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Abstract 
In a telecommunication network, information (represented by fixed-length packets) sent 
by a source typically passes through a number of nodes before reaching its final 
destination. In a variety of networks, the communication links that interconnect 
multiple nodes do not necessarily transmit the same amount of information per time 
unit. In particular, when the speed of an incoming link(s) in a node exceeds the speed of 
the outgoing link(s), buffering of packets must be provided in order to avoid excessive 
packet loss. In this report, we examine the problem of dimensioning such a 
rate-adaptation buffer. The packet arrival stream is described by characterizing the 
length of consecutive active and passive periods (i.e., a series of consecutive slots during 
which packets, respectively no packets, are generated); the former quantities can have 
any distribution, while the latter are assumed to be geometrically distributed. Using a 
generating-functions approach, an expression for the steady-state probability generating 
function of the buffer occupancy is derived. From this result, a closed-form expression 
for the tail distribution of the buffer occupancy is derived, that is practical and easy to 
evaluate; this latter quantity is especially useful for buffer dimensioning purposes. In 
addition, an accurate approximations for this quantity, that reduces all numerical 
calculations to an absolute minimum, is established as well. 
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1 SYSTEM DESCRJPTION 

Let us consider a cmmmmication network, where information is segmented into 
fixed-length packets, and transmissions, as well as arrivals of packets are synchronized 
with respect to an infinite set of periodic (i.e., equidistant) time instants. The time 
period elapsed by two consecutive time instants is referred to as one slot, and one slot 

The authors wish to acknowledge the support of Alcatel Bell Telephone Mfg. Co. (Antwerp, Belgium), 
and the National Fund for Scientific Research (NFWO). 

L. Mason et al. (eds.), Broadband Communications
© IFIP International Federation for Information Processing 1996



490 Session Five Traffic Engineering 

suffices for the transmission of exactly one packet, a situation which, for instance, occurs 
in an ATM-based B-ISDN network, where a packet then represents one ATM cell of 53 
bytes (De Prycker, 1991 ). 

The packets generated by a source typically pass through a number of nodes before 
reaching their final destination, and we consider the situation where at some point in the 
network, the amount of information per time unit that can arrive on the incoming link 
(input link) exceeds the amount of information that can be transmitted per time unit on 
the outgoing link (output link). This could be caused, for instance, by a difference in 
transmission speed between input and output link due to different clock rates, or 
because, due to some internal representation mode in a switching network, bits are 
added to the original packets before sending them through the network. In any case, if 
packet loss is to be avoided, incoming packets must be buffered in a so~alled rate­
adaptation buffer, and the difference in transmission rate can be incorporated in the 
corresponding discrete-time queueing model by choosing a different time scale, i.e., slot 
length, on the input and output link (meaning that we obtain longer slots on the output 
link compared to the input link), a situation which is depicted in Figure l.a,b together 
with some additional quantities still to be defined in this and the following section. In 
the remainder of the paper, a slot corresponding to a time unit on the Input (Output) 
Link will be referred to as an IL (OL) slot, and, similarly, the associated Time Scale on 
the Input (Output) Link will be denoted by ILTS (OLTS). 

The packet arrival process on the input link will be characterized by specifying the 
lengths of successive passive and active periods, being defined as a number of consecutive 
slots during which there is no packet arrival, respectively a number of consecutive slots 
each carrying exactly one packet (as we already mentioned, packet arrivals are 
synchronized with respect to the IL slot boundaries). In particular, we let the random 
variables b11 and i 11 , n ~ 1, represent the lengths of successive active and passive periods, 
where at some initial time instant t=O, the first active period is initiated, each active 
period being followed by a passive period. It will now be assumed that { b11 I n ~ 1} and 
{in I n ~ 1} are two sets of i.i.d. random variables; in addition, the elements of these two 
sets of random variables are assumed to be mutua.lly independent. This implies that the 
probability mass function of any random variable bn (in) can be represented by one 
common probability generating function B(z) (I(z)) 

B(z) ~ E[zbn] , I(z) ~ E[zin] (1) 

where E[.] denotes the expected value of the tagged quantity. In the analysis 
throughout the following sections, B(z) can take any form, whereas this is not the case 
as far as I(z) is concerned. For our purposes, it is sufficient to assume that I(z) has a 
geometric form with parameter a: and mean 1/(1-o:), and thus can be written as 

I(z) = ( 1-a:) z (2) 
1 - az ' 

although a more general, rational form for I(z) could also be taken into consideration. 
The analysis presented in this paper, is a first step in the study of the rate­

adaptation buffer-dimensioning problem. To that extent, we assume that the ratio of 
the transmission rate versus the arrival rate can be written as the fraction of two 
integers 

Tmnsmission Rate 
Ar1·ival Rate 

k-1 
T ' k ~ 2 ' (3) 

meaning that during the time period required to transmit k-1 packets, exactly k packets 
could arrive. This assumption thus covers a considerable range of possible values for the 
above mentioned ratio, while keeping the analysis tractable. Now, assuming that the 
initial time instant t=O coincides with both an IL and an OL slot boundary, then when 
tbe packet arrival process, originally generated on an IL TS-basis, is converted to the 
OLTS, the beginning (and ending) of a packet arrival will coincide with any of the k 
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time instants within an OL slot that arise from devising the OL slot into k time periods 
of equal length; such a time instant will be referred to as a microslot boundary, while the 
time period elapsed between two successive microslot boundaries, is called a microslot. 
This is illustrated in Figure l.a,b for k=6. 

To the best of our knowledge, the buffer dimensioning of a rate adapter module has 
received only little attention in the literature. In Rothermel (1992), for a Bernoulli 
arrival process, (i.e., geometrically distributed active and passive periods, with 
parameters a and 1-a respectively, where a is the load of the arrival stream on the 
ILTS), a simple approximate procedure was developed, which neglects the equidistant 
nature of slots during which multiple cell arrivals can occur on the OLTS. In Michie! 
(1990), also for a Bernoulli arrival stream, approximate results were derived that are 
sufficiently accurate, as long as the difference between input and output rates remains 
sufficiently small (Jess than 2%) . 

2 SYSTEM EQUATIONS 

Since the transmission of packets is synchronized to the OL slot boundaries, and as such 
is essentially based on the OLTS, the packet arrival process, described by the random 
variables bn and i11 , must be translated into corresponding quantities describing the 
arrival process on the OLTS. Let us therefore define b11,0 and i 11 ,0 as the random 
variables describing the lengths (i.e., the numbers of OL slots) of successive active and 
passive periods on the OLTS, where an active (passive) period on the OLTS is defined as 
a number of consecutive OL slots during which at least one (no) packet arrives. Since it 
is quite possible that a packet arrival crosses an OL slot boundary (see Figure l.b), it 
should be indicated that a packet is considered to be in the buffer only when its arrival is 
completed; therefore, the OL slot of arrival of a packet is the slot during which its 
arrival has ended. Also, note that during an OL slot, there are either 0, 1 or 2 packet 
arrivals. It is now possible to express b11,0 and i 11, 0 in terms of b11 and i11 respectively. 
For that purpose, let us also define R11 and P11, 0 ~ R11,Pn ~ k-1, as the discrete random 
variables that represent the position of the microslot boundary within an OL slot that 
coincides with the beginning (on the ILTS) of the n-th active, respectively the n-th 

(a) 

(b 

AI +•-----------,A~~---------~--------x+ 
bn.o in,o bn•1 .o 

R -4 P =5 n n 

(c) 

ILTS 

OLTS 
before SO 

OLTS 
alter SO 

Figure 1 Active and passive periods on Input Lin/,; Time Scale (a), and on the Output 
Link Time Scale before (b) and after (c) the Shift Operation. 
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passive period. Rn=O (P n=O) would correspond with the beginning of an OL slot, and 
successive microslot boundaries within an OL slot are numbered sequentially, up to k-1, 
as shown in Figure l.b. Obviously, the value of the steady-state joint probabilities 

p(i,j) £. 1 im Prob[Rn=i, Pn=j] , 
k-t 00 

(4.a) 

only depends on the number of IL slots enclosed by these two time instants (i.e., the 
length of btl), and therefore only depends on the difference i-j. Consequently, defining 
Pi= p(i,O), it can be verified that 

Pi = ~ Prob[(bn mod k)=i] = ~ E b(jk+i) 0 ~ i ~ k-1 
< 'j=O 

p(i,j) = Pi+k-j 0 ~ i ~ k-1 and i < j ~ k-1 

p(i,j) = Pi-j , 0 ~ i ~ k-1 and 0 ~ j ~ i , (4.b) 

where b(j), j ~ 1, denotes the probability mass function of the random variable bn, and (x 
mod y) represents the remainder of the fraction x/y of the integers x andy. From (4.b), 
it is also found that 

Prob[R =i] = Prob[P =J·] = 1/k 0 < i J. < k-1 
n n ' - ' - ' 

(4.c) 

as could be expected. After carefully examining the problem, the following relations 
between { bn, 0 , in,o} and {btl, i,J were established : 

bn,o = btl+ O(R11=0) + O(Rtl=1)- ((btl+k-Rll) div k) 

itl,o = ill+ O(Pll=O)- ((in+k+1-Pll) div k) 

(5.a) 

(5.b) 

where (x div y) denotes the integer part of the fraction xfy, and where the indicator 
function 0(.) equals one if the Boolean argument is true, and zero otherwise. 

Since we are interested in dimensioning the rate-adaptation buffer, let us define the 
random variable v11 as the buffer occupancy (i.e., the number of packets in the buffer, 
including the one that is currently being transmitted, if any) at the beginning of the first 
OL slot of the n-th active period (on the OLTS), and, similarly, Un as the buffer 
occupancy at the beginning of the first OL slot of the n-th passive period. With the 
previous definitions and assumptions, a number of system equations that relate the 
sequence of random variables u11 and v11 can be established. First of all, since exactly one 
packet can be transmitted during each OL slot of a passive period, we find that 

(6.a) 

where (.)• £. max{O,.}. On the other hand, the buffer occupancy at the beginning of a 
passive period can be expressed in terms of the buffer occupancy at the beginning of the 
preceding active period as 

ull = (vll- 1)+ + all+ 1 , 

where 

b. 
all = bll- bn,o , 

(6.b) 

(6.c) 

is the number of packets that must be buffered during the active period clue to the 
difference in arrival and transmission rate. Under the assumptions described in the 
previous section, it is not difficult to see from (5.a,b) and (6.a-c) that consecutive pairs 
of random variables {v11, Rn}, {u11, P 11}, for increasing values of n, form a two-
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dimensional Markov chain. However, we will not try to solve the system equations for 
the exact problem. Instead, we first execute a so-called Shift Operation (SO), which 
means that we let the the first packet of a new sequence coincide with the beginning of 
the first 01 slot of the corresponding active period, as shown in Figure l.c. In the 
remainder, the random variables ( b11, in, R11, P n) will be tagged with the subscript a if 
necessary, to indicate that we consider these random variables after the SO has been 
executed. This SO implies that, since R11,a=O, consecutive random variables Vn and u11 , 

for increasing values of n, form a Markov chain, thereby considerably reducing the 
complexity of the solution. 

Note that, compared to the exact problem, this SO has almost no influence on the 
length of passive and active periods (i.e., a difference in length of at most one slot), and 
therefore, we expect to find a very accurate approximation while keeping the analysis 
tractable. First of all, when combining (6.c) and (5.a) while setting R11=0, we obtain 

an = b11 - bn,a = (b11 div k) . (7) 

Using some standard techniques related to the calculation of z-transforms, it can be 
shown that the associated probability generating function A(z) is then given by 

k 1k-1 1-z-k s ~::, {27rL} 
A(z ) = 1< E s _1 B(tt z) , J.t = exp T , 

s=O Htt z) 
(8) 

where Lis the imaginary unit 
In addition, the SO can also alter the length of the passive periods, as becomes clear 

from Figure l.b,c. The random variable i11,a that represents the length of the n-th 
passive period afte1' the SO, is related to i11,a by 

in.a = i 11,o + O(R11=1,P 11=1)- O(R11 ~2,P 11=0)- O(Rn~2,Pn>Rn) , 

and system equation ( 6.a) now becomes 

(9) 

(10) 

The combination of (9) and (5.b) leads to an expression for in,a in terms of in, the length 
of the original passive period on the ILTS. This relation can be transformed into a 
relationship between z-transforms, and it can be shown that the corresponding 
probability generating function Ia(z) satisfies 

k-1 [ k ] 2 k-1 . 
Ia(zk) = fr E (pszk-1)-1 1 - :s I(lzk-1) P(lh-1) , P(z) ~. E zlpi . (11) 

s=O 1 - J.t z 1=0 

where the Pi'S and I(z) were defined in (4.b) and (1) respectively. Expression (11) for 
Ia(z) is convenient as far as the calculation of the mean value and higher order moments 
is concerned. However, as will become clear in the followin~ analysis, we especially 
require the probability mass function that corresponds to Ia(z). Assuming that I(z) 
indeed satisfies (2), Ia(z) can be transformed into 

_ 1-a k-2 s ( tf "' {27ft} 
Ia(z) - K=r E tk k (k-1) - s0 , v = exp k=r , 

t=O 1 - v a z 

!l 1_a {2(k-1) . } 
s0 a . E (2k-J-1 )Pj-k+l + Po/ a 

j=k-1 
•) 

s(t) !l [1 - a-k/(k-1)v-kt]- 1/(k-1) t 
-1/(k-1) -t P(a v l 

1 - il' v 

(12.a) 

(12.b) 
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3 THE GENERATING FUNCTION OF THE BUFFER OCCUPANCY 

Now we have everything at hand to be able to calculate expressions for U n(z) and V n(z), 
the generating functions corresponding to un and v11 respectively. First o{ all, system 
equation ( 6. b) can be transformed into a relation between z-transforms, which, in view 
of the statistical independence of On and Vn, leads to 

(13) 

On the other hand, from (10) and the statistical independence of un and i0 ,a, we obtain 

1 00 i 1 . Vn. 1(z) = U11(z) Ia(-) + E {Ii(1) -z Ii(-)} Prob[u11=1] 
z i=1 z 

Ii(z) £ E[zin,a I i11,a ~i] Prob[i11,a ~i] , 1 S i 

which, due to expression (12.a) for Ia(z) equals 

k-2 i 
I ( ) - 1-a E (t){~} i z - K-1 s 1 - xz tk k/(k-1) . 

t=O x=v a 

Combining the previous expressions for Ii(z) and V11• 1(z), we find 

1 1_a k-2 {U 11(x) U11(x) } 
Vn+l(z) = Un(z)Ia(z-) + K-f E s(t) ~- -1 tk k/(k-1) 

t =0 1 - XZ x=v a 
(14) 

The buffer occupancy will typically reach its highest values just after an active period, 
i.e., at the beginning of a passive period. It is appropriate to use the distribution of the 
buffer occupancy at these worst-case time instants for buffer-dimensioning purposes. 
We will therefore establish an expression for U(z), the steady-state probability 
generating function describing the buffer occupancy at the beginning of a passive period. 
The system will reach a steady-state only if the equilibrium condition is satisfied, 
meaning that p, the mean number of packet arrivals per slot (on the OLTS) in the rate 
adapter buffer must be less than 1, which is equivalent to requiring that 

1~(1) > A'(1) , (15) 

where primes denote derivatives with respect to the argument. In other words, the mean 
length of a passive period on the OLTS must exceed the mean number of packets that 
are accumulated during an active period. Equations (13) and (14) now lead to the 
following expression for U ( z) : 

k-2 . 
z ( z-1 ) A ( z ) . E r j z J 

U(z) = , J=O , Q(z) £ zk-1 - ak . (16) 
zk-1 - (a1'+A(z) Ia(~)Q(z)) 

While deriving (16), we have used the property that, just after an active period, there is 
always at least one packet in the buffer, implying that U(O)=O. The constants rj, 

0 S j S k-2, that occur in (16) are linear combinations of the unknowns U()kak/(k-1 )~, 
0 S t S k-2, and V(O), where V(z) is the steady-state limit of Yn(z). From Rouches 
theorem, one can show that the denominator 

(17) 

of expression (16) for U(z) has k-1 zeros inside the unit disk (including z=l). Without 
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giving a full prove, note that the zeros of Q(z) cancel the poles of Ia(1/z), which leads to 
the observation that D(z) is analytic inside the complex unit disk, a necessary condition 
for applying Rouche's theorem. In the remainder, we we will denote by Zj, 1 ~ j ~ k-2, 
the zeros of D(z) inside the unit disk and different from 1. Since U(z) is analytic inside 
the complex unit circle, these zeros must also make the numerator of (16) zero, and 
combined with the normalization condition, this completely determines the (k-2)-th 
polynomial in the numerator. We thus obtain 

( )A( ) k-2 z - z. 
U(z) = D'(1) z z-1 z II __ J • (18) 

D(z) j=1 1- zi 

where the coefficient D'(1) = Q(1)(Ia'(1)-A'(1)) guarantees the normalization of U(z). 
From this expression for the probability generating function, we readily obtain the 
moments of the buffer contents by taking the appropriate derivatives with respect to z 
for z=1 of U(z). In this paper, we focus attention on the tail distribution of the buffer 
contents, a quantity which is very useful for buffer dimensioning purposes. Whatever 
performance characteristic we are interested in, the time consuming part of all numerical 
calculations remains finding the zeros Zj of D(z) inside the complex unit disk. Therefore, 
we now show that these quantities ca.n be accurately approximated by 

z. (':! ak/(k-1 ),) 1 < J. < k-2 (19) 
J - ' - - ' 

Indeed, from expressions (12.a) and (16) for Ia(z) and Q(z), it readily follows that 

ID(ak/(k-1)))1 = (1-a)akiA(ak/(k-1)vt)lls(i)l , 

where the integer i is such that vik = vt. Now, since 

js(i)l $ kE1 p. 2(kE1)min(j+1,2k-j-1)a-jf(k-1) 
i=O I j=O 

1 ~ t ~ k-2 ' 

2 

[ 
-k/(k-1)] 1 1 - fr 

K 1 _ a-1/(k-1) 

(20) 

and jA(z)j<1 if jzj<1, the above relations explain why (19) forms a very good 
approximation for the Zj'S, which, due to the presence of the factor akfk, becomes better 
as k increases. The accuracy of this approximation is illustrated in Section 5. 

4 TAIL DISTRIBUTION OF THE BUFFER OCCUPANCY 

As has already been indicated in various papers (Woodside (1987), Desmet (1992), 
Sohraby {1992), Bruneel (1993)), if the probability generating function of the buffer 
occupancy has nothing but non-essential singularities of order 1 (i.e., simple poles), then 
the tail of the buffer-occupancy distribution can be approximated very accurately by a. 
geometric form, implying in our specific case that the probability that the buffer 
occupancy just after an active period exceeds an integer threshold U, is given by 

C -U-1 
- zo 

Prob[u>U] ~ 1 , (21) 
zo-

where zo is the pole of U(z) with the smallest modulus (i.e., the solution of D(z)=O 
outside the unit disk with the smallest modulus), which is a real and positive 
quantity larger than 1. Due to the residue theorem, the constant C in the above 
expression is equal to 

(22) 



496 Session Five Traffic Engineering 

Using approximation (19) for the Zj 1S, a close approximation 
calculation of these quantities can be derived. We obtain 

k-1 k 
D'(1) z0 - a 1 _ ak/(k-1) 

C ~ z0(z0-1)A(z0) 'IY(Z;J k/(k-1) . . 
o z0 - a 1 - a 

for C avoiding the 

(23) 

From equations (21) and (23), an approximation for the geometric-tail limit of the 
buffer occupancy distribution is obtained, which is easily evaluated, since it merely 
requires the calculation of z0. As will be shown in the next section, this approximation 
is extremely close to the actual values of the geometric-tail approximation, calculated 
by combining (22) and (23). 

5 SOME NUMERICAL EXAMPLES 

From now on, we let IJ denote the packet arrival rate on the input link. The rate 
adapter model previously described is completely specified, once the value of the 
parameter k (which determines the difference between input and output rate), and the 
active and passive period distributions (or, equivalently, B(z) and I(z)) are given. Up to 
now, B(z) could have any form, and in this section, we consider two cases, where either 
the input process is the output of a discrete-time M/D/1 queue with load IJ (in the 
remainder referred to as M/D/1-like arrivals), or a model where passive and active 
periods are statistically independent and both geometrically distributed (in the 
remainder referred to as geo-like arrivals), with parameters a and (3 respectively, 
satisfying IJ = (1-a)/(2-a~f]). Note that in the case of M/D/1-like arrivals, the lengths 
of active and passive periods indeed are statistically independent. 

First of all, for M/D/1-like arrivals, the parameter a characterizing I(z) in (2) 
equals exp{-!J}, the probability of having no packet arrivals during a slot in the M/D/1 
queue, and on the other hand, it has been derived in Bruneel (1993) that in this case 
B(z) is given by 

B(z) = R(~){z a- a , (24.a) 

where R(z) is implicitly defined by the equation 

R(z) = z exp{!J(R(z)-1)} . (24.b) 

Furthermore, in Steyaert (1993) it was shown that for a generating function satisfying 
(24.b ), the corresponding probability mass function, here denoted by 1~j), is given by 

(j!J)j-2 n 
1~j) = IJ lT-IJ!"xp{-j!J} , j ~ 1 . (24.c) 

From (24.a,c), the probability mass function corresponding to B(z) is readily obtained. 
In the case of geo-like arrivals, I(z) is still given by (2), while B(z) now equals 

B(z) = P:::fJ1~ . (25) 

An interesting quantity is the parameter L, which is defined as the ratio of the mean 
length of a passive (or, equivalently, active) period versus the mean length of a passive 
(active) period in the case of M/D/1-like arrivals and equal values of the load IJ of the 
input process. Consequently, 1=1 means that the geometrically distributed active and 
passive periods have the same average length as for the output process of an M/D/1 
queue with equal load, and considering increasing values of L while keeping the ratio 
IJ = B'(1)/(1'(1)+B'(l)) constant implies that the arrival rate in the rate adapter 
module remains constant, while the 'variability' in the arrival process increases. From 
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the previous, we find that the parameter 1 can be calculated from 

1 _ 1 - exp{-u} 
- 1- ll' 0 

497 

(26) 

The packet arrival process in the geo-like arrivals case can now be characterized by the 
pair ( u,1) instead of ( a,{J), for given values of k. 

The results obtained throughout this paper have been illustrated in Figs. 2-8. In 
Figs. 2-3, for various values of k and p=u.k/(k-1), we have plotted the 'exact' 
geometric-tail approximation for Prob[u>U], obtained from (21) and (22) (full line) 
together with the simplified result obtained from (21) and (23) (marks), in the case 
where the arrivals process is either M/D/1-like (Fig. 2), or geo-like (Fig. 3) with 1=1. 
First of all, it is found that, whatever the type of arrival process and whatever the values 
of the parameters characterizing the arrival process, no difference between the 'exact' 
and approximate results can be observed. These curves show that approximation (19) 
for the Zj 1S is extremely accurate, and can be used without any restriction. Furthermore 
comparing the curves of both figures, we may conclude that, although the active period 
distribution has the same mean value in both cases when considering equal values of p 
and k (due to 1=1; note that this also implies the passive periods have identical 
geometric distributions), a substantial difference between both cases exists, i.e., 
second-order effects (such as higher-order moments of the active periods) still have a 
considerable impact on the buffer behavior of the rate-adapter, and, therefore, cannot be 
neglected in the buffer dimensioning process. 

In Figs. 4--6, we have plotted the geometric-tail approximation for Prob[ u> U] in 
the M/D f 1-like arrivals case, for constant values of p and various values of k. It is 
observed that when, while large differences occur for low values of p, these diminish as p 

0 
0 

~ Prob[u>U] 
C! 

0 
0 

L1i 
0 
C! 

10 
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~ ~~k-~#-~~~~~-R~-r~ ~ +-~~~~~--+-~~-+--~~ 
C! 0 25 50 75 100 C! 0 

Figure 2 M/D/1-like arrivals, k=5,20, 
p=0.5,0. 7,0.9. 

20 

Figure 3 Geo-like arrivals, k=5,20, 
p=0.5,0.7,0.9, 1=1. 

40 
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Figure 4 M/D/1-like arrivals, 
k=5,10,20, p=0.5. 
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Figure 5 M/D/1-like arrivals, 
k=5,10,20, p=0.7. 

increases, i.e., the results for the tail distribution become less sensitive to the exact value 
of the output rate/input rate ratio. Finally, in Figs. 7-8, we examine the impact of 
increasing values of L on the buffer requirements of the rate adapter, in the geo-like 
arrivals case. The case 1=1 was plotted in Fig. 3; in Figs. 7-8, for various values of k 
and p, we considered values of L equal to 5 and 10. It is observed that, when comparing 
the respective curves for equal values of k and p, the required buffer space increases as L 
increases. Keeping in mind the conclusions in the discussion concerning Figs. 2-3, this is 
hardly surprising, since, again, increasing values of L implies increasing variability in the 
of the arrival process, and we observe that the impact of increasing values of L on the 
buffer beahvior is quite severe. 

6 SUMMARY 

In this paper, we have tackled the problem of dimensioning a rate adaption module, 
which arises in a node of a telecommunication networks if the arrival rate on the input 
link exceeds the transmission rate of the output link. Based on a generating functions 
approach, we obtained expressions for the mean and tail distribution of the buffer 
occupancy, which are easy to evaluate, since, due to the approximation for the Zj'S, 
numerical calculations are reduced to a minimum. From the numerical results we may 
conclude that (1) even for small differences between input and output rate (less than 
5%), the involved buffers can become quite large, and (2) second order effects, such as 
higher order moments of the lengths of active and passive periods are not negligible. 
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Figure 6 M/D/1-like arrivals, l•'igure 7 Geo-lil;e arrivals, k=5.20, 
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