
16

The Glue Logic: An Integrated Pro­
gramming/Execution Environment for
Distributed Manufacturing Work-Cell
Control System

M. Takata
The University of Electro- Communications
1-5-1, Chofugaoka, Chofu, Tokyo 182, Japan, Tel:+81-424-83-
2161 ext.4744, Fax:+81-424-84-1598, email:takata@ee.uee.ae.jp

E. Ami
Osaka University
2-1, Yamada-oka, Suita, Osaka 565, Japan, Tel: +81-6-879-7555,
Fax: +81-6-879-7570, email: arai@mapse.eng.osaka-u.ae.jp

Abstract
In this paper, a infrastructural system designed for the factory automation applications,
named "Glue Logie", is described. The Glue Logie provides an environment which sup­
ports the programming, controlling and monitoring the manufacturing system, mainly
in the levels of manufacturing work-cells. And this environment also supports efficient
manufacturing programming, by means of high program modularity and reusability.

Using the service of the Glue Logie, users can easily implement data-sharing and task­
interlocking among multiple application processes developed and compiled separately.
Furthermore, this system includes event notification message sending and condition mon­
itoring features to eliminate needs of data polling by means of active databa::;e technique.

As the result of the use of the Glue Logic, the application system can be build as a
collection of the agents working together, and the Glue Logie itself acts as a message
exchange and shared data space manager.

Keywords
Factory Automation, Manufacturing work-cell control system, Infrastructural Software
System, Distributed Programming / Execution Environment

J. Goossenaerts et al. (eds.), Information Infrastructure Systems for Manufacturing
© Springer Science+Business Media Dordrecht 1997

182 Part Three Integration Frameworks and Architectures

1 INTRODUCTION

The Glue Logic is an infrastruttural system which is designed to make building manu­
facturing work-crtl control systpms easy and flpxible (Takata 1995) (Takata 1993). This
system binds multiple application software modules developpd and compiled separately,
and coordinates those modules by means of inter-process massage passing.

As the Glue Logic supports rvent notification and condition monitoring features based
on active database schemc, users can casily build event-driven application programs. Eaeh
program modules are free from polling shared data, waiting for notification messages.

All the data and application modules in a system can be represented by symbolic names
defined in the Glue Logic, and are aecessed without any knowledge about implementation
of otllPr modules. Each modules in an application system can be developed conc1llTently,
and can be added, deleted or changed freely without modifying other existing modules.

As the result, Glue Logic compliant software modules are easy to re-us(', and the users
can build large librarips of application software modules. Furthermore, the life cycle anel
the rrliahility of such modules arp pxteneleel, and their c\evelopmpnt cost is greatly reduced.

This paper desnibes the Glue Logic designed as the infrastructural system for faetory
automation applieations, and is now under prototyping. In Sp(·tion 2, the chara(·teristics
of the manufacturing work-eell control softwarcs are discussed. Seetion 3 discusses the
drsniption of the Glue Logic, and lastly, Section -! discusses on the design of a coming
global programming language, to which the Glue Logic provides its rxecution environment.

2 TARGET OF THE GLUE LOGIC

2.1 Target system controlled

The Glue Logic is designed for controlling manufacturing work-cells, whieh are operated
in the flexible floor shop lllanufaduring systems. The manufacturing work-cell considered
here C"Onsists of a work-cell control systelll and devices such as NC lllachines, asselllble
machines, robots, conveyers, storage systems, sensors, actuators, and so on.

Currently, there are lllany micro-processors in a manufacturing work-cell, which are used
within FA controllers, NC controllers, robot controllers and Programmablc Logic Con­
trollers. But the rapid progress of recent technology implements low-cost high-performance
micro-processors, and also implemcnts the possibility to have integrated manufacturing
work-cell controllers, which tontroles NC's, robots and DI/DO directly.

In order to operate the integrated manufacturing work-cell controllers, the software
systems should have steady foundations, that is the execution environments. The aim of
designing the Glue Logic is to provide an pnvironment describrd above.

2.2 Requirements for the Glue Logic

Baspd on thp observation of the current manufacturing work-cell control software systems,
the manufacturing work-cell control software systems and its support system should have
following characteristics:

Distributed manufacturing work-cell control 183

• Manufacturing control software systems should have sense of time.
• As multiple processes run concurrently, abilities to control other processes are required.

For the maintenance, those operation should be denoted concisely in program texts.
• Exception handling and the execution flow control of the exception handlers are very

important for the application.
• Abilities to exchange information among multiple processes running on multiple work­

cell control systems are vital for the software.
• Abilities of information sharing and keeping information consistent are required.
• Program modules are frequently added, deleted and altered, even in the manufacturing

line is under operation.

In order to ease programming application systems, the following system design paradigms
are strongly recommended:

• Building manufacturing control program system as the collection of modules.
• An infrastructural system should be introduced to bind application program modules,

and each module should be designed to be the infrastruetural system compliant.
• The cell models can be build in the shared data space in the manufacturing work-cells,

in order to virtualize devices and work-piece in a work-cell.
• The inter-process communication should be done in the form of the message passing,

in order to virtualize manufacturing control processes.

Under the paradigms shown above, the infrastructural system should be designed to
be the minimum system to bind program modules flexibly, and should fulfill following
requirements:

• Data sharing among independent modules should be realized.
• Each module can be separately developed and compiled.
• Modules are bound at run-time and are easy to add, delete and substitute.
• Data and modules can be accessed in fully abstracted ways.
• Keeping shared data being consistent and implementing mutual execution operations.
• Models all objects in the work-cell within shared data space.
• Models all event occurrence by message sending.

2.3 Design goal

The design goals of the Glue Logic are as followings:

• The Glue Logic should assist manufacturing control software systems to have an archi­
tecture which ea'lC integrating and coordinating multiple application program modules.

• With the use of the Glue Logic, re-using the manufacturing control system software
should be ea'3y and the software life cycle should be extended.

• The global control structure and the local control structures of the manufacturing
control soft.ware system should be separat.ed.

• In order to integrate modules flexibly, the global control structure should be executed
in a interpretive way at execution time.

184 Part Three Integration Frameworks and Architectures

In order to fulfill the goals shown above, following approaches are taken:

• Implementing the manufacturing control software system as the collection of the agents,
and realize their coordination by means of message passing.

• Use of the active database scheme as the shared data space among the application
processes, which is a blackboard system with the notification message sending feature
to synchronize processes.

• Making all messages to send by way of the Glue Logic, in order to make application
processes independent from others.

• Centralize shared data within the Glue Logic, in order to keep shared data consistent.
• Virtualizing devices and shared data by the names, and occurrences of events by mes­

sage sending.
• Virtualizing application processes by introducing the names representing them, and by

implementing the feature to send notification messages on assignment to such names.

With this scheme, following advantages are expected:

• The application modules become highly re-usable and have long life cycle.
• The application modules can be written as event-driven system.
• As the relations among application modules are expressed as the message sending rules,

such relations are easily re-configured and evaluated interpretively at the run-time.
• All the machine tools and the objects are represented as agents, and are represented

as a name in the shared data space in the Glue Logie.
• The implementation description of the agents are hidden, and their interface become

simple.
• It is easy to virtualize things and program modules in the manufacturing work-cell.

3 THE GLUE LOGIC

3.1 Architecture

The Glue Logic has been developed to support application programs by means of data
sharing, event notification and condition monitoring. As the system uses inter-process
communication internally over the network, the Glue Logic can play the roles of the
infrastructure of the distributed manufacturing work-cell control systems. This makes
development and maintenance of the event driven application easier.

Furthermore, the Glue Logic is effective not only in the distributed work-cell environ­
ment, but also in the single work-cell system, to keep application programs simple and
highly independent from other program modules.

The Glue Logic is used in a configuration shown in Figure 1. In this figure, the shaded
part shows the Glue Logic, and the boxes in the right half represent application processes
which utilize the function of the Glue Logic.

The Glue Logic relays all inter-process communication among its application processes,
and manages all data shared by those applieation proeess. Beeause of this, the Glue Logic

Distributed manufacturing work-cell control 185

Glue Logic ur
Language Proc I FAPl pgm I

I
Language Proc \FAPL pgm I

l
Glue API I Applicaton Pgm I

~
Glue API I Applocaton pgm I

I t
Glue API I Dev.., Drrvtlf I

I
H'''~~~I I PhYSICal DevICes J

-1
c:

l J
Figure 1 Architecture of t.he Glue Logie.

Inter-process
Glue Logic Server Communication

Vehicle
Glue Logic Client

,..---

Data Management Subsystem Communication
Notification

Glue

IData Change Monitor SUbsystem I Interface Query & Update Logic Application

I Data Storage Subsystem I Subsystem Data Retrieved API

-

Figure 2 Configuration of the Glue Logie .

can send the change notification messages, when the values of t.he shared data are altered.
As the virtualizing t.he counterpart of the communication can be achieved by relaying all
of the inter-process communication, each application module can be independent from
adding, deleting and alt.ering other modules.

The application module programs can be written, using the Glue Logic API (Appli­
cation Programming Interface) and a general purpose programming language, or using a
global Factory Automation Programming Language (FAPL) described later. Developing
new programs using FAPL is easy, but to save the existing software a5sets, users can
convert old programs using the Glue Logic API.

3.2 Overall Implementation

In the first pha5e , the design of the Glue Logic is ba5ed on the dient-server model of
transaction processing, a5 shown in Figure 2, though there is no need for the users to
know about its implementation.

In the prototype pha5e implementation , The server process of the Glue Logic is a specific
process running on a specific processor. All application processes communicate only wit.h
this specific process, and there is no redundancy in this phase.

As shown in Figure 2, the Glue Logic consists of two major parts: the communication

186 Part Three Integration Frameworks and Architectures

(nameA f-... · --_ ... t ValueA)

Figure 3 Ba~ic data element of the Glue Logie.

interface subsystem and the data managemrnt subsystem. The communication interface
exchanges information with other processes running in both the same work-eell controller
and remote work-cell controllers connected with the network system.

The data management subsystem consists of also two parts: the data change monitor
subsystem and the data storage subsystem. The data storagr subsystem manages the
association pair of the name and the value of the object. The data change mouitor
subsystem monitors the changes iu the data storage subsystem and sends out the data
change notification messages, and executes depending data evaluation.

3.3 Behavior of the Glue Logic

The atomic element of the Glue Logic is the tiple of a name and its value, as shown in
Figure 3.

The name resembles variable identifier in programming languages, and can have a value.
The name is a sequence of some identifiers, separated by a period, such as abc. ij k. xyz.
Using this format, users can denote data structure by the sequence of identifiers.

Using names, the application progralllmers can implement arbitrary data structures. In
the elements of one structure, their names c()ntain sallle identifier sequence in its leading
part. The trailing part of their nallle differs frolll each other. The leading common part
is called a stem and the trailing part is called a variant.

Each name may have some attributes. The attributes denote optional characteristics of
corresponding names, and the Glue Logic changes its behavior according to the values of
attributes.

As the value of the name, application programs may specify one of followings; integer,
floating point real, character string, expression and link. As the nallle itself is not typed,
users may bind any types of data in turns. If a client accesses the name bounded to an
expression value, the expression is evaluated and the result is used. Using the link type
value, users ean point another name.

3.4 Application Program Interface of the Glue Logic

The types of the API
The Glue Logic APIs can be da'3sified into three types. They are;

• the APIs which establish, disconnect or control communication channel, or exchange
messages;

• the APIs which exchange data with the data management subsystem, or operate on
the DataCell type data;

• the APIs which control the behavior of the data management subsystem.

Distributed manufacturing work-cell control 187

These APIs are designed not to depend on the implementations of hardwares, operating
systems, inter-process communications, or network systems.

Network Control APIs / Communication APIs
The network control APIs open or dose the communication channels. The communication
APIs wait for the message arrival, or the arrival of the messages which have some special
form.

Using these APIs, the application programmers can implement all basic communica­
tions with other application programs, without having any knowledge on the inter-process
communications or the network programming.

Data Operation APIs
Given the names and / or the attributes, the data operation APIs refer or change the value
of name specified. Some of these APIs can handle multiple names and data simultaneously,
and others ean change the shared data safely, in order to support multi-programming
environment.

Some of these APIs are prepared to handle data with the DataCell structure, in order
to create, destruct, copy them, or manipulate fields of them. Using these APIs, the appli­
cation programmers can implement a programs which do not depend on the inside of the
DataCell structure.

Behavior Control APIs
These APIs direct the behavior of the Glue Logie, and implements many miscellaneous
features. These indues;

• The APIs which register / deregister destinations to be informed for each names. Also
controls the chance to send out the information messages.

• The APIs which copy values of names to others. Some of these can copy a substructure
of the name space to another.

• The APIs which inquire t.he names or t.he attributes within the Glue Logic.
• The APIs inquire the statistic information of the Glue Logic itself.
• The APIs which control the Glue Logic itself, such as doing backup / restore the

contents of the Glue Logic.

3.5 How to use the Glue Logic

Data Sharing
The most simple usage of the Glue Logie is data sharing. Originally, the Glue Logic was
designed as the data management subsystem of the FA programming language system.
As it is very important to share some data within multiple application processes, the Glue
Logic is prepared as a separate process, in order to provide common data for those related
processes.

As there are some data which is strongly related, those data values should be updated
simultaneously to keep those values consistent. In the Glue Logie, there are many appli­
cation program interfaces (APIs) used to access or to change values of multiple names

188 Part Three Integration Frameworks and Architectures

Name I Attribute Value

nnnm . nm·1 integer: 1 I
'1-;==-, mul agentA I

mnj expr: Sensor>;25 && Sensor <; 28 I
~===:
'--""--_-"--J nmj Sensor I

ml real: 27.3 I

L-----''''--_...;.umj Condition xxx yyy

Figure 4 Data Ilsed by the condition monitoring.

with only one transaction. For the names which values are updated by multiple eiients,
there are other APIs to implement a semaphore, and to realize mutual aecess control.

Data Change Notification
In order to eliminate the needs of data polling and to decrease the network load, the feature
of data change notification is used. The eiients, which want to receive a change notification
of a certain name's value, can register the name of the eiient itself to the interesting name.
The name list of the notification destination processes is kept as the value of Inform To
attribute. As the eiients may register other client's name for the notification destination,
the user can implement a kind of dispatcher which dispatches some processes to the events
of the data change.

On the time when the Glue Logic server system receives data update request, the system
searches for the clients registered as the notifieation destination, and then notify the fact
of change to all the registered clients. In this way, the application programs are freed from
polling in order to find stat us change.

Automatic Update of Dependent Data (0 Condition M.onitoring
Some clients may need to know the value of name being a certain constant value, or
the values of names satisfy a certain condition. The Glue Logic can be set to send a
notification message only if a certaiu condition is met.

As shown in Figure 4, ear:h name of the Glue Logic can have a dependence list as the
values of Triggers and Trigge1·edBy attributes. If one or more elements of the list in the
some name's T,..iggeredBy attribute is updated, the value of the name itself is updated
to have the result of an expression, which is also registered as the value of If Triggered
attribute. If this new value differs from the former value, the data change notification is
sent to its notification destinations.

With this mechanism, user can implement multi-way branching by comparing value of
a name to some given eonstants. Usually, only one of them holds true, and the correspond­
ing application program is notified. If multi-way branching is implemented as described
above, users can add other alternatives later wit.hout changing allY existing application
program, but only adding new condition expressions comparing a value of name to given
constants. This flexibility is implemented by the Glue Logic and the registered conditional
rxpressions.

Distributed manufacturing work-cell control 189

Message Routing System
The Glue Logic ean he used as a messagr routing system. The nH'ssagr to be sent is
once assigned to thr name in thr Glue Logic by thr message sender application. Then
the arrival of the message is notified to the message receiver application, which should
be registered as a notification destination for t he name. Lastly thr notified application
fetches the message from the name, and interprets the message to know what is requested.

In this casr, earh name in the Glue Logic represents thr message recriver application,
and the data a9signed to the name specifirs the action to be takrn by the re('eiver ap­
plication. So, from the view point of the message receiver application, the nallle in the
Glur Logic looks like a mailbox. As the message sender need not know the actual mrssagr
recriver, the interfacr among those modules becomes simple, and the application program
modules themselves becomr highly H'usable.

In the case of selecting only one application module from many depending on the
mrssage receivrd, those modules sharrs the unique name and uses condition monitoring
feature to implement multi-way branching. This implementation realizes the concept of
the method selection of the object oriented language systC'm.

Furthermore, as the actual receiver application module is selected at run-time, users
can change the message proeessor dynamically. In this way, as the message sent can be
processed by the most appropriatr applieation module for the environmrnt at the rxe­
cution time, the mrssage routing capability of the Glue Logie makes application systems
lllore adaptable and autonomous.

Using Automatic Process Invocation
In the ca'3P of the Glue Logie having the process invocation capability, and when the
destination process of a notification is not running, the system first invokes an application
program and then sends a message to the process just invoked.

This capability is not mandatory because it is usual for real-timr application systems
that all application programs are started at system initialization, and all are waiting for
the resume signals. But in some systems which eonsists of many application programs, or
those which can not predict the number or kind of processes precisrly, it is impossible to
start all' programs at initialization timc. And ill sOllle applications, the system may not be
requested to be operated at a fast pace. In those ca~es, this capability is vital or uscful.

3.6 The Paradigm on using the Glue Logic

In order to utilize the Glue Logic efficiently, and make application systems easy to main­
tenanee and modify, it is important to set up the paradigm on the programming with the
Glue Logic.

Execution state of processes
As the Glue Logic uses status information on the application program processes, the
information should be kept and updated correctly in the Glue Logic a<; the value of status
indicator object names.

The status indicator in the Glue Logic should have a one to one correspondence to the
processes of the applieation program module, not to the module itself.

For each application program process, there are some states that it may take in turn.

190 Part Three Integration Frameworks and Architectures

Figure 5 State Transition.

Figure 6 Example of SFC program.

Its status indicator represents its execution state by having predefined flag values for each
state. The states are as follows, and tilE' transitions are summarized as Figure 5:

Initializing State In order to start up the operation of an application program, there
should be some preparation work such as initialization of the Glue Logic object names.
This kind of work is done during the initializing state.

Idling State In this state, the application is idling, waiting for a start up message from
the Glue Logic, which tells the meeting of the starting condition of the application
process itself.

Initiating State After receiving the start up message, the application process enters the
initiating state, in order to secure all shared resources it \·equires.

Running State In this state, the application process controls machine tools in the work­
eell, processes many kinds of data, and sends out the work-piece to another work-cell.
After all tasks the application should execute are completed, the process enters the
completing state. Use of this transition allows the Glue Logic to start other applications.

Completing State After the task completed successfully, the resources secured by the
application process should be released. The completing state is used for such operation.
In case of abnormal completion, the fixing procedures vary according to its internal
and external status. In this case the application should export its precise status to the
Glue Logic or some other fix up processes, and then exit for the next execution.

Terminating State If the application process receives directions to halt, it enters the
terminating state. Any other application then knows that the application process has
already stopped.

As described above, using status indicator object names in the Glue Logic, the applica­
tion program modules can be chained or executed concurrently. This feature enables an im­
plementation of the Sequential Function Chart (SFC) (I.E.C. International Standard 1131-
3 1993) with the condition monitoring feature (Takata, et.al. 1990) (Takata 1993). An
example of the SFC is shown in Figure 6.

Input / Output
The read-outs of various sensors, which are required to test starting conditions for each
application processes, are nice to be kept within the Glue Logic. Preparing such names in
the Glue Logic, not only the application processes can use any kind of sensor read-outs

Distributed manufacturing work-cell control 191

by referring to their status indicator object names, but also the starting condition of the
applieation proeesses are automatically checked by the Glue Logic.

In order to refleet the status of the input in the work-cell to the status indicators in the
Glue Logic, some system support proeesses should be especially prepared. Such process
accepts interrupts from the input signal ports or scans them periodically, and updates
the sensor status indicators. In some cases, some statistical operations are required in
these proeesses. Taking a moving average value to obtain noise free data, by keeping some
recent sampled values, is some of the most general operations.

On the other hand, other system support processes should be prepared in order to
control the output signal by updating the values of output control names in the Glue Logic.
Those processes use the data change notifieation feature for the output control names,
and should guarantee that the assignment to such output control names are refleeted to
the status to the output in eertain short time period. These support processes ean do
l1lueh more than data passing from the output control names to the output ports. For
example, a robot control process ean accept a motion eonlllland in the world coordinate
system, and convert it to a local coordinate system if required. This is the most simple
way to implement the Abstracted Manufacturing Devices.

With these system support proeesses, the applieation can aecess devices attached to
the work-cell through the Glue Logie, instead of touching the devices directly.

4 FACTORY AUTOMATION PROGRAMMING LANGUAGE

As the language described below has not been named yet, it is referred to as "FAPL" in
this paper for convenience.

The FAPL language proeessor is a kind of object oriented language interpreter system
(Goldberg and Robson 1983), which is very powerful to model and simulate automated
manufacturing systems (Bodner et.al. 1993). The language specification of FAPL is de­
signed assuming the existence of the Glue Logic, and the language processor relies on the
Glue Logic for the global data management, as well as inter-interpreter communication,
process synchronization, mutual execution and eondition monitoring. In other words, the
FAPL language provides an application programmer view of the Glue Logic.

As each process in the application programs is executed by respective language inter­
preter processes, the language processor system itself has no ability to implement con­
current processing. As the process of the FAPL language interpreter can be started from
the Glue Logic, the action of a certain condition can be composed in this programming
language. In this case, if the condition is met, the Glue Logic server invokes the language
interpreter process and sends a message to the interpreter process just created.

5 CONCLUSION

In this paper, the target and the implementation of the Glue Logic is described. The
authors believe in the effectiveness of the concept of infrastructural system for agent based
processing, which binds multiple tasks to be executed in the manufacturing work-cells,
defined as the methods and the processes.

192 Part Three Integration Frameworks and Architectures

There are many application program systems and operating systems which have many
useful tools. But the successful systems among them have sophisticated mechanisms to
integrate ready-made tools to obtain fully customized tools.

The authors would like to emphasise that the smart mechanism of the Glue Logic is
the very thing to make the programming system powerful and easy to be programmed,
especially in the execution environment which deals with and coordinates large and com­
plicated application programs.

REFERENCES

Bodner, D. et. al. (1983) Object-Oriented Modeling and Simulation of Automated Control
in Manufacturing, Proceeding of 1993 IEEE International Conference on Robotics and
Automation (1993), pp.83-88.

Goldberg, A. and Robson, D. (1983) Smalltalk-80: The Language and Its Implementation,
Addison Wesley.

International Electrotechnical Commission, Technical Committee 65, International Stan­
dard 1131-3 (1993-03), Programmable controllers - Part 3: programming languages

Takata, M. (1995) An Integrated Environment for Factory Automation, Integrated Compute1'­
Aided Engineering, Vo1.2, No.4, pp.249-263 (1995), Wiley-Interscience.

Takata, M. (1993) A Programming Environment for Factory Automation, Proceeding of
Symposium on Manufactur'ing Appl'ication Programming Language Environments, Ot­
tawa, Canada, Oct. 4-5, 1993, pp. 215-224.

Takata, M., Ha'legawa, M. 811d Matsuka, H. (1990) A Unified Environment for Produc­
tion Operation, Proceeding of Symposium on Manufact'uring Appl'ication Programming
Language Environments, Ottawa, Canada, May 14-15, 1990, pp. 85-94.

BIOGRAPHIES

Masayuki Takata, born in 1959, is 811 assistant professor at the University of Electro­
Communications, Tokyo, Japan. He is currently studying on infrastructure systems for
manufacturing control systems. His rese81'ch interest includes the real-time manufacturing
work-cell controls and the application of the problem solving systems to the real-time
control. He received his Dr. Eng. from the University of Tokyo in 1995, on the study of
the application of knowledge-base reasoning systems to the real-time control tasks.

Eiji Arai: born in 1953.1.15, graduated 1975 Univ. of Tokyo, Dept. of Precision Eng.,
doctorial course: 1979 Graduate School, Univ. of Tokyo, Dr., Eng. In 1979, Research
Associate, Kobe Univ.; In 1983, Associate Prof., Shizuoka Univ.; In 1991, Associate Prof.,
Tokyo Metropolitan Univ.; In 1995, Prof., Osaka Univ.

Main Research Area includes: (1) Intelligent CAD/CAM Systems for Mech811ical Prod­
ucts; Conceptual Design Support, Intention Modelling, Kinematic Simulation, Assembly
Planning. (2) Intelligent 811d Distributed Produetion System Architeeture; Production
Process Description, Dyn81nic Scheduling, Active Database System. (3) Advaneed Pro­
duction Process; Intelligent Welding Machine, Modeling of Deformable Objects.

