Algorithms for Boolean Function
Manipulation", IEEE Trans. on Computers, C-35(8):677-691, August 1986.

[HB95] R. Hojati, R. K. Brayton, "Automatic Datapath Abstraction In Hard­
ware Systems", Conference on Computer-Aided Verification, June 1995.

[HMLB95] R. Hojati, R. Mueller-Thuns, P. Loewenstein, R. K. Brayton,
"Automatic Verification of Memory System Using Language Containment and
Abstraction", Conference on Hardware Description Languages and Their
Applications, 1995.

[lsI95] A. Isles, personal communication, 1995.
[PowerPC94] mM Microelectronics and Motorola, "PowerPC Micropro­

cessor Family: The Programming Environment", 1994.
[Viz64] V. G. Vizing, "On an Estimate of the Chromatic Class of a p­

Graph", (in Russian), Diskret. Analiz., Vol. 3, 25-30 (1964).
[WoI86] P. Wolper, "Expressing Interesting Properties of Programs", 13th

Annual ACM Symp. on Principles of Prog. Languages, 1986.
[WoI85] P. Wolper, "The Tableau Method for Temporal Logic: An Overview",

Logique at Anal. 28, pp. 119-136, 1985.

72 Part Two Verification Using Model Checking Techniques

6 BIOGRAPHY

Rantin Hojati obtained his B.S. from Massachusetts Institute of Technology in
1988. From 1988 to 1990, he worked on layout and synthesis tools at Cadence
Design Systems. He obtained his M.S. and Ph.D. in computer science in 1992 and
1996, respectively from the University of California, Berkeley. Dr. Hojati has written
many research papers in computer-aided design and formal verification, and has been
involved in several large scale software developments. Currently, he is a post-doctoral
research staff member at UC Berkeley where continues research and advises students.
In addition, he recently founded "Ramin Hojati Consulting", which provides
consulting in computer-aided design. His research interests include formal
verification, logic synthesis and layout of digital systems.

David L. Dill is Associate Professor of Computer Science and, by courtesy,
Electrical Engineering at Stanford University. He has been on the faculty at Stanford
since 1987. He has an S.B. in Electrical Engineering and Computer Science from
Massachusetts Institute of Technology (1979), and an M.S and Ph.D. from Carnegie­
Mellon University (1982 and 1987). His primary research interests relate to the theory
and application of formal verification techniques to system designs, including
hardware, protocols, and software.

Robert Brayton received the BSEE degree from Iowa State University in 1956 and
the Ph.D. degree in mathematics from MIT in 1961. From 1961 to 1987 he was a
member of the Mathematical Sciences Department of the IBM T.1. Watson Research
Center. In 1987 he joined the EECS Department at Berkeley, where he is a Professor
and director of the SRC Center of Excellence for Design Sciences. He has authored
over 200 technical papers, and six books, "Computer Aided Design: Sensitivity and
Optimization", "Logic Minimization Algorithms for VLSI Synthesis", "Integrating
Functional and Temporal Domains in Logic Design", "Timed Boolean Functions: A
Unified Formalism for Exact Timing Analysis", "Logic Synthesis for Field­
Programmable Gate Arrays", "Synthesis of Finite State Machines: Functional
Optimization". Dr. Brayton is a member of the National Academy of Engineering, and
a Fellow of the IEEE and the AAAS. He received the 1991 IEEE CAS technical
achievement award, the 1971 Guilleman-Cauer award, and the 1987 Darlington
award. He was the editor of the Journal on Formal Methods in Systems Design from
1992-1996. Past contributions have been in analysis of nonlinear networks, and
electrical simulation and optimization of circuits. Current research involves
combinational and sequential logic synthesis for area/performance/testability,
asynchronous synthesis, and formal design verification.

Verifying linear temporal properties of data intensive controllers 73

Acknowledgment

The authors would like to thank the committee members for their insightful
comments. We would also like to thank Ken McMillan for useful discussions, and
Adrian Isles for his careful reading of a draft of this paper. During this work, the first
author was supported by SRC grant 96-DC-324.

