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Abstract 

Open Distributed Processing (ODP) is a joint standardisation activity of the 
ISO and lTV. A reference model has been defined which describes an architec­
ture for building open distributed systems. This paper introduces the key aspects 
of the reference model of open distributed processing, including the ODP confor­
mance framework. We discuss how specific formal techniques are used in the ODP 
viewpoints, along with the implications for conformance assessment using such tech­
niques. Particular attention is given to the role of consistency in the conformance 
assessment process. Finally, we review the current work on an ODP conformance 
testing methodology. 
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1 THE OPEN DISTRIBUTED PROCESSING MODEL 

Open Distributed Processing (ODP) (29) is a joint standardisation activity of the ISO 
and ITU. A reference model has been defined which describes an architecture for build­
ing open distributed systems [36, 33). Central to this architecture is a viewpoints model. 
This enables distributed systems to be described from a number of different perspectives. 
There are five viewpoints : enterprise, in/ormation, computational, engineering and tech­
nology. Requirements and specifications of an ODP system can be made from any of these 
viewpoints. 

The framework for the standardization of Open Distributed Processing is provided by 
the Reference Model for Open Distributed Processing (RM-ODP), the essential, normative 
parts of which were completed early in 1995. The RM-ODP gives a structure for a family 
of standards for common interfaces, reusable components and supporting notations needed 
for the establishment of a wide range of distributed systems. 

The reference model is published as ISO 10746, and is in four parts (29): 

Part 1: Overview. This provides an introduction to the reference model, explaining 
its objectives and giving background to the concepts defined. Part 1 also includes a 
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number of larger examples of ODP use. This part was completed somewhat after the 
main normative parts (2 and 3), in May 1996. 

Part 2: Foundations. This part defines the basic concepts which make up the ODP 
Object Model, and supporting concepts needed to describe the specification techniques 
and architectures which are based on it. It also defines the ODP approach to conformance. 

Part 3: Architecture. This part defines five viewpoints focllssed on various major 
concerns in the creation of distributed systems, and identifies a set of functions needed to 
construct such systems. 

Part 4: Architectural Semantics. This part provides a formal basis for the refer­
ence model. It does this by giving interpretations of the main ODP concepts in a number 
of standardized formal description techniques. Further detail is given later in section 3.2 
of this paper. Part 4 is currently undergoing its final phase of balloting as an International 
Standard. 

This paper introduces the key aspects of the reference model of open distributed pro­
cessing, including the ODP conformance framework, in section one. Section two discusses 
the requirements on formal techniques that ODP makes. The use of specific techniques 
within the ODP viewpoints is considered in section three, along with the implications for 
conformance assessment using such techniques. Particular attention is given to the role 
of consistency in the conformance assessment process. We review the current work on an 
ODP conformance testing methodology in section four, and we conclude in section five. 

1.1 The ODP Object Model 

ODP is object based; the initial set of concepts used in the reference model define objects 
which are encapsulated and which interact only at well-defined interfaces. It is not object 
oriented, because the strong emphasis on implementation inheritance normally found in 
object oriented programming languages is not appropriate when defining objects whic:h 
are to form the parts of a distributed system. 

An object in ODP can have any number of interfaces, which may be of the same type 
or of different types. This ability to define objects with multiple int.erfaces, and to define 
the dynamic creation and deletion of interfaces, gives a powerful tool for describing t.he 
evolution of object behaviour and the development of system configuration. In particular , 
the ability to define the interaction of objects at an interface which is subsequently hidden 
forms the basis of many forms of object composition. 

The behaviour at an interface is expressed in terms of a set of interactions, considered 
as atomic: at the level of abstraction being used. The general object model does not place 
constraints on the nature of these interactions, but the more detailed architectural part 
concentrates on two kinds of interaction - operation invocation and stream flow - leading 
to two major categories of interface. 

In addition to the basic object model, concepts are defined which relate to the spec­
ification languages which are used in defining object based systems. These include ideas 
of behaviour specification, type, class, instantiation and template. The definitions given 
are generic, capturing concepts found in slightly differing forms in a number of differ-
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ent specification languages. They indicate points where language specific rules are likely 
to be found associated with a particular notation, but the representation in the various 
languages of interest is left as part of the architectural semantics. 

1.2 The ODP Viewpoints 

One of the most important structuring principles in ODP is the definition of a set of view­
points. The idea is to divide the complete system specification, which may be very large 
and complex, into a number of areas of concern appropriate to the different stakeholders 
in the design process. If the different viewpoints are well chosen, they can be developed 
with a fair degree of independence, simplifying the specification activity. Of course, the 
viewpoints remain interlocking views of a single system, and so they are not fully inde­
pendent . Correspondences between them must be declared, even if only by identifying 
elements which are referred to in more than one viewpoint as equivalent. 

The ODP architecture defines five viewpoints, as defined below. The rules associated 
with each viewpoint effectively define the grammar of a corresponding viewpoint language, 
and the viewpoint specifications produced for a system must be valid utterances in these 
languages . 

The enterprise viewpoint 

The starting point for a system design is the identification of the roles played by entities 
influencing or influenced by the system, the form of the agreement or contract relating 
these roles, and the policies which are to direct the detailed system design. In many 
respects the enterprise viewpoint establishes and documents the boundary conditions 
constraining the remainder of the design activities. 

The information viewpoint 

The interaction of different objects depends on the sharing between them of a sufficient 
interpretation of the parameters of the interaction for there to be meaningful communi­
cation. The objective of the information viewpoint is to provide a definition of the shared 
model used to interpret the information communicated. There will either be a single 
information model or a small number of overlapping information models, reflecting the 
domain structure in which the syst.em is to operate. 

The enterprise and information viewpoints are concerned with the environment in 
which the system is to operate, rather than with the distribution process itself. The 
individual elements which participate in the system's behaviour are not yet visible. 

The computational viewpoint 

The functional decomposition of the system into a collection of interacting objects forms 
the basis for distribution. Once a computational model of the system has been defined, 
the way is open for a statement of the mapping from this configuration to the available 
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physical resources, and the communications requirements can then be deduced from the 
computational statement of the information flows needed. 

The specific details of the object model implicit in the computational language effec­
tively define a virtual machine for the execution of the computational specification. It is 
this virtual machine which forms the basis for portability and process migration . 

The engineering viewpoint 

The engineering viewpoint defines the mechanisms which support the various actions and 
interactions required in the computational specification. These engineering specifications 
can be seen as the templates which would be used when creating an infrastructure on 
which to interpret the computational specification. 

A large part of the engineering specification is concerned with the definition of chan­
nels capable of supporting the various kinds of computational interaction at operational 
and stream interfaces. This includes the specification of recipes to achieve various trans­
parencies - solving some of the common problems found in distributed systems, such as 
location or failure independence. Other aspects are concerned with the local behaviour 
of objects and with the management of resources needed to support it. 

The technology viewpoint 

The technology viewpoint adds little to the general specification of system behaviour. 
It is concerned with the collection together of any necessary pointers to pre-existing 
specifications, such as the specification of supporting protocol stacks or collections of data 
elements. The linkages thus established form an important step in the interpretation 
of system behaviour from test results, but the detailed conformance requirements will 
generally be found in the specifications referenced. 

The tool chain 

One of the aims of ODP is to provide a coordinated family of standards which encourages 
the creation of a powerful tool chain able to construct implementations from the set of 
viewpoint specifications. For any particular design, the computational viewpoint provides 
the application structure, the enterprise and information viewpoints provide common def­
initions, policies and constraints, and the engineering viewpoint provides standard tem­
plates for the reuse of established communication and resource management techniques. 
Such tool chains will play an important role in making the development of distributed 
systems a cost-effective process. 

1.3 The ODP Functions 

Having established the viewpoint languages, the architecture next defines a set of common 
functions needed to support distribution . Many of these are concerned with aspects of 
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channel support, either directly or by provision of the additional information necessary 
to support channel establishment. 

Examples of ODP functions are the trading function [10], used in locating suitable 
services by type when building configurations, and the type repository function [27], 
used in managing and federating the different type systems shared between many ODP 
components. Components performing these two functions are already being standardized, 
with the trader currently nearing publication. 

The OOP functions are most closely related to the engineering viewpoint, but the 
whole set of viewpoints is used when standardizing them. 

1.4 The ODP Conformance Framework 

OOP defines a basic framework for conformance as part of the reference model, rather 
than it being retrofitted later, as in OS!. The framework identifies the three key roles as 
being those of the standardizer, implementor and tester. 

The foundation concepts include the idea of a reference point as being a specific lo­
cation at which one or more interfaces can be localized, so that interactions at those 
interfaces can be observed. A standardizer can then declare some subset of the possible 
reference points in the system configuration for the component being defined as confor­
mance points, stating the set of conformance requirements to be met at each of these 
points. 

There are four different kinds of reference point, corresponding to different interfacing 
techniques and different testing technologies. They are: 

L interworking reference points, at which interactions take place on an observable 
communication medium, so that communication events can be deduced from obser­
vation of the medium. Most OSI conformance testing is concerned with interworking 
reference points. 

2. programmatic reference points, which represent boundaries bet.ween software com­
ponents within a system. The boundary, for example, can be between an application 
and its library or middleware, or at the protection boundary of the system kernel. 
Events in such an interface can be observed by using a suitable software test harness, 
either to provide an artificial environment or to gain access to the interface within 
the operational system. 

3. perceptual reference points, which represent interactions between the system and the 
physical world which thus need to be checked by direct observation. A perceptual 
reference point may be at a human to computer interface, or it may be at a remote 
sensor or physical actuator in a process control system or for a robot. 

4. interchange reference points, which are points at which interchangeable media are 
read or written. Examples here might be the checking of the correctness of discs 
passed between otherwise unconnected systems, or testing of the correctness of 
physical audit or archive media. 
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Once the conformance requirements have been established by the standardizer, the 
implementor must create an implementation and make a claim of its conformance to 
the standard. This involves the implementor naming the standard and declaring which 
physical locations and test procedures correspond to the various reference points required. 
In general, this declaration will involve the implementor in declaring a suitable test and 
interpretation procedure which can be carried out to identify the primitive actions required 
by the standard. 

This is no different in principle from the situation in traditional protocol testing, where 
the communication medium and the form of any supporting lower layers must be declared. 
However, it may be considerably more complex in practice because of the wider range of 
supporting mechanisms which may be available. Thus, for example, the testing of a 
network protocol requires the identification of data link service events, but there are only 
a limited number of commonly used network and datalink profiles. On the other hand, the 
checking of a subtype relationship in a federated type repository may require the testing 
of steps in an algorithm supported in different locations by a variety of standardized and 
proprietary interaction mechanisms, depending on the engineering domains involved. 

From these requirements comes the idea of a general Implementation Conformance 
Statement (ICS) and a much fuller set of extra information for testing (IXIT) than in 
previous conformance testing activities. 

Finally, the tester must use this collection of information to plan and execute a testing 
programme. The testing observations must be interpreted using the information in the 
IXIT to recognize (or not) the observations as being the events referenced in the stan­
dard, and then the behaviour, in terms of these events, must be checked for correctness. 
The broader scope and size of distributed systems makes exhaustive testing completely 
impractical. At the same time, however, the growing reliance on the software tool chain 
offers some hope of simplifications by certifying key components, such as Interface Defi­
nition Language [26] compilers and stub generators. It is becoming possible to validat.e 
that these tools generate correct engineering viewpoint channel components from correct 
IDL, thus eliminating a large body of potential run-time testing. 

2 FORMAL TECHNIQUES IN ODP 

The use and choice of formal description techniques (FDTs) within ODP has implications 
for both the development and conformance assessment cycles. A number of different 
techniques and combinations of techniques have been considered, and part 4 of the refer­
ence model provides a detailed interpretation of the basic concepts from the descriptive 
model in a number of formal description techniques. Within ODP, formal description 
is viewed as enabling precise, unambiguous, and abstract definition and int.erpretation 
of ODP standards, and FDTs have been widely used in a number of different contexts 
[16, 7, 39, 35]. 

Techniques being considered include those arising from considerations of communica­
tion and concurrency (in particular from protocol engineering) such as LOTOS [2], Estelle 
[21] and SDL [6], together with those arising from general software engineering concerns, 
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for example Z [40], VDM [30] and Raise [18]. The architectural semantics currently con­
siders the languages LOTOS, Estelle, SDL and Z. 

Although ODP can be viewed as a natural progression from OSI, ODP includes a 
wider range of modelling concepts which are needed in order to encompass the concerns 
of ODP; these range from enterprise policy specification to the description of engineering 
infrastructures. These differing concerns place a number of requirements on FDTs in order 
that they may support specification and testing of modern distributed systems. Current 
languages (both informal and formal) do not support all of these requirements, and it is 
likely that combinations of languages will be used for the specification of ODP systems 
and standards. 

One major departure from OSI is that ODP modelling is object-based: objects are 
encapsulated and they interact via a number of interfaces (potentially more than one). 
In addition, there is a requirement within ODP to be able to specify the composition 
of objects and for incremental specification using inheritance. The growth of object 
orientation as a modelling paradigm has led to the definition of a number of object­
oriented flavours of FDTs, all of which are able to support the required concepts to 
various degrees. These flavours include SDL-92 which provides an upwardly compatible 
object-oriented version of the extended finite state machine notation SDL; Object-Z [11], 
an object-oriented version of the state based language Z and proposals on how to use 
LOTOS in an object-oriented style. 

However, of these variants only SDL-92 is as yet standardized, and clearly languages 
or methods advocated in a standard must be sufficiently mature and stable, and therefore 
should be standardized. Thus it is likely that consideration of FDTs in the ODP reference 
model will be restricted to LOTOS, SDL-92, Estelle and Z as the standardised or near 
standardised languages. 

Two further ODP modelling requirements which are not in general supported by stan­
dardised formal languages are dynamic re-configuration and the ability to express non­
functional requirements. 

Because ODP systems can be modified and extended during their lifetime, ODP offers 
a flexible model of configuration. For example, faulty components may need to be replaced 
or it may be desirable to enable components to migrate in order to enhance performance 
and availability. The majority of semantic models of distribution and concurrency, e.g. 
labelled transition systems, finite state machines, event structures or petri nets, only allow 
static configuration. As a result the ability of LOTOS to model dynamic reconfigurat.ion 
properly is limited and rather clumsy, [34, 31) discuss the support for dynamic reconfigu­
ration in LOTOS, and the extensions needed to support it fully. On the other hand SDL 
and Estelle lack a formal semantics, a necessary pre-requisite for convincing modelling of 
dynamic reconfiguration. 

The term non-functional refers to properties not identifiable in terms of a sequence of 
interactions between communicating objects; for example, quality of service and security 
issues are usually deemed non-functional. The provision of support for multi-media in 
ODP means that such requirements are important for the specificat.ion and testing of 
ODP systems. FDr example, the expression of real-time quality of service constraints, 
such as latency, throughput and jitter, is significant. [3] discuss the demands made upon 
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ODP modelling notations by the use of stream bindings and real-time synchronisation in 
the specification of continuous media. 

Of the available notations, SDL, SDL-92 and Estelle all support a model of quantitative 
time, but it is far from clear that these are appropriate for definition of quality of service 
constraints [3] . LOTOS supports the expression of the temporal ordering of actions, 
but not the expression of real-time which is needed for quality of service constraints. A 
number of real-time extensions to LOTOS have been proposed, and one such variant, E­
LOTOS, is currently undergoing standardisation. In addition to the real-time aspects, the 
new standard contains improved means to model mobility and reconfiguration [20] . The 
specification of non-functional requirements for an ODP system raises significant issues 
concerning automatic test generation from FDTs which involve real-time. 

As a general purpose language, Z has the ability to support the specification of real 
time systems without extending the syntax. Work on real time specification using Z 
includes [12, 14, 32, 37]. However, as time is not built into the language as a pre-defined 
modelling concept, any real time specification using Z has to model time explicitly in a 
rather ugly way by using clocks and ticks etc. 

As can be seen all four languages LOTOS, Estelle, SDL and Z provide support for 
modelling in ODP in a number of ways. However, no one language has all the facilities 
required for the specification of modern distributed systems. 

This consideration, and others, point towards the use of multiple languages for the 
specification of a single ODP system. Single languages do not have the generality or 
expressiveness to support the full range of ODP specifications across all the viewpoints. 
Even wide spectrum FDTs such as Raise [18] are not able to embrace all needs (Raise, 
for example, has no support for real-time modelling) . Thus, it is now accepted that a 
multiple language specification paradigm must be employed and that mechanisms must 
be provided in order to enable these FDTs to co-exist. This has implications for both 
the consistency checking and testing aspects of ODP conformance assessment which we 
describe below. 

3 VIEWPOINT LANGUAGES 

As indicated earlier, viewpoint languages are used to express specifications in each of the 
ODP viewpoints. The RM-ODP defines the concepts and rules of the viewpoint languages. 
However, the reference model is not prescriptive in the choice of specification notation; 
rather, the intention is that particular existing notations will be instantiated for each of 
the viewpoint languages, by supporting the concepts and rules defined in the RM-ODP. 

Because the modelling concepts and abstraction levels of particular viewpoints vary, 
different FDTs are applicable to different viewpoints. A testing methodology for ODP 
then has to encompass the testing of a system potentially specified from a number of 
different viewpoints each employing a different notation at a different level of abstrac­
tion. We review here the specific requirements made by each viewpoint, and discuss the 
consequences for conformance assessment within ODP. 



The specification and testing of conformance in ODP systems 101 

Enterprise 

Enterprise modelling entails statements of policy, of organizational objectives and obliga­
tions which must be discharged. None of the concurrency based FDTs are thus seen as 
suitable candidates for the enterprise viewpoint language. Current enterprise modelling 
is performed in informal diagrammatic notations [17]; however, the semantics of the in­
formal diagrammatic notations is usually not precisely specified, and thus not suitable for 
automatic test generation. A logical approach may be applicable to the type of abstract 
statements of system constraints that are required in the enterprise viewpoint. Therefore 
a combination of temporal logic and Z is a possibility for a formally based approach. 

Because the enterprise viewpoint specifies organizational objectives and policy con­
straints it is not clear to what extent current automatic test suite generation techniques 
are applicable to it. However, since this viewpoint might specify key enterprise objectives, 
it would be instructive to see to what extent enterprise specifications can be used to offer 
guidance in the selection of test cases. 

Information 

Z is recognised as highly appropriate for information modelling, e.g. [38, 15]. Z is able to 
specify the format of information and operations to access and manipulate information 
without prescribing a particular implementation. Furthermore, many of the information 
viewpoint concepts have a natural interpretation in Z, which facilitates the formalisation 
of the information viewpoint in Z in the architectural semantics (see below) . 

The abstract data typing (ADT) languages incorporated into LOTOS and SDL are also 
possible vehicles for information specification. However, the correspondence between such 
ADT notations and the information language concepts is not as natural as it is for Z. This 
is because the definition of information in ODP centres on the notion that information 
must be exchangeable amongst users, which relates more directly to the behavioural part. 

In LOTOS, information is modelled in ACT ONE along with operations that can act 
upon them. The behaviour expression part of the specification may then use and manipu­
late instances of these items. However, it is not the behaviour expressions themselves that 
change the information items, rather it is the ACT ONE expressions that are associated 
with the action denotations of the behaviour expressions that manipulate the informa­
tion . As an example, consider the event offer g!push(val, emptY-Queue) in a behaviour 
expression. It is not the event offer that manipulates the information, but the ACT ONE 
expression push(val, empty_queue). Thus, only ACT ONE manipulates the information; 
however, ACT ONE can only be used within the behaviour expression of LOTOS. 

This has implications for both the location of conformance points in an information 
viewpoint and automatic test suite generation from this viewpoint. Current automatic 
test suite generation techniques based upon LOTOS (and other process algebras) generate 
tests from the process algebraic part of the language, and are not capable of independent 
ACT ONE generated tests. Hence these techniques could only be used in conjunction 
with other viewpoints (for example, the computational viewpoint), and therefore the 
viewpoints could not be assessed separately for conformance against an implementation. 
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Work on test generation from Z specifications includes [43, 8, 5, 42, 19], however, little 
of this work is specifically targeted towards distributed systems or ODP in particular. 
Exceptions to this include [8, 42] . [8] generalises the CO-OP method of extracting test 
suites from LOTOS specifications and applies this to Z specifications. Work done under 
the Prost project in the UK on the testability of managed object specifications is also 
relevant to the information viewpoint. In [42] an object-oriented variant of Z is used to 
specify managed objects, and an inheritance hierarchy is constructed which facilitates the 
construction of a sound and complete test suite. Importantly, though, the test generation 
aims to supply heuristics and is not automatic. The heuristics provide a collection of tests 
together with a residual component which makes explicit the functionality not covered by 
the test suite. The tests generate form an independent and orthogonal collection of tests. 

Because of the inheritance hierarchy, the reuse of tests between related specifications 
is maximised. A prototype tool-set developed by Logica provides organisational support 
for the collection of test specifications as they are generated. 

The use of Pascal as the Estelle data language prevents Estelle from being an appro­
priate vehicle for information modelling. 

Computational 

The computational objects and their interfaces become visible in this viewpoint.. The 
computational viewpoint also identifies the candidates for distribution (the choice being 
resolved in the engineering viewpoint); hence languages used in this viewpoint need to 
support the specification of interaction and synchronisation. Languages such as LOTOS, 
SDL and Estelle all offer considerable support in this respect; however, the encapsulation 
into objects is not directly supported (except in SDL-92) . The work on automatic test 
suite generation in the languages LOTOS, SDL and Estelle is directly relevant to this 
viewpoint, where the concerns are similar to those found in OS1. Relevant work is surveyed 
in [24]. 

Z lacks explicit support for interaction and synchronisation, although one of the object­
oriented dialects of the language, e.g. [7], may be more applicable. The object-oriented 
versions of the language offer encapsulation and define mechanisms to specify interaction 
and communication , either by adopting conventions or by definition of appropriate oper­
ators. Test generation methods for Z outlined above are again relevant to conformance 
in this viewpoint. However, aspects of concurrency and hiding have traditionally had less 
emphasis in Z, and this is reflected in the automatic test generation research using the 
language. 

Engineering 

The requirements for engineering viewpoint specification have many similarities to those 
for the computational viewpoint. Thus, from the potential candidate languages it is rea­
sonable to consider LOTOS, SDL and Estelle as suitable choices and Z as less appropriate. 
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Technology 

Specification in this viewpoint is primarily concerned with referencing appropriate stan­
dards and technologies to use in order to realise the specifications of the other viewpoints. 
This could involve referencing conformance standards and choices and combinations of 
standards as specified in a profile. Thus, extensive FDT specification is not a major re­
quirement of this viewpoint, although it should be noted that the appropriate standards 
and technologies are not always rigourously specified, so FDTs may be useful for this 
purpose as well. 

3.1 Consistency 

The consistency of multiple viewpoint specifications is an aspect of conformance assess­
ment that is new in ODP. The separation of concerns provided by the viewpoints can 
simplify the conformance assessment process, but it adds an additional obligation to be 
discharged, namely to show that all the viewpoints are consistent. Providing mechanisms 
to demonstrate that multiple viewpoint specifications are consistent is seen as essential to 
ODP. Furthermore, to use FDTs effectively within ODP, different FDTs are applicable to 
different viewpoints. This raises the issue of how to ensure consistency between different 
languages with different underlying semantics. This issue of consistency also arises out­
side ODP. For example, within OSI two formal descriptions of communication protocols 
can co-exist and there is no guarantee that, when the two protocols are implemented on 
the basis of these specifications, processes which use these two protocols can communicate 
correctly [13] . 

Consistency checking is relevant to conformance assessment, because even though the 
check is applied before any implementation is produced, clearly no implementation can 
hope to conform to all the viewpoints if they are inconsistent. Thus consistency checking 
can be viewed as part of ODP conformance assessment which is necessary before product 
testing can begin. 

There are a number of different interpretations of the meaning of consistency [4] : one 
interpretation is to view consistency in terms of whether specifications impose contradic­
tory requirements. Another interpretation is in terms of finding a common implemen­
tation, and as such is based on a notion of conformance. The final interpretation is ill 
terms of behavioural compatibility of specifications. We adopt the most general of these 
possible interpretations, and define that: 

"A collection of viewpoints is consistent if and only if it is possible for at least 
one example of an implementation to exist that can conform to all viewpoints." 

This definition of consistency hinges on the notion of conformance. Therefore, as usual , 
we divide conformance testing into two parts. 

Firstly, we consider formal conformance up to implementation specifications (a rela­
tion con! between specifications is used for this purpose) and then we consider confor­
mance testing of implementation specifications (essentially a very detailed specification 
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Figure 1: (a) Consistency checking in general, and (b) between LOTOS and Z. 

that won't be refined further) to real implementations. The latter is needed because im­
plementation specifications relate to real implementations in different ways for different 
FDTs and, in particular, for some FDTs not all implementation specifications are imple­
mentable. For example, a Z specification that contains an operation [n! : Nln! = 51\n! = 3] 
has no real implementation. Since the implementabiIity of a specification is a property 
that depends on the FDT used, we will capture this property in our model by an assertion 
lit, which we call internal validity. 

Then we can view a collection of viewpoints as consistent whenever an internally valid 
implementation specification exists which conforms to each of the viewpoints. Notice 
that because different (formal) languages have different notions of conformance, different 
relations are likely to be used with respect to the different viewpoints (e.g. we might use 
conformance in one viewpoint and functionality extension in another), see Figure 1 (a) . 

This methodological framework is compatible with current standardisation work on 
formal methods in conformance testing [25) . [25] defines a framework for the use of formal 
methods in conformance testing; in particular, it defines the meaning of conformance if 
formal methods are used for the specification of a communication protocol or service. In 
the framework, MODS is used to represent all internally valid implementation specifi­
cations under the testing assumption that any real implementation can be modelled by 
an element of MODS (which might be a labelled transition system, finite state machine 
etc). Conformance is asserted by means of a relation imp between MODS and the set of 
specifications SPECS (i.e. imp~ MODS x SPECS)-:-Then consistency is defined in [25] 
as finding a common element of MODS conforming to each viewpoint. The work at Kent 
diverges from [25] because to define consistency across viewpoints we consider MODS to 
include possibly unimplementable specifications, and therefore place an additional check 
on the implementable specification, that it be internally valid . 

With this addition in place, a framework such as [25] can be extended to provide a 
methodology for consistency checking of multiple ODP viewpoint specifications. Mecha­
nisms needed to support consistency checking can then be defined in terms of refinement. 
One specification is said to be a refinement of another if it restricts the set of conform ant 
implementation specifications. 

One way of determining whether two specifications are consistent is to unify them. 
A unification of two specifications is their least common refinement. We then check for 
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consistency by determining whether the unification is internally valid, which guarantees 
that a conformant implementation of the unification exists. 

The definition of consistency allows the differing aspects of FDTs to surface within 
the mechanism in appropriate ways because it involves two distinct parts: firstly the 
construction of a unification, and secondly verification of internal validity. Which part 
is appropriate depends on whether the behavioural or logical aspects are dominant in 
the FDT used. For example, consistency checking in Z and in LOTOS have a very 
different character. With LOTOS the central issue is finding a unification, while with Z 
the central issue is demonstrating that a unification does not contain any contradictions 
and can thus be implemented (assuming the specifications to be unified were themselves 
implementable). 

Consistency checking between viewpoint specifications in LOTOS can involve a num­
ber of different refinement relations (red, ext etc). It is possible to obtain syntactic 
definitions of various kinds of unifications, some of these are guaranteed to be least uni­
fications, and classified consistency induced by different refinement relations, [41]. 

In Z, finding a least unification of two viewpoints is an almost syntactical operation. 
For any two viewpoints, it is possible to construct a candidate unification, which is the 
least common refinement if one exists, [1] . Two conditions characterise whether the 
candidate is a refinement. 

Unification combined with verifying internal validity for the unification forms a suitable 
method of consistency checking in a single FDT environment. However, since specifica­
tions in different FDTs cannot be unified, a translation mechanism is needed to transform 
a specification in one language to a specification in another language. In order to support 
consistency checking between viewpoints written in Z and LOTOS, a translation between 
the two languages has been defined in [9J. This can be combined with the Z unification 
mechanisms to support consistency checking between LOTOS and Z, as shown in Figure 
1 (b). 

An important aspect in deriving unifications is the correspondence between the view­
points. Naming alone is insufficient to determine which parts of which viewpoint refer to 
the same object. Correspondence relations (which are similar to retrieve or abstraction 
relations [40]) document the dependency between the viewpoints, and the unification is 
relative to this correspondence relation. 

A framework for consistency checking such as that just described has important im­
plications for test case generation. In fact , a major consequence of the move from Open 
Systems Interconnection to Open Distributed Processing is the influence that viewpoints 
modelling has on generating tests. Specifically, the tests for an ODP system must be 
appropriate with regard to all the ODP viewpoints. There seem to be two alternative 
approaches to enhancing test generation strategies in order to fulfil the requirements of 
ODP viewpoints modelling . 

• Generation from Multiple Viewpoints. In this approach, classic methods of 
deriving tests from a single specification are enhanced to embrace multiple view­
points. For example, test cases could be derived from each viewpoint in turn and 
then composed in order to reduce the tests to only those that are appropriate for 
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all viewpoints. Clearly, an explosion in the number of test cases when tests are 
generated from each viewpoint would be an important issue here . 

• Generation from a Unification Specification. Central to the framework for 
consistency checking is the concept of a unification. Such a unification can be viewed 
as an "implementation specification" for the five viewpoints, i.e. a single specifica­
tion that reflects all the viewpoints (by being a refinement of them all) and is as 
developed a description of the system under consideration as can be expressed in 
the specification domain. So, an alternative approach is to first unify the view­
point specifications and then derive tests from this unification using classic test case 
generation techniques. It should be noted thought that it is still not clear that a 
manageable unification can always be derived from an ODP specification. 

There is a clear trade-off between these two approaches. In the first approach the 
specific process of generating tests is hard and must handle the multiple viewpoints prob­
lem, but no explicit unification of the ODP viewpoints is required. In contrast, in the 
second approach the process of generating tests is unchanged from that traditionally con­
sidered, but an actual unification must be derived and this may be difficult . Thus, the 
former approach puts the emphasis on extending test case generation technology, while 
the latter emphasizes extending software development technology for multiple viewpoints 
architectures. 

3.2 The ODP Architectural Semantics 

The need for an architectural semantics was recognised from the start of the work on 
the ODP reference model and is reflected in the inclusion of the architectural semantics 
as Part 4 of the standard. This provides an interpretation of the ODP modelling and 
specification concepts in LOTOS, Estelle, SDL and Z. The aim of this work is to enable 
formal description of standards for ODP systems to be developed in a sound and uniform 
way by providing a link between the ODP modelling concepts and each of the different 
FDTs (with differing semantics). 

Architectural semantics grew out of work on formal description of the protocol layers 
of the OSI reference model, where it was realised that specifications of protocol entities 
in different FDTs could not easily be combined. The problem had arisen because OSI 
concepts were being given totally different interpretations in different FDTs. By defining 
an architectural semantics, each architectural concept (interaction point, service access 
point etc) is given a fixed interpretation in different FDTs. 

The formalization of the ODP modelling concepts in its architectural semantics con­
sists of formalizing parts 2 and 3 of the reference model (i.e. the prescriptive parts) . The 
RM-ODP defines a set of basic modelling concepts which define an interpretation for a 
vocabulary together with a collection of viewpoints which specify different aspects of a 
distributed system. The architectural semantics respects this distinction and comprises 
an interpretation of modelling concepts in a number of different FDTs together with a 
formalization of the viewpoint languages (directly and in particular FDTs). Conformance 
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assessment of an ODP system written using a formal technique begins with the archi­
tectural semantics, both as a means to interpret the specification, and hence to provide 
for meaningful test generation, and to define the location of conformance and reference 
points, i.e. at which locations the testing will take place. As an illustration we discuss 
the approach taken in the semantics using LOTOS and Z. 

Modelling concepts 

Rather than provide a mapping of all the ODP modelling concepts, the architectural 
semantics focusses on the most basic, leaving interpretation of higher level architectural 
concepts to be made indirectly through their definition in terms of the most basic ones. 
The focus on object-based modelling means that many of the basic concepts centre around 
these definitions, and provide interpretations of Object, Interface, Composition of objects, 
Type, Class etc. In addition, there are interpretations of notions of Action, Behaviour, 
Communication, Refinement, Pre- and Post- condition etc. 

The architectural semantics also defines which relation in a language is to be used 
to assert conformance. For example, in LOTOS conformance and refinement are then 
identified with the relations conf for the former, and red or ext for the latter. 

Refinement has a well defined interpretation in Z, although importantly there is no 
general non-transitive relation that corresponds to conformance. Thus Z supports a series 
of refinements from abstract to more concrete specifications, but not the ability to deter­
mine conformance to an implementation specification (that might be written in another 
formalizations, e.g. labelled transition systems). The definition of a suitable conformance 
relation is an area that needs further study. 

Formalization of Viewpoint Languages 

Concepts from the viewpoint languages can be represented directly in particular formal 
techniques, we illustrate this by describing the information viewpoint in Z, and part of 
the computational viewpoint in LOTOS. 

Formalization of information viewpoint in Z 

An information specification corresponds to a Z specification, with the data being rep­
resented by the types and the information processing activities given by the possible 
behaviours as described by the operations in the specification. A static schema then cor­
responds to the bindings of the variables within the state schema at any point in time. 
An invariant schema corresponds to predicates given in the state schema and axiomatic 
descriptions within a specification (i.e. the predicates that the specification always satis­
fies) . 

Finally, dynamic schemas correspond to the possible behaviours of a Z specification. 
Since behaviour is given by the performance of the Z operation schemas, a dynamic 
schema corresponds to one or more operation schemas in the Z specification. Note that 
within Z the representation of invariant schemas and dynamic schemas are combined. Any 



108 Part Four ODP Testing 

Z operation must satisfy the invariants within state schemas and axiomatic descriptions, 
thus any behaviour represented by the Z operations is constrained by the invariant schemas 
by default. The initialization schema of a Z specification is an example of a information 
viewpoint static schema, as such an initialization describes the values of variables (i.e. a 
binding) at a particular point in time, namely initially. 

Because behaviour is represented by the Z operation schemas, a conformance state­
ment in an information specification corresponds to one or more operation schemas. If 
a conformance point in the engineering or computational viewpoints has behaviour that 
uses information, a check on the use of the information is required to ensure conformance. 
This behaviour is said to conform if the post-condition and invariant predicates of this 
information manipulation are satisfied in the ' associated Z schemas. 

A reference point will occur at an interface where tests can be applied to check for 
conformance, In Z, interfaces are associated with collections of operation schema;; (the 
rest being hidden as described above), so reference points can be considered to reside at 
the pre-conditions of the operation schemas. However, a Z specification will not in itself 
identify which reference points are programmatic, perceptual, interworking or interchange. 
Such identification would accompany the specification as informal commentary. 

Formalization of computational viewpoint in LOTOS 

The mapping between computational viewpoint concepts and LOTOS is less complete 
than the Z formalization of the information viewpoint. This is because the computational 
viewpoint contains a number of modelling concepts for which a direct representation in 
LOTOS is not obviously available. For example, modelling streams and environmental 
contracts in LOTOS is problematic because of the lack of real-time support in LOTOS. 

However, a subset of the computational viewpoint modelling concepts can be reflected. 
For example, a computational object is represented by an instantiation of a LOTOS pro­
cess with the behaviour of the object modelled as the behaviour of the LOTOS process. 
ODP operations are modelled by LOTOS actions and the interface of an ODP object is 
the behaviour of a LOTOS process after gates have been hidden. Subtyping relationships 
between computational interfaces are viewed in ODP in terms of a concept called be­
havioural compatibility. This concept has in turn been identified with the LOTOS con! 
relation. However, there is now some doubt over this choice. 

The exact relationship between conformance concepts and LOTOS constructs is not 
precisely specified in the current version of the architectural semantics. However, in a 
general sense, reference points will be identified with interfaces at which tests can be 
applied. The behaviour of specific actions from amongst those offered by an interface 
would be monitored during testing. Again, identification of the nature of the identified 
reference points, i.e. programmatic, perceptual, interworking or interchange, would have 
to be added as informal commentary. 
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The RM-OOP provides a basic framework for describing conformance requirements and 
testing procedures for distributed systems. However, considerable detail needs to be added 
before workable conformance requirements can be specified. At the same time there is 
a need for a consistent approach across a number of areas of standardization, including 
OOP. In particular, there are closely related requirements arising in work originating from 
the programming language community to define open system environments. This has lead 
to requirements for OSE profile definition in part 3 of ISO TR 10000 [28). 

At the same time, there is increasing emphasis on development of cost effective stan­
dards and support for product testing within ISO. A recent JTCI Interoperability Policy 
Statement indicated that individual subcommittees should be given authority and respon­
sibility for the development of an assessment methodology for their areas of activity. The 
ITU-T is expected to define a question on OSE conformance assessment in the next study 
period. 

On a practical level, the final editing of the OOP Trader standard has indicated an 
urgent need for a consistent OOP style for the drafting of conformance statements for 
system components, and for a common understanding of the way middleware requirements 
and assumptions are to be expressed. More compact representation of test requirements 
and test purposes are needed to avoid the combinatorial explosion. 

These considerations have lead to a general agreement within the OOP community 
that work on an OOP Conformance Testing Methodology is needed. SC21/WG7 has 
responded to this need by using the well established SC21 question procedures to clarify 
scope and direction of work before starting any necessary standardization activity. The 
question was formulated in the SC21 meeting in Ottawa in July 1995, and work started 
on it in the meeting in Kansas City in May 1996. 

4.1 The WG1 Conformance Testing Question 

The question posed was as follows (the text of the question quoted here and a summary 
of discussion to date can be found in [23)): 

"Are any new standardization activities needed to support the conformance testing of 
OOP systems, components and supporting tools? To what extent can OOP requirements 
be met by standards which already exist or are under development, and are new liaison 
activities needed to ensure OOP requirements are taken into account in other work?" 

Issues to be addressed: 

1. JTCI standards should avoid unnecessary constraint and proliferation of options; 
are there any features of the OOP architecture which lead to unnecessary complexity 
in the conformance testing process? 

2. Both the RM-OOP and the work on OSE profiling define four kinds of reference 
point - in OOP terms, programmatic, interworking, perceptual and interchange 
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reference points. In OSE, these are considered as interfaces to systems, while in 
ODP they are interfaces to objects. The implication of this fine grain structure and 
the associated object encapsulation for testing methodology requires study. 

3. Current work on conformance testing has concentrated on the testing of single in­
terfaces. In ODP, there is a need for testing which involves multiple interfaces: 

(a) ODP objects can have multiple interfaces, and assessment of conformance to 
the object's behaviour may require correlation of tests at a number of interfaces. 

(b) One ODP computational interface can correspond to a number of engineering 
interfaces of different kinds within the supporting channel (e.g. an interworking 
reference point and one or more programmatic reference points) . 

4. The ODP computational model includes stream interfaces; a methodology is re­
quired for testing the conformance of stream interfaces. 

5. The ODP concept of viewpoint is intended to support separation of concerns, and 
it is expected that the specifications in the various viewpoints wiJJ be combined by 
suitable tools (as, for example, when an information or computational declaration of 
need for a transparency results in incorporation of mechanisms based on an engineer­
ing specification). The conformance testing methodology may need to distinguish 
validation of this tool chain from detailed testing of the individual implementations 
produced. 

6. The ODP concept of environment contract allows performance constraints to be 
placed on implementations. There is a need to study the methodology for testing 
conformance to these performance requirements. 

7. The behaviour of an ODP computational object may require that, in defined cir­
cumstances, the object should initiate an invocation at one of its client interfaces. 
Current conformance testing methodology has concentrated on the testing of objects 
acting as servers. Study is needed to determine if extensions to the methodology 
are required to cover testing of client behaviour. 

4.2 Constructing an answer 

The initial discussions on this question have focussed on removing any architectural un­
certainty and on establishing priorities for the work. 

One of the key aspects seems to be the need to clarify what kind of standard wiJJ incl ude 
statements of conformance requirements. Consideration needs to be given to component 
standards, component composition standards and notational standards. These different 
classes of standard wiJJ have quite different forms of assessment, with corresponding style 
of ICS and IXIT. ODP conformance wiJJ place emphasis on aspects of cooperative, multi­
party operation, and dynamic configuration not addressed in protocol testing. On the 
other hand, some traditional concerns can be de-emphasised as a result of the introduction 
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of more powerful notations; static conformance virtually disappears as a result of the 
widespread use of notations such as IDL. 

On the other hand, there is now a level of agreement that apparent conflict in (2) 
above is not real; the system is, at some level of abstraction, an object, and there is only 
a problem if the system is seen as an absolute, rather than relative, structuring concept. 

Other inputs to date have primarily been concerned with clarifying particular issues 
in the question text, and further input is being sought. The Kansas City meeting defined 
priorities for the work, identifying three areas as the most urgent. These were (again, 
quoting from [23]): 

1. the creation of a model conformance statement, using the ODP Trader as an exam­
ple, which can be used as a pattern for other component standards being developed. 
The Implementation Conformance Statement and Test Cases for the OOP Trader 
are to be published as a separate part [22], and so can be developed further without 
delaying the main part of the technical specification. It was noted that much du­
plication might be avoided by the definition of implied requirements from an IDL 
specification. 

2. the study of certification of the tool chain as a way to simplify the assessment 
of conformance of complex systems, rather than exhaustive testing of the actual 
system. 

3. initial development of a methodology for the testing of conformance of stream im­
plementations. There is, as yet, little consensus in this area and thus development 
of an initial draft is urgent. 

5 FUTURE ACTIVITY 

This paper has outlined a wide area of work in which there is currently considerable 
activity. It has also indicated that there is now a well-established body of theory associated 
with specification and conformance testing. Over the next year or two a draft answer to the 
ODP question should be agreed and published, and work started on the standardization 
of the standard for an OOP conformance methodology. 

It is to be hoped that conformance testing experts and OOP experts will work to­
gether to establish the necessary framework for the creation of reliable and cost effective 
distributed systems in the future. 
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