
5
Designing Distributed Multimedia Systems
using PARSE

A.Y. Liu* T.S. Chan** I. Gorton***

CaST Lab, School of Computer Science and Engineering,*
University of New South Wales, Kensington, NSW 2052, Australia
tel: +61 -2 385 4019,fax: +61 -2 385 5995
contact email: annaliu@cse.unsw.edu.au

Division of Radio Physics, CSIRO, Sydney, Australia**
contact email: tchan@ rp. csiro.au,

Division of Information Technology, CSIRO, Sydney, Australia***
contact email: ian.gorton@dit.csiro.au

Abstract
With recent vast improvements in computer hardware, in particular, the processing capacity of
multimedia database servers, and high performance of networks, distributed multimedia
applications are becoming a reality. This paper presents an object-based approach to the design
of distributed multimedia software. In particular, the PARSE methodology for designing
parallel and distributed systems is employed. Justification of the object-based approach is
given, and an overview of the PARSE process graph notation is presented. A case-study of a
video-on-demand application is then presented, and a mapping from the design to an
implementation based on Windows NT is described.

Keywords
Distributed system design, multimedia systems, parallel software engineering, PARSE

1 INTRODUCTION

Advances in computer and media technology have enabled the development of high
performance multimedia workstations and servers (Jadav.l995), (Taylor.l995). In addition to
processing traditional computer data, these workstations are designed to integrate processing
of other media types, such as video, image, voice and sound. On another level, the emergence
of high-speed, broadband networks such as B-ISON (Broadband Integrated Services Digital
Network) (Minzer.l989) have accelerated the development of highly interactive distributed

I. Jelly et al. (eds.), Software Engineering for Parallel and Distributed Systems
© IFIP International Federation for Information Processing 1996

Designing distributed multimedia systems using PARSE 51

multimedia systems (Furht.l994). These systems are designed to transport high bandwidth
multimedia information across the network, while supporting real-time interactive interfaces.

Applications developed using multimedia technology can benefit significantly from the rich
expressive graphical presentation, with the potential to incorporate distributed and
collaborative processing. Examples of such applications are interactive video conferencing
systems, video-on-demand systems, computer-aided collaborative design and multimedia
electronic shopping systems. It is anticipated that the proliferation of multimedia applications
development will continue to gain momentum and acceptance just as graphical user interface
has replaced traditional command prompt interface. Consequently, there is an increasing need
for the development of a software engineering approach to facilitate the modelling and design
of a potentially complex multimedia system (Gibbs.l995).

This paper investigates the use of a concurrent. object-based modelling design technique for
developing multimedia systems. In particular, the paper describes the use of the PARSE
(Parallel Software Engineering) software engineering methodology (Gorton.l995). Issues
relating to the modelling of distributed multimedia systems are described in section 2. Section
3 gives a brief overview of the PARSE notations, with an emphasis on tthe features of PARSE
that supports distributed multimedia system designs. Section 4 and 5 presents a case study on
the design of a video-on-demand (VOD) multimedia application using PARSE, and a mapping
to the WIN32 Application Programming Interface (API) is given in section 6.

2 MODELLING DISTRIBUTED MULTIMEDIA SYSTEMS

The development of software for distributed multimedia applications presents several
challenging requirements. These range from the need to transmit and synchronise multiple
media types, through to support for distributed interactive processing with real-time
performance parameters. The development process is further complicated by the need of
applications to support heterogeneous hardware platforms, as well as different device drivers
and operating systems. Specifically, a software engineering methodology for distributed
multimedia systems should support the following key design aspects:

Synchronisation: In multimedia applications, the synchronisation between different types of
medium is important. For example, it is crucial to control and synchronise the broadcast of
video and audio components of a video segment. In addition, as different components may
operate at different speeds, control messages are often sent to several processes in order to
synchronise the total system activity. Any design methodology for distributed multimedia
software must cater for the explicit design of synchronisation mechanisms.

Dynamic Process and Communication Path Creation: The client-server paradigm can often
be found in distributed multimedia applications, where the server process objects spawn extra
helper processes to carry out the work as requested by clients. The software design method
should be able to capture features such as the dynamic creation and deletion of processes and
communication paths.

Strong Modularity: Modularity is essential in distributed multimedia systems design.
Encapsulated software objects representing multimedia system components reduce the
development effort, shielding the programmer from the complex details of programming and
operating media hardware. Essentially, the object model contains all the necessary functions
for the operation of the media device, making direct programming unnecessary (Friesen.l995).

52 Part One Research Papers

This also promotes portability of code, as objects can be reimplemented for different platforms
while maintaining a constant functional interface (see Figure 1).

Media Object

Member Functions

Media Hardware

Figure 1 Media Object Interface.

3 OVERVIEW OF PARSE

PARSE (PARallel Software Engineering) is an object-based software engineering
methodology that facilitates the design of reliable and reusable parallel and distributed
systems. Software design in PARSE is centered around a process graph notation. The notation
allows the partitioning and synchronisation of the software to be expressed in a graphical
manner. Designs represented as process graphs are simple and concise, and can be
progressively refined to capture all the structural and dynamic properties of a design. The three
basic features of PARSE process graphs are: explicit classification of process objects using a
small set of system supplied general classes; interaction between process objects is done via
message passing on typed communication paths; and the unique feature of path constructors,
used to specify relationships between process object communication paths. The basic design
components of PARSE are shown in Figure 2, and for a full description of the individual
components, please refer to (Gorton.l995).

The basic PARSE process graph notation cannot handle the design of distributed systems
which incorporate the dynamic creation and deletion of processes and of communication paths.
Hence, the dynamic reconfiguration of systems cannot easily be captured in the design. In a
typical multimedia application, the provision of these facilities is vitally important. The
Extended-PARSE (Ext-PARSE) (Liu.l996) process graph notation (Figure 2) is designed to
supplement the basic PARSE process graph notation for this purpose.

Process objects may be created and deleted dynamically. New process objects may
enter/exit the system at run time. This should not affect the execution of other processes.
Function servers and control process objects may create and delete dynamic process objects by
invoking create and or delete signals. They are shown via the twisted arrow notation. There are
two rules of usage: the process object at the invoked end of a creation/deletion arrow must be
of dynamic type; and the process object at the invoking end of a creation/deletion arrow must
be an active process object (this means data server is excluded). There are also three ways that
dynamic process objects may exit from the system: assassination, where an active process
object kills a dynamic process object; suicide, where a thread terminates its own execution;
and aging, which is the default termination mode. The created thread dies from aging when it

Designing distributed multimedia systems using PARSE 53

completes its work. This occurs naturally, hence the term aging. The notation caters for all
three possible ways of termination, and leaves the design decision for the software engineer.

Basic PARSE Extended PARSE

Dynamic Process Dynamic Transactional
Process Objects Communication Path Process Creation/ Process Communication Paths Constructor Objects Deletion Termination Paths

0
Modes

-?--
.. ..

c:::J
·······>····-... .. •

Function
synchronous

Dynamic create delete synchronous non- ~0 Servers deterministic Function ~

~ Server ··•·>·····
D

assassination

asynchronous ~- ·_ ·_ ·_ ·_ ·_ ·_ ·_ ·_ ·_ ·_ -_1 asynchronous

u::::2J delete .. ······-. Data
~ • Server ~ deterministic Dynamic ... ···<--::·>···

Data suicide
Server

8
synchronous synchronous
bidirectional - r:::·:.·.·.·.·.·.:;

bidirectional . ·· ····- ...

~ concurrent
.. ········ ··>··+:-::·: Control

•

Dynamic aging

broadcast Control broadcast

Figure 2 Summary of the PARSE Process Graph Notation.

Communication paths going into and or coming out from dynamic process objects are dynamic
in nature. These communication paths are set up when the associated process objects are
created, and are destroyed when process objects terminate.

Dynamic process objects are often replicated. Each replicated instance has the same internal
behaviour. However, not all instances of the process are created simultaneously: different
instances may be created and terminated at different times. The series of numbers enclosed by
square brackets [O .. n] denotes the range of the number of instances of the object that may be
present in the system at any one time. The symbol 'n' may be replaced by a constant integer, or
by default, is the maximum number of thread instances a process may have as defined by the
underlying system.

In Figure 3a, there is (at any time) a maximum of one communication path between the two
dynamic process objects. However, this is not always the case. By default, a communication
path going into or coming out from a dynamic process object is replicated if there are multiple
instances of the process.

By default, all associated processes are fully connected by communication paths. Specific
path restriction notations can also be used to override default behaviours (see Figure 3b).

Transactional Communication Path: Software designers can explicitly show that the
communication between two processes is of a transactional type by using dotted arcs (see
Figure 2 Extended PARSE). In many software systems, such as database applications,
transactional communication paths are often used. These are different to the ordinary

54 Part One Research Papers

communication paths in the sense that they are set up only when they are needed to transfer
messages. As soon as the transfer is complete, the path is no longer valid. Hence, the life span
of a communication path is not dependent on the life spans of the processes using it, but is
dictated by the activity of transferring the message.

data
/ [0 .. 2] ''....-----+------.'' [0 .. 2) '\
', sender , 1 ', ... receive!,'

_____ data: from sender[i] to receiver[il- __
,-- [0 .. 2] ', for~= 1..2 ,-- [0 .. 2] --_
'.... sender , ' ', receiver, 1

v
data: from sender[I]

•:, sender[l]) to ,=eiver[I] ' ' ~ receiver[I 1;

_- - - - - , data: from sender[2]

•:, sender[2]) to r;eiver[2] ': receiver[I):

Figure3a Figure3b
Figure 3a Replication Of Dynamic Communication Path.
Figure 3b Path Restriction.

The period of validity of the communication path depends on the associated process
internals. This can be explicitly defined using the behavioural specification language
[Gorton95].

PARSE uses hierarchical decomposition to handle large designs. Further, in typical client­
server systems, it is often desirable for processes to spawn new helper processes to service
multiple clients' requests. Multithreaded objects provide abstraction for the low level process
creation/deletion activities. The default structure (expressed within the roundangle) is as
shown in Figure 4.

Figure 4 Default Behaviour Of A Multithreaded Object.

A designer may override this default structure and or behaviour by providing the
decomposition of the multithreaded object, thus the multithreaded object simply provides an
abstraction at the higher level of design, for the low level parallelism.

Designing distributed multimedia systems using PARSE 55

4 CASE STUDY: VIDEO-ON-DEMAND

Previous work with PARSE has focused on the design and development of closely-coupled
parallel systems (Gorton.l994). In this paper, we wish to illustrate the use of PARSE to design
loose-coupled distributed systems such as multimedia applications.

This section describes a case study on the use of PARSE for the design of a distributed
video-on-demand (VOD) multimedia application•. In addition to providing VCR-like
functions for controlled playback, the application is designed to support interactive non-linear
access to video footage. Compressed videos are manually segmented, and a descriptor file is
created for each significant segment of the file. Each descriptor consists of several control
parameters and pointers to the start and end of the associated video segment. This control
information is loaded into the main memory at start-up time, so as to facilitate high-speed
retrieval of the requested video segments. The video server is designed to support multiple
concurrent connections. For each new connection requested by a remote client, the parent
server process creates a child process to handle the newly requested service.

4.1 PARSE Process Graph Design For VOD

The top-level PARSE design diagram shows the client-server structure of the video-on­
demand application (see Figure 5).

,.........,..._~ -~/J,~-disk

.' [O . .nl ... ,~I .
~~ \ video_clienl ! " .. dicnt_

~.LJmeda-_--1:1-7=.---~-~--._...:..._----rl ~ -
Figure 5 Top Level Diagram.

The video client is modelled as a dynamic process object. The notation [O .. n] denotes that
there may be 0 or more active clients at any one time. Here, n is unspecified, and hence only
limited by system resources.
A video_client is created dynamically by the external client__generator2, which represents the
external interface of the system (here, a video_client is created in response to the user starting
up the application). Upon creation, the client software sends the initial connection_request
message via the 'transactional' communication path. This prompts the server to initiate a
connection for the client (for more details, the internal structure of the multithreaded server is
shown in Figure 6). For each connection service requested by a newly created client, a set of
connection paths are established for the exchange of control and media information between
the distributed client and server processes. The server _control connection path is used by the

I The precise application details are commercial in confidence.
2 The solid bar represent an 'external entity' in the PARSE notation (Gorton.1995).

56 Part One Research Papers

client process to transfer control messages to the server for controlled playback and process
synchronisation. Similarly, the client_control connection path is used by the server process to
provide feedback control information to the client. These control paths are specified as
asynchronous in nature, and of type reliable, which specifies the protocol used on these paths.
Logical protocol definitions are specified textually using a simple protocol definition
language: they are omitted from here due to space restrictions. In contrast, the media_data path
is declared as unreliable, as this can survive information loss, but requires low delay and jitter
control to support continuous media stream playout at the client.

// [O .. n) ·· ..

video_
server

····-............ ·

server_control: client_control:
from video_server[i] from video_server[i)
to video_client[i) to video_client(i]
for i=l..n for i=l..n

connection_
request

"'1------1······-:::•··

media_ data:
from video_server[i)
to video_client[i)
for i=l..n

Figure 6 Behaviour of Multithreaded 'Server' Object.

The communications characteristics specified in PARSE can be mapped directly to the
appropriate communication Application Programming Interface (API) supported by the
underlying network. For example, in an A TM network, the use of reliable communication path
specified in PARSE can be mapped to a communication API based on TCPIIP using AAL5
adaptation layer (Boudec.l992). Similarly, the use of an unreliable communication path with
specified delay and jitter parameters for continuous media communication can be mapped
directly to an API that supports real-time traffic such as AAL I and AAL2 (Boudec.l992).

The behaviour of the 'multithreaded server' process is decomposed as shown in Figure 6.
The video_server process object is created dynamically in order to service the video clients'

requests. This activity is co-ordinated by the main_server control process object.
Hence, for each instance of the client process, there is a copy of video server to service the

client's request. That is, for each client[i], a video_server[i] is created, fori= O .. n. The path
restriction feature (Gorton.l995) in PARSE has been used to specify that the communication
paths: server _control, client_control, and media_data only exist between corresponding video
server and client.

The video server process is further decomposed in Figure 7.
The server control unit receives control data from the client via the server _control

communication path. The control information is parsed and the appropriate control actions are
sent to MJPEG_file_server for processing. Based on the control actions received from the
control unit, MJPEG_Jile_server retrieves the appropriate video segment from the disk via the
bi-directional communication path, and sends the media_data to the client across the network.
In addition, MJPEG_file_server is responsible for flow control synchronisation with the client
to ensure that the client's media buffer is within the lower and upper buffer mark. This is

Designing distributed multimedia systems using PARSE 57

accomplished by having the client process periodically feedback the buffer information and the
rate in which the media is being played (via client_contro[). This feedback information is
processed by the file server and the appropriate control actions are invoked to ensure correct
synchronisation. For example, if server _control_unit detects a progressive increase in the
client's media buffer such that the buffer's upper threshold has been reached, a control
message is sent immediately to the MJPEG_Jile_server to reduce the media transmission rate.

disk

Video_Server
r--------------------------------------•
' ' ' ' : client_control, reliable
: server_ 1

l control_unit

' ' ' ' :
:
' ' ' ' ' ' ' ' ' '

' ' . servr_control. rehable

' ' ' ' ' ' ' ' ' '
' ' ' media_data, no~-reliable

' ' ' ' -------------------------------------- J
Figure 7 Video Server.

Figure 8 shows the decomposed design of the video_client process.

Video_Ciient

' ' ' ' ' ---_,
Figure 8 Video Client.

The user interface function is responsible for the processing of user's input. Based on the
command received from the user interface function, client_control_unit is responsible for
invoking the appropriate actions for the local and remote server processes. For example, upon

58 Part One Research Papers

receiving a pause command from the user, the control unit issues a control message to the
local client synchronisation unit to stop processing. Subsequently, a control message is also
issued to inform the remote server to temporarily cease sending any further media data so as to
prevent buffer overflow at the client. The client synchronisation control unit
(client_sync_control) is responsible for synchronous playout of the continuous media data. For
each block of interleaved audio and video frame, based on the frame's playout rate, the
synchronisation control unit is responsible to ensure the synchronous play out of the continuous
media. In addition, the unit is also responsible for the synchronisation between the client and
server to ensure that proper flow control is enforced. The interleaved audio and video data
received from the synchronisation control unit is demultiplexed by the MJPEG_Demux
function unit. The demultiplexed video and audio data unit are sent to the respective
decompression functions for media decompression and subsequent playout.

5 SPECIFYING PROCESS OBJECT BEHAVIOUR USING BSL

The dynamic behaviour of the primitive (lowest-level) process objects is specified using a
behavioural specification language (BSL). This language contains constructs for describing
sequential program structures and includes sequences, iterations, selections, and guarded
selections. Primitive send and receive operations for various kinds of communication path
types are also included. In addition, dynamic creation, deletion of processes and
communication paths can be specified. For a full description of the syntax and usage of BSL,
see (Gorton.l995).

The specification of all primitive process objects is beyond the scope of this paper. We will
however demonstrate the use of BSL by providing partial descriptions of the behaviour of two
primitive process objects taken from Figure 6 and Figure 8. BSL descriptions should fully
describe the relative order of inputs and outputs for a given process object: internal processing
of inputs can be left unspecified, at least initially. This gives a skeleton specification of the
process object's interactions which is sufficient to simulate and verify the system's behaviour
(Russo.l995).

connection_

~i~::;~s~···············
Figure 9 'Main_Server' From Multithreaded 'Server' Object.

PROCESS MAIN SERVER
SEQUENCE

WHILE TRUE
-- main_server sets up transactional communication path
setup (connection_request)

-- take input from asynchronous path Connection_request
-- i is the instance of the client object, -1 denotes

untimed conun.
receive (inpl, i, -1, connection_request)

--create helper process after receiving
--Connection_request

Designing distributed multimedia systems using PARSE

create (video_server)
ENDWHILE

ENDSEQUENCE
END PROCESS

59

The main_server process object has a simple BSL description. It simply waits for a client
process to connect via the connection_request dynamic path, and creates a video_server
process object to service further requests. MJPEG_Demu:x specifies that for each input
message received on the audio+ video path, a corresponding output message is sent to both
output paths. These completed behavioural descriptions can then be translated into
programming languages using APis supported by the underlying platform.

outp2 outpl
Figure 10 'MJPEG_Demux' From 'Video_Client'.

PROCESS MJPEG_DEMUX
SEQUENCE

WHILE TRUE
receive (inp1, i, -1, audio+video)
-- separates the two types of medium
as-send (outp1, i, -1, video)
as-send (outp2, i, -1, audio)

ENDWHILE
END SEQUENCE

END PROCESS

6 IMPLEMENTATIONSUPPORT

Windows NT has been chosen to be the implementation platform. The Application
Programming Interface (API) Win32 provides a rich set of function calls that enables the
development of distributed multimedia systems. Table I gives a summary of Win32 API calls
that supports the implementation of any Ext-PARSE designs.
Note: actual Win32 and socket function calls are in italic.

7 CONCLUSION AND FURTHER WORK

A number of software design techniques for distributed systems exist. For example: Booch
(Booch.l991), CODARTS (Gomaa.l993), HOOD (Robinson.l992), MOOD (Lee.l994), and
PROOF (Yau.l994). However, they do not exhibit the ability to easily capture the dynamic,
distributed system structures and complex synchronisation requirement frequently occurring in
multimedia applications.

This paper has demonstrated the suitability of PARSE for the design of distributed
multimedia systems. The complete PARSE process graph notation enables the dynamic system

60 Part One Research Papers

structure to be captured precisely, and succinctly. Multithreaded process objects, and the
hierarchical process object structuring promotes a high level of design abstraction. In typical
client-server systems, there are often multiple instances of the server object created for
servicing multiple clients' requests. The multithreaded process object in PARSE allows the
designer to specify this dynamic interaction between client and server easily. The information
captured in the textual annotations, such as path restriction and dynamic process object
replication ranges, further aids the eventual implementation.

Ext-PARSE process graph feature Win NT/Win32 API Equivalent

Dynamic process objects Processes, threads

• create dynamic process objects • CreateThread, CreateProcess, CreateRemoteThread . delete dynamic process objects: • thread termination:
-aging - return from function
- assassination - TerminateThread
-suicide - ExitThread

• data server objects • thread: Thread-Local Storage, shared memory:
synchronisation objects

Communication Paths NamedPipes
• creation • CreateNamedPipe (an instance of a named pipe is always

deleted when the last handle to the instance of the named pipe
is closed)

• synchronous • blocking send, blocking receive, overlapped mode not
enabled, pipe-specific mode = PIPE WAIT

• asynchronous • non-blocking send, blocking receive, pipe open mode =
overlapped, pipe-specific mode = PIPE WAIT

• bi-directional synchronous • blocking send, blocking receive, pipe open mode = PIPE
ACCESS DUPLEX

• broadcast • multiple instances of named pipes, or mailslots
Network Communication Paths Socket facility provided in winsock.h

• creation • creating new socket, socket, bind

• synchronous • reliable path with blocking send, blocking receive, socket_type
= SOCK_STREAM

• asynchronous • non-blocking send, blocking receive, for reliable path
socket_type = SOCK_STREAM, non-reliable path socket_type
= SOCK_DGRAM

• bi-directional • sockets are inherently bi-directional

• broadcast • multiple instances of sockets. In some networks, eg. A TM,
efficient implementation can be achieved using network
multicast facilitv.

Path Constructors Input selection methods

• unspecified (not used in primitive • no need to consider this in Win NT
processes)

• concurrent • independent threads carrying out work separately

• non-deterministic • NamedPipes non-deterministic by default

• deterministic • WaitNamedPipe

Table 1 Mapping between Ext-PARSE and Wm32

The PARSE graphical design method would seem intuitive to use and easily
comprehensible. In this project, the lead designer produced a PARSE design for the system in

Designed distributed multimedia systems using PARSE 61

a matter of days, with no previous PARSE exposure. We intend to quantitively explore this
issue further through additional, controlled case studies.

The verification of designs is the issue that needs to be considered. Currently, static PARSE
designs can be easily translated into Petri Nets (Gorton.l994), and subsequent design
verification can be carried out automatically. However, this technique can not be used with
PARSE designs with dynamic properties, since any reachability analysis would lead to an
infinite state system. It is anticipated that an alternative verification technique would be
employed. The works of (Birkinshaw.l995) and (Milner.1980) may offer possible solutions.

References
Birkinshaw, C.I. and Croll, P.R. (1995) Modelling the Client-Server Behaviour of Parallel Real-Time

Systems Using Petri Nets, Proc. 28th Ann. Hawaii Int'l Conf System Sciences, Parallel Software
Engineering Minitrack, Vol.2: Software Technology, IEEE Computer Society Press, Calif., 339-48.

Booch, G. (1991) Object-oriented Design With Applications. Benjamin/Cummings.
Boudec, J.Y.L.(l992) The ATM: A Tutorial, Computer Networks and ISDN Systems, Vol.24, 279-309.
Friesen, J.A., Yang, C.L. and Cline, R.E. (1995) DAVE: A Plug-and-Play Model for Distributed

Multimedia Application Development, IEEE Parallel and Distributed Technology, Vol.3, No.2,
Summer, 22-8.

Furht, B. (1994) Multimedia Systems: An Overview, IEEE Multimedia, Vol.l, No.I, Spring, 37-50.
Gibbs, S.J. (1995) Multimedia Programming: objects, environments, and frameworks, ACM Press.
Gomaa, H.(1993) Software Design Methods for Concurrent and Real-Time Systems, Addison-Wesley.
Gorton, 1., Chan, T.S. and Jelly, I.E. (1994) Engineering high quality parallel software using PARSE,

in Lecture Notes in Computer Science 854, Proceedings of CONPAR-V APP 94, Linz, Austria,
September, 381-92, Springer-Verlag.

Gorton, 1., Gray, J.P. and Jelly, I.E. (1995) Object-based Modelling of Parallel Programs, IEEE
Parallel and Distributed Technology, Vol.3, No.2, Summer, 52-63.

Jadav, D. Chaudhary, A. (1995) Designing and Implementing High-Performance Media-on-Demand
Servers, IEEE Parallel and Distributed Technology, Vol.3, No.2, Summer, 29-39.

Lee, P.J., Chen, D.J. and Chung, C.G. (1994) An Object-oriented Modelling Approach To System
Design, Information and Software Technology, Vo1.36, No.1!, 683-94.

Liu, A. and Gorton, I. (1996) Modelling Dynamic Distributed System Structures in PARSE, to appear
in 4th Euromicro Workshop on Parallel and Distributed Processing, Braga, Portugal, January.

Microsoft Corp. (1991) Microsoft Windows Multimedia Programmer's Workbook.
Milner, R. (1980) A Calculus of Communicating Systems, in Lecture Notes in Computer Science

Volume 92, Springer-Verlag.
Minzer, S.E. (1989) Broadband ISDN and Asynchronous Transfer Mode (ATM), IEEE

Communications Magazine, September, 17-24.
Robinson, P.J. (1992) HOOD, Prentice-Hall, 1992.
Russo, S., Savy, C., Jelly, I.E. and Collingwood, P.C. (1995) Petri Net Modelling of PARSE Designs,

Joint Technical Report, Computing Research Centre, Sheffield Hallam University/ Departmento di
Informatica e Sistemistica, University of Naples.

Taylor, H., Chin, D. and Knight, S. (1995) The Magic Video-on-Demand Server and Real-Time
Simulation System, IEEE Parallel and Distributed Technology, Vol.3, No.2, Summer, 40-51.

Wallace, O.K. (1991) The JPEG Still Picture Compression Standard, Communications of ACM,
Vol.34, No.4, April, 30-44.

Yau, S.S. and Bae, D-H. (1994) Object-oriented and Functional Software Design for Distributed Real­
time Systems, Computer Communications, Vo1.17, No.lO, October, 691-8.

