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Abstraet 
There are significant programming and methodological problems when developing PVM 
programs, the process communication structure of which does not form trees but arbitrary 
graphs. We present a design methodology, called Ensemble, and the appropriate PVM 
techniques and tools for the efficient composition of arbitrarily structured PVM programs. In 
Ensemble PVM programs are described by annotated Process Communication Graphs (PCGs) 
and the sequential program components are designed with open communication interfaces. The 
annotated PCGs are interpreted by a universal PVM program Loader which spawns processes 
and sets values to their communication interfaces, thus establishing the program communication 
structure. The program components are reusable without any modification in other PVM 
programs. Annotated PCGs are produced from PVM program scripts. The methodology may 
be applied to any message passing environment by developing specific annotations of the PCG, 
reusable program components and the program loader. 
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1 INTRODUCTION 

PVM allows for the most general form of MIMD parallel computation, as programs in PVM 
may possess arbitrary control and dependency structures (Geist et al., 1994). At any point in 
the execution of a PVM program, the processes in existence may have arbitrary relationships 
between each other and any process may communicate and/or synchronize with any other. As 
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with all programming environments there are program categories that are well suited to the 
PVM characteristics, making them easy to implement, and others that are not well suited and are 
much more difficult to implement. Let us overview PVM's fundamental characteristics and 
examine their influence on the design and implementation of programs: 
1. The underlying architecture of PVM is any host system running UNIX and some special 

cases for Massively Parallel architectures, which are viewed as virtual machines. 
2. Hosts may run the PVM console, which allows the user to interactively start, query, modify 

the virtual machine. PVM programs may use the complete host system; distinct programs 
may use the same hosts. 

3. A PVM process is a UNIX process running on a host machine. A process is spawned by its 
parent process. To run a PVM program the user spawns a root process. 

4. Processes are identified by unique integer identifiers, called task identifiers (tid), which are 
generated upon process creation by pvm_spawn. The tid is only known to the spawning 
process and the spawned process may obtain its father's and its own tid by function calls. 

5. Processes may be spawned at specific hosts. If no host is specified PVM chooses where to 
spawn them. There are also some other spawning options. 

6. Process communication and synchronization are of two categories: 1) requiring process tids 
and possibly some message tag identifiers (tags), such as point to point asynchronous 
communication (pvm_send, pvm_recv, etc.) and muticast, sending the same value to a list of 
processes, and 2) requiring group definitions, such as beast, sending the same value to 
processes in a group and barriers, where groups of processes synchronize. 

Programming applications forming, in general, tree-like process communication dependencies, 
where each process communicates only with its parent and its children processes, is easy to 
program in PVM, as for example SPMD and master/slave programs. The parent process 
spawns its children processes and each child process obtains its parent's tid. However, 
programming arbitrarily structured programs, in which the dependency structures of processes 
form arbitrary graphs is not, in general, an easy task in PVM. Establishing graph-like process 
communication dependencies in PVM requires a substantial programming effort is in two 
directions: 
1. Creating the processes according to the parent-child model. 
2. Establishing the full graph communication. Processes have to obtain the tids of the processes 

with which they need to communicate. They already know their children's tids and they 
may easily obtain their parent's tid The programmer has to program processes to obtain the 
tids of the rest of the processes with which it needs to communicate. 

As arbitrary process graph structures are to be established, ad-hoc programming is used which 
depends on the specific communication dependencies of the program in hand. The explicit 
programming of the order of creation of processes and of establishing the communication has 
the following disadvantages: 
1. It is an overhead effort, since it is enforced by PVM (parent-child process creation and 

identification of processes upon their creation) and not by the program specification. 
2. It burdens the design and implementation of programs, since the extra coding makes 

programs more difficult to understand, to debug and to modify. 
3. It limits the reusability and scalability of program components, since components involve 

code which relies on specific dependency structures. 
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In this paper we present the Ensemble methodology and its techniques and tools for the efficient 
composition and initialization of arbitrarily structured static PVM programs overcoming the 
above disadvantages. The Ensemble methodology comprises three facets: 

1. The annotated Process Communication Graphs {PCGs). We use general PCGs, as a 
natural structure, representing the processes as nodes and the communication dependencies 
between them as arcs. PCGs have been extensively used in modeling (Andrews, 1991), in 
dynamic analysis and simulation (Pouzet et al., 1994; Schneider and Schaefers, 1993), in 
mapping techniques (Norman and Thanish, 1993), etc. We annotate nodes and arcs of PCGs 
with information a PVM program needs for the creation and communication of its processes. 
We consider the annotated PCGs as interpretable structures specifying the composition of PVM 
programs. The annotated PCGs are produced from program scripts, but may also be produced 
by a graphical tool. 

2. The reusable program components. Processes in PVM are spawned by loading 
instantiations of executable program components. We have developed programming structures 
and principles for program components which permit their reusability as executable library 
components. Such program components do not assume any specific communication structure in 
which the processes instantiated from them are involved. They specify a general parametric 
interface with the type and possibly the number of its communication dependencies and all the 
actual parameters of the communication procedures, such as pvm_send and pvm_recv, refer to 
elements of the interface. A reusable program component may have any number of 
instantiations in the same PVM program, as well as in other PVM programs, each instantiation 
having its own communication dependencies. When a process is instantiated it should be given 
appropriate information setting values to its interface. This information is annotating the PCG 
and is sent by the PVM Loader. 

3. The PVM Loader. A universal PVM process which automatically initializes PVM 
programs by interpreting the annotated PCGs. The PVM Loader visits the nodes of the 
annotated PCGs and spawns the appropriate processes (instantiations of reusable components) 
according to the annotation on the nodes. The Loader then sends the process interface 
information annotating the PCG to the processes it spawned. 

The structure of the paper is as follows: in section 2 we present the annotated Process 
Communication Graphs and their script representation; in section 3 we present the structure and 
design principles of reusable programs in PVM; in section 4 we present the PVM Loader; in 
section 5 we demonstrate the methodology by composing PVM programs all consisting of two 
types of reusable components. In section 6 we present our conclusions and plans for future 
work. 

2 THE ANNOTATED PROCESS COMMUNICATION GRAPHS 

Before we define the PCGs and their annotation let us describe a distributed application which 
we shall use as a demonstrating example. 

2.1 A distributed application: Get Maximum 

There are processes instantiated from a terminal component which possess a value; all terminal 
processes or simply terminals need to get the maximum value possessed by any of them. To 
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limit the number of messages the terminals do not broadcast their own value to all others; 
instead, there are processes instantiated from a relay component to which groups of terminals 
send their values, for simplicity their tids. The relay processes or simply relays cooperate to 
find the maximum of the tids, which they then send to their respective groups of terminals. 

The terminals have one communication dependency, that with their associated relay, which 
we call S (Server) type. The relays have two types of communication dependencies, one with 
their groups of terminals, which we call C (Client) type, and one with the relays, which we call 
P (Propagation) type. A relay may have any non negative number of C dependencies and P 
dependencies. The main actions of terminals and relays are: 

The actions of a terminal The actions of a rela 
send tid to relay (to S type) receive tids from the client terminals (from C type) 

receive maximum tid from relay 
(from S type) 

find the local maximum 1M of tids 
send LM to all other relays 
receive LMs from all other relays 
find the global maximum GM 
send GM to its client terminals 

(top type) 
(from P type) 

(toC type) 

We like the program to be easily configurable, that is, to be possible to add or remove any 
number of terminal and/or relay processes, without any modification of the program 
components, i.e. the terminal and relay executables .. 

2.2 The elements of the PCG and their annotation 

Processes will be depicted on PCGs by nodes comprised of two concentric circles (Figure 1). 
On the inner circle the type of dependencies are indicated. The inner circle depicts the general 
interface type of the program components. The arcs leaving the nodes indicate communication 
dependencies (of a specific type) with other processes. The points where the arcs cut the outer 
circle depict the actual interface of processes to other processes. Each point of intersection is 
called a port and is indexed by a unique positive integer within a port type. The arcs of the 
PCG connect ports of nodes. Under this scheme terminals and relays will be depicted on PCGs 
as in Figure 1 (a) and (b) respectively. 

terminal process 

(a) 
©t 

Figure I Graphical depiction of terminal and relay processes. 

Let us assume, for example, that we have a configuration of eight terminals connected to four 
relays. The three C type ports of relay R[l] are connected with the S type ports of three 
terminals T[l], T[2] and T[3]; the two C type ports of relay R[2] are connected with the S type 
ports of two terminals T[4] and T[5]; the two C type ports of relay R[3] are connected with the 
S type ports of two terminals T[6] and T[7]; and finally the single C type port of R[4] is 
connected with the S type port of T[8]. All relays are connected to each other via their P ports. 
The PCG depicting the process dependencies is shown on Figure 2. The ports are indexed and 
connected according to the described configuration. As a matter of convenience the nodes are 
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indexed by positive integers. The elements of the PCG described so far specify a general PCG 
independent of any parallel implementation system. 

Arcs on a PCG represent communication dependencies. For a complete communication 
specification in PVM, request identifiers, called tags, are needed which are used by both 
sending and receiving processes. The tag identifiers annotate the arcs of the PCG. In Figure 2 
the arcs are annotated by unique positive integers, shown in bold. 

Nodes may be further annotated by allocation information, if a process is to be spawned on a 
particular host Finally, nodes are annotated by the full path name of the executable from which 
the process it represents will be instantiated. For reasons of simplicity allocations and 
executable path names are not depicted on Figure 2. 

Figure 2 The annotated PCG of the application Get Maximum. 

The annotated PCG may be interpreted by the PVM Loader to initiate the program. The 
annotated PCG may be produced by a graphical tool or by a textual description. We have 
developed a script language and programs which read a program script and produce the 
annotated PCG. A program script has three sections: the first describes the general PCG, the 
second the annotation of the PCG specific to a parallel environment (in this case PVM) and the 
third the annotation specific to the sequential components. 

The script generating the annotated PCG of Figure 2, is presented in two columns in Figure 
3. The first section, headed with PCG, defines the nodes and the number of ports for each type 
(e.g. all T nodes have one port of typeS); it also defines the connections between the ports. 
The second section, headed with Parallel System defines the specific PCG annotation for 
the PVM. The compulsory annotation for RequestiD, annotating the arcs, is specified; here the 
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default specifies the annotation of the arcs by unique positive integers, but generating 
algorithms or direct annotations may be defined. Also optional annotation may be specified; 
here all processes are allocated on specific hosts. The third section, headed with Sequential 
System, annotates the nodes of the PCG with the file locations of the executables of the 
sequential components from which processes are to be instantiated. From the program scripts 
annotated PCGs are produced which are interpreted by the PVM Loader initiating the PVM 
program. 

A lication 
PCG 
Co•ponenta 
I* specify for each process the 
number of porta of each type*/ 
T[l], T[2), T[3), T[4), T[S), 
T[6], T[7), T[B) #porta • S:l 
R[l) #porta • C:3, P:3 
R[2), R[3) #porta • C:2, P:3 
R[4) #porta • C:l, P:3 

Connections 
I* Connect process porta */ 
T[l).S[l) <-> R[l).C[l); 
T[2).S[l) <-> R[l).C[2); 
T[3).S[l) <-> R(li.C(3); 
T[4).S[ll <-> R[21.C[ll; 
T(SI.S[ll <-> R[21.C[2); 
T(61.S[ll <-> R[31.C[ll; 
T(71 .S[ll <-> R[31 .C[2); 
T[BI.S[ll <-> R[41.C[ll; 
R[li.P[ll <-> R(31.P[ll; 
R[li.P(21 <-> R[41.P[21; 
R[li.P[31 <-> R[21.P[ll; 
R[21.P[21 <-> R(31.P[21; 
R[21.P[31 <-> R[41.P(31; 
R[31.P(31 <-> R[41.P[ll; 

Get Maximum 
Parallel Syate• 

enviro-nt PVM3; 
PVM3 annotation 
RequeatiD : default; /* annotate area 

by integer request Ids */ 
PVM3 allocation 
I* BPBcify the boats on which 

processes are to be spawned *I 
R(ll, T[ll, T[21, T[31 at orion; 
R[21, T[41, T[51 at zeus; 
R[31, T[61, T[71 at iamini; 
R[41, T(BI at adonis; 

Sequential Syate• 
Location 

I* full path and name of executable& */ 
R: 
"/home/users/easy_spawn/bcast/relay•; 
T: 

"/home/users/eaay_spawn/bcast/terDdnal"; 

Figure 3 The script of the PVM program for Get Maximum 

3 THE DESIGN OF REUSABLE PVM PROGRAM COMPONENTS 

Reusability of compiled program components in a message passing environment demands that 
their process instantiations should be possible to establish the communication dependencies 
required by parallel programs. As the number of process instantiations and their communication 
dependencies cannot be fixed, the program components should specify the number and type of 
communication dependencies in a general way. They should only provide the means for 
establishing communication between any process instantiated from it with any other processes 
via an interface. 

For establishing a point-to-point communication between PVM processes two values are 
needed in each process: the tid of the other process and the common tag identifier. Therefore, 
we define a data structure, called component port, having two elements in which (tid, tag) 
pairs may be stored. A program component may have any number of component ports of the 
same type, which are organized in an array. Finally, a program component may have many 
types of component ports. The types of ports form the array Interface, the elements of which 

lication 
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point to their array of ports. Each port is now identified by its type and its port index within the 
type. 

Upon their creation processes should fix their interface. This involves two actions: the 
creation of the appropriate number of ports for each type and the setting of value pairs (tid, tag) 
to the port structures. We permit flexible process interfaces, as program components only fix 
the type of ports and not the actual number of the ports within types. Each process may have 
any number of ports of each type. Processes in our methodology are created by the PVM 
Loader which visits the PCO nodes and spawns processes according to the annotation of the 
node. The PVM Loader sends the number of ports of each type (depicted on the PCO node) to 
the process just created. The first action of a process is to receive the number of ports of each 
type and make the appropriate number of ports of each type in its Interface. This is coded in the 
MakePorts routine. 

The value pairs (tid, tag) for each port cannot, in general, be sent at the time of process 
creation, as a process with which it needs to communicate may have not been spawned yet and 
its tid would not be known. The (tid, tag) pairs are send to the processes after all of the 
processes have been spawned, together with the type and index of the port. The processes 
receive the type, port number, tid and tag and set their Interface accordingly. This activity is 
coded in the Setinteface routine. 

In Figure 4 we present the general structure of a reusable program component, which 
consists of a declaration of the Interface structure having N types of dependencies and as 
actions: a call of MakePort s, receiving from the Loader and making the appropriate number 
of ports of each dependency type; a call of Set Interface, receiving from the Loader and 
setting the values of the ports; and a call of RealMain which starts the main activity of the 
component All PVM reusable components have the same structure; the programmer has only to 
replace N for the specific number of the types of ports and code the component activity in the 
RealMain, in which the parameters of the communication routines pvm_send and 
pvm_recv are expressions of the form Interface [ S). port [ p). tid and 
Interface [ S) • port [ p) • tag, where S is a port type and p is the number of port. By the 
time a process calls its RealMain its actual interface would be fixed. 

void -in() 
{ InterfaceType Interface(NJ, 

MakePorta(Interface), 
Setinterface(Interface), 
RealMain(Interface), 

F1gure 4 The slructure of reusable components in PVM 

Having defined the annotated PCOs and the structure of the reusable components, we may 
describe the final facet of the methodology, the PVM Loader. 

4 THE PVM LOADER 

The PVM Loader is a universal PVM program by which PVM programs composed according 
to the methodology are initiated. The PVM Loader takes as input an annotated PCO and visits 
all its nodes; at each node the Loader spawns an instantiation of the executable file annotating 
the node. Then sends to the process just created the number of ports of each type and annotates 
the PCO node with the tid of the process. Having visited all nodes and created all processes, 
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the PVM Loader visits the nodes once more and sends the port intetface information (port type, 
port number, tid, tag) to the processes. 

Suppose, in our example (Figure 2), that the PVM Loader visits the node R[2] identified by 
10: spawns process R[2], an instantiation of the program component relay and sends to it the 
number of its ports of each type, as shown in the first column of the following table: 

actual values eli{Pianation 
c 2 type C has 2 ports 
p 3 tvoe P has 3 ports 

The PVM Loader also annotates the node by the process tid, say tid(10). In its second visit to 
the node the Loader sends to the process identified by tid(10) information to set its intetface. 
The values are shown in the first column of the following table: 

4 
5 
9 
10 
13 

Running the PVM Loader with the annotated PCG as input we get the following output; the 
first column is produced by the Loader and the second by the terminal processes: 

Spawn process 1 (terminal) tid= c0005 ( 80004) 
Spawn process 2 (terminal) tid= c0006 (100003] 
Spawn process 3 (terminal) tid• c0007 (80005) 
Spawn process 4 (terminal) tid• 140004 (140004) 
Spawn process 5 (terminal) tid= 140005 (c0005) 
Spawn process 6 (terminal) tid= 80004 (c0006) 
Spawn process 7 (terminal) tid= 80005 (c0007) 
Spawn process 8 (terminal) tid= 100003 (140005) 
Spawn process 9 (relay) tid• c0008 
Spawn process 10 (relay) tid• 140006 
Spawn process 11 (relay) tid= 80006 
S awn rocess 12 rela tida 100004 

The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 

As the twelve processes, eight terminal and four relay are spawned, the PVM Loader prints 
their tids; the terminal processes print the global maximum of their tids. All terminal processes 
print the same maximum of #140005 which was the tid of process 5. 

For a PVM program to behave correctly, the nodes on the PCG and the actual program 
components must be compatible, that is, they should specify the former virtually and the latter 
actually the same number of types of ports. Furthermore, the connections between ports should 
be of compatible type, that is connected components agree on the type of messages they 
exchange and their management. The present version of the PVM Loader does not check the 
compatibility of the connections. We are currently investigating formal methods for describing 
and testing component compatibility, which will be integrated in the PVM Loader. 

The script language is flexible and permits the rapid composition of PVM programs. It is 
straight forward to edit scripts to scale a program, by adding and connecting new components, 

components, Spawn Spawn 
formal methods 
formal methods 
formal methods 
formal methods 
formal methods 

Furthermore, Furthermore, Furthermore, Furthermore, 
Furthermore, Furthermore, Furthermore, Furthermore, 

Furthermore, Furthermore, Furthermore, Furthermore, 
Furthermore, Furthermore, Furthermore, Furthermore, 

Furthermore, Furthermore, Furthermore, Furthermore, 
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to change the allocation of processes to hosts, change the topology of the components, etc., 
without modifying the program components. 

5 VARIATIONS ON THE GEf MAXIMUM PROGRAM 

The specification for the Get Maximum program in section 2 did not specify any particular 
topology by which the relay processes should be connected. In our solution of section 2 we had 
adopted a topology in which all relay processes are connected with each other. We may achieve 
the same program functionality by adopting different relay topologies. We shall present two 
variations, one in which relay processes form a star topology and a second in which they form 
a tree topology. For these variations we will modify the scripts and not the components. 

5.1 Get Maximum by star topology 

In this solution we use an extra relay process to which the old four relay processes will be 
connected. The four relay processes have now only one P (propagation) port, through which 
they send the maximum value received from their terminals. The new relay process, let us call it 
central, has four ports of type C (clients). The P type ports of the four relay processes are 
connected to the C type ports of the central process! Let us note, that the C and the P ports of 
the relay processes are compatible, as only one value is sent and one value received through 
them. The PCG for this configuration is depicted in Figure 5: 

Figure 5 The PCG of Get Maximum by Star Topology. 

Let us describe the behavior of the program in such configuration. The four relay processes, as 
before, select the maximum of the tids of their clients but now propagate it through their single 
port of type P to the central relay process. The central relay process receives tids from its C 
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ports and selects their maximum. There are no P ports to send the maximum. It then sends its 
maximum to its C ports. What actually sends is the global maximum, as it is the maximum of 
all maxima. On its C ports there are the four relay processes. Each receives the global 
maximum, but, according to the algorithm, they know that it is only the maximum of the central 
relay process. They compare it with their own maximum, select the value they have received 
and send it to their client ports. For this solution no changes were made to the terminal or to the 
relay program components, but only to the script. The executables of the terminal and relay 
program component were reused. The new program script was produced rapidly by modifying 
the program script of the version of section 2. From the script the annotated PCG was 
produced, which was given as input to the PVM Loader. The PCG part of the modified script 
and the final output of the program are in Figure 6: 

Get-Maximum-Star 
PCG 
Coapoaeats 

T[1], T(2], T(3], T(4],T(5], 
T(6], T(7], T(8]#ports • S:1 
R(1] #ports= C:3, P:1 
R(2], R[3] #ports = C:2, P:1 
R(4] #ports= C:1, P:1 
R(5] #ports • C:4, P:O 

Coaaectioas 
T(1].S(1] <-> R(1].P(1]1 
T(2].S[1] <-> R(1].P(2]1 
T(3].S(1] <-> R(1].P(3]1 
T(4J.S(1] <-> R(2J.P[1J1 
T(5].S(1] <-> R(2J.P(2J1 
T(6J.S(1] <-> R(3J.P(1J1 
T(7J.S(1J <-> R(3J.P(2J1 
'1'(8J.S.(1] <-> R(4J.P(1J1 
R(1J.P(1J <-> R(5J.S(1J1 
R(2J.P(1J <-> R(5J.S(2J1 
R(3].P(1] <-> R(5J.S(3J1 
R(4J.P(1J <-> R(5J.S(4J1 

pawn process 1 (terminal) tid= cOOOe 
pawn process 2 (terminal) tid= cOOOf 
pawn process 3 (terminal) tide c0010 
pawn process 4 (terminal) tid• 14000b 
pawn process 5 (terminal) tid= 14000c 
pawn process 6 (terminal) tid= 8000b 
pawn process 7 (terminal) tid= 8000c 
pawn process 8 (terminal) tid= 100008 
pawn process 9 (relay) tid= c0011 
pawn process 10 (relay) tid• 14000d 
pawn process 11 (relay) tid• 8000d 
pawn process 12 (relay) tid= 100009 
pawn process 13 (relay) tid• 4000a 

(1000081 The maximum tid is 14000c 
(14000bJ The maximum tid is 14000c 
(14000c] The maximum tid is 14000c 
(cOOOaJ The maximum tid is 14000c 
(8000bJ The maximum tid is 14000c 
(cOOOfJ The maximum tid is 14000c 
(cOOlOJ The maximum tid is 14000c 
(8000cJ The maximum tid is 14000c 

Figure 6 The PCG part of the script of the Get Maximum by Star Topology and the output. 

5.2 Get Maximum by tree topology 

In this variation we maintain the relationship of the eight terminals to the four relay processes 
having, as in the star solution, one P port. The P ports of R[l] and R[2] are connected with the 
C ports of R[S) and the P ports R[3] and R[4] are connected with the C ports of R[6]. Both 
R[S] and R[6] have two C ports and one P port; their P ports are connected to the two C ports 
of R[7], which does not have any P ports. The process structure is a tree of height 3: the 
terminal processes as leafs; R[l], R[2], R[3] and R[4] at level two; R[S) and R[6] at level one; 
and R[7] as the root. At each level, the relay processes receive the values from their clients, 
select the maximum and propagate it to the next level up. The root selects the maximum and 
sends it to its client processes. The relay processes below the root do the same until the 
maximum reaches the terminal processes. The script and the output are shown in Figure 7. 

We have demonstrated the flexibility of the methodology by producing non trivial solutions 
for a program specification using the same reusable components. The program components 
were reused within the same PVM programs, as well as in other PVM programs. The only 

T
T
T
T
T
T
T
'1
R
R
R
R
R

Get-Maximum-Star 
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changes required were in the program scripts. Although the script language is still under 
development, it has been successfully used to compose and execute programs from designs 
very rapidly. 

Get-Maximum-Tree 
PCG 
Co•ponents 
T[l], T[2], 
T[6], T[7), 
R[l] 
R[2], R[3], 

R[4] 
R[7] 

Connections 

T(3], T[4],T[5], 
T[B] #ports = S:l; 

#ports • C:3,P:l; 
R[5], R[6] 

#ports • C:2,P 1 
#ports = C:1,P 1 
#ports e C:2,P 0 

T[1) .S[1) <-> R[1) .C[1); 
T[2).S[l) <-> R[1).C[2); 
T[3).S[l) <-> R[1J.C[3); 
T[4).S[l) <-> R[2).C[l); 
T[5).S[1) <-> R[2).C[2); 
T[6).S[1] <-> R[3).C[l); 
T[7J.S[l) <-> R[3J.C(2]; 
T[B).S[l) <-> R(4).C(l); 
R(1) .P[1] <-> R[5) .C(1); 
R(2) .P(l] <-> R[5) .C(2); 
R[3).P(l] <-> R(6).C(l); 
R[4).P[l) <-> R[6).C[2); 
R(7).C(l) <-> R(5).P(l); 
R[7) .C(2] <-> R(6) .P(l); 

Spawn process 1 (terminal) tid• c0016 
Spawn process 2 (terminal) tid• c0017 
Spawn process 3 (terminal) tid• cOOlS 
Spawn process 4 (terminal) tid• 140011 
Spawn process 5 (terminal) tid• 140012 
Spawn process 6 (terminal) tid• 80011 
Spawn process 7 (terminal) tid= 80012 
Spawn process 8 (terminal) tid• 10000c 
Spawn process 9 (relay) tid= c0019 
Spawn process 10 (relay) tid= 140013 
Spawn process 11 (relay) tid= 80013 
Spawn process 12 (relay) tid= lOOOOd 
Spawn process 13 (relay) tid= 40010 
Spawn process 14 (relay) tid• 40011 
Spawn process 15 (relay) tid= 40012 

[80011] 
(lOOOOc) 
[80012) 
I 140011 I 
(c0016) 
[140012) 
(c0018) 
[c0017] 

The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 

Figure 7 The PCG part of the script of the Get Maximum by Tree Topology and the output. 

6 CONCLUSIONS 

We have presented a design methodology, called Ensemble, by which we overcome the 
problems of composing arbitrarily structured static PVM programs. In the Ensemble 
methodology parallel PVM programs are virtually specified by annotated PCGs which are 
interpreted by one universal PVM Loader, spawning the PVM processes and establishing their 
communication dependencies. We produce PCGs from a script language. Although, the 
language is still under development it was shown to be flexible and permitted the rapid 
composition of PVM programs. It is straight forward to edit the script to scale a program, by 
adding and connecting new components, to change the allocation of processes to hosts, to 
change the topology, etc. We have proposed simple programming structures and principles for 
designing reusable PVM program components as library components. Program components are 
easy to write, as the main actions of program components are wrapped within fixed code 
segments. The programmer is not concerned with writing code for achieving a process 
topology. 

We demonstrated the flexibility of the methodology, by composing various solutions to the 
Get Maximum problem. Having constructed the program components for the first solution we 
used them to compose and execute new PVM programs. This approach is related to the 
composition of object oriented applications by using objects and scripts (Nierstratz et al., 

Get-Maximum-Star 
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1991), as it encourages a component oriented approach to application development. We shall 
pursue this ·aspect in future work. 

The Ensemble methodology is not concerned with the efficiency of program execution. It 
supports the efficient composition and initialization of applications. The methodology affects 
the efficiency of the program execution only marginally; before the processes begin their main 
actions they have to call the MakePorts and Set Interface routines. 

The Ensemble methodology may be applied to other message passing parallel environments 
by developing specific techniques and tools. We have applied it to the Massively Parallel 
architecture of PARSYTEC GC3/512 running the Parix environment (Cotronis, 1995). The 
Parix environment imposes altogether different constraints to programs than PVM. Parix 
requires different PCG annotation techniques, its own construction of reusable program 
components and its own Loader. We shall compare implementations of the methodology under 
PVM, Parix and other environments in a future report. We shall also investigate the portability 
of parallel programs developed with this methodology. Let us finally comment, that the script 
language and the structure of the reusable components are such that it seems possible to port 
programs by editing the annotation parts of scripts and by making new reusable components in 
the target environment by just changing the "wrapping code" of the RealMain procedure in 
the components. 
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