
30
The PS project: development of a simulator
of PVM applications for Heterogeneous and
Network Computing

R. Aversaa, A. Mazzeoa, N. Mazzoccaa and U. Villanob

a DIS, Universita' di Napoli, Via Claudio 21, 80125 Napoli (Italy)
biRSIP-CNR, Via Claudio 21, 80125 Napoli (Italy)
e-mail: [avers a ,mazzeo ,mazzocca, villano] @nadis .dis .unina.it

Abstract
Heterogeneous computing environments require performance evaluation techniques that are
more sophisticated and cost-effective than those currently used. This paper briefly describes a
project aimed at the development of PS, a simulation environment for the performance analysis
of distributed applications executed in Heterogeneous and Network Computing environments
through the PVM run-time system.

Keywords
Heterogeneous Computing, Network Computing, Simulation, Performance Evaluation, PVM.

1 INTRODUCTION

Heterogeneous Computing (HC) (Khokhar, 1993}, (Mechoso, 1994) and Network Computing
(NC) (Anderson, 1995) share as a common denominator the exploitation of heterogeneous
computing resources. The increased complexity of heterogeneous environments calls for
performance measurement and analysis techniques that are more sophisticated and cost­
effective than those commonly used in homogeneous parallel and distributed computing
systems. Of great practical interest in particular is to obtain performance data before the
software implementation, since this enables the software developer to choose carefully the
workload to be assigned to each target machine as early as in the software design stage. This is
a particularly thorny problem both in HC (Wang, 1992) and in NC (Mazzeo, 1995).

The above considerations are among the premises of the PS project, started in 1993 as a
cooperation between the Department of Informatics of the University of Naples and IRSIP, an
institute of the Italian National Research Council (CNR). PS (PVM Simulator) is a simulator
for the performance analysis of distributed applications based on the Parallel Virtual Machine
paradigm, the de facto standard for programming HC and NC systems (Geist, 1994). The
software simulated by PS can either be a complete PVM program or a prototype, i.e., a

I. Jelly et al. (eds.), Software Engineering for Parallel and Distributed Systems
© IFIP International Federation for Information Processing 1996

The PS project 311

partially implemented program design. The simulation of the whole hardware/software system
makes it possible to obtain aggregate and analytical indexes related to the heterogeneous
system performance (e.g., efficiency, throughput, response time, individual processor
utilisation), or traces which can be processed off-line by Paragraph to visualise the simulated
program execution in a variety of different views.

In our opinion, the role that simulation techniques can play in parallel software engineering
has not yet been fully recognised. In a recent paper, we have shown that simulation tools can
help managing the complexity of software development for heterogeneous hardware (Aversa,
1995a). In this context, the fundamental advantage of simulation is flexibility. Simulation tools
make it possible to compare the behaviour of different algorithms on the same hardware
platform, to assess the effect of different problem decompositions, task allocations and load
sharing techniques, or even to study the performance of a single algorithm on several existing
or hypothetical computing environments. Simulation tools require neither the
oversimplifications which are commonly used to deal with complex hardware/software systems
through analytical models, nor the availability of fully-developed software and of a real
machine, which are necessary for the performance analysis by monitoring/tracing tools. On the
minus side, it should be noted that accurate simulations are computationally expensive. PS is
characterized by a light simulation overhead, thanks to the adoption of models of program
tasks which are at a higher level of abstraction than those adopted by other existing simulators.
The modelling of the communication subsystem is instead particularly accurate, and is also
capable of considering the effect of external network load. The fairly high accuracy attained in
all validation tests of the simulator show that these are perfectly reasonable solutions, at least
for the heterogeneous computing platforms which are currently available.

2 PS: A PVM SIMULATOR

PS (PVM Simulator) makes it possible to simulate a complete PVM application by combining
predefined objects that simulate the inter-task communication subsystem (PVM daemons,
TCPIIP protocol, network interfaces, physical interconnection medium) along with objects
simulating the tasks making up the user program (Aversa, 1994-1995b). Its simulation kernel
has been implemented using the Ptolemy environment (Buck, 1994), and can therefore be
ported to any computing platform where Ptolemy can be executed, e.g., Sun, DEC and HP
workstations, and IBM PC under Linux. A complete Ptolemy application (called a Universe)
consists of a network of interconnected Blocks. Blocks may be either Stars (atomic objects) or
Galaxies (composite objects, made up of Stars and other Galaxies). PS provides predefined
objects (Stars and Galaxies) that model the computing environment. These objects are to be
connected using the Ptolemy interactive graphical interface to Galaxies modelling user code,
thus setting up a Universe which is representative of a complete PVM application. The effect
of network load can be taken into account by means of predefined Stars sharing the same
physical network medium, which generate a given statistical network load distribution.

A typical PS simulation session consists of the following phases (Figure 1):
1) The Galaxies modelling user code are built. User code can be supplied either as a complete

PVM program or as a prototype. Prototypes are skeletons of code containing PVM calls,
where some of the computations have been replaced by calls to delay procedures taking into
account the time spent in the actual code.

312 Part Three Demonstrations

2) The user sets up a Universe that is representative of the whole hardware/software system by
constructing a graph where the nodes are icons corresponding to Galaxies or Stars, and the
(directed) arcs represent interactions between them.

3) A suitable number of monitoring Stars, which record the events occurring in a specific point
of the Universe, are insened into the Universe diagram.

4) The modules of simulation code corresponding to the icons contained in the Universe are
compiled and linked to the event scheduler.

5) The simulation is performed by executing the program produced at point 4.
6) The information on system performance produced during the simulation is examined. As

Stars which produce a trace of program execution in a format compatible with Paragraph
(Heath, 1991) are provided, it is also possible to collect more in-depth information about
program behaviour and system performance off-line. If the measured performance is not
satisfactory, new hardware configurations or allocation strategies have to be tried. This
entails repeating all the previous steps several times.

l Hardwar? I PVM
conf~gurauon program/prototype

1
User c:ode
modeR1ng

...
Simulahon
Univ01$G

construcoon

Evonls 10 bo monitored
lnseroon of

I Simulation OOJipUI ~ monotonng

requ~rod
s1ars

•
~allOO

and finlung of
simul. oode

...
Sunulabon

+
fnlormanon on

... S)'$1811'1

Off·•r~e
porfoonanoe

visualizanon of ___,--
program

Analysis of
bohOIIIOIM'

perlormanoa
dala

~sl Allocanon
skslprocessors

new har dware
nand/or
at ion

configuratio
new alloc

Figure I Phases of a PS simulation session.

The PS project 313

A point that is worth discussing in more detail is how the program to be simulated is
modelled in PS. The PVM application behaviour is modelled at user-task level by a set of UT
(User Task) Galaxies, which model the user tasks running on every processor. For the sake of
simulation accuracy, these objects should reproduce as closely as possible the sequence and the
timing of the run-time requests of the actual program to the PVM daemon. The PS
environment provides two different methods for the construction of UT Galaxies. The first
possibility is to adopt a delay-PVM call model, building a graph where Stars invoking PVM
primitives are interleaved by delay Stars corresponding to the time spent executing the code
contained between them (the computation delays are estimates found by direct measurement
under suitable test conditions or through statistical and/or analytical models). Another possible
approach relies on the examination of the source code by a static program analysis tool, which
analyses the performance behaviour of each task on the particular sequential or parallel
computer where it will be actually executed. A tool for the static analysis of PVM code within
the PS framework is currently under testing, and will be released in the near future.

The second option is to use execution-driven simulation (Convington, 1988), which is
surely the recommended option when program execution time has not simple dependence on
input data. In execution-driven mode, every PVM program task is modelled by a UT Star
containing a version of the user code where PVM calls have been replaced with calls for
service to the objects simulating the Parallel Virtual Machine level. During the simulation, the
PVM program is actually executed (i.e., it is not simulated) in quasi-concurrence on the
workstation hosting the PS environment. Whereas, the behaviour of the PVM run-time
support, of the communication protocols and of the interconnection network is still simulated.
Unlike other simulators based on the execution-driven approach (Davis, 1991), (Brewer,
1991), PS uses a simplified method to estimate the execution time of the block of code
between two successive interactions with the simulation engine (interactions occur at every
PVM call). This method introduces a much lower simulation overhead and leads to no
significant accuracy loss, due to the coarse granularity of PVM tasks.

Figure 2 shows a screen dump taken during one of the simulation sessions described in
(Aversa, 1995a). The picture shows the host display during the simulation of one of the
algorithms considered for performing a matrix multiplication on a network of four
workstations. The large window in the middle of the picture is the graphical representation of
the simulation Universe. The four icons on the left of the Universe are the UT Galaxies
simulating the behaviour of the application code executed on every node of the network. The
Parallel Virtual Machine level, which models a computing node along with its run-time
support, consists of the column of four icons in the middle of the window. The Network level
is made up of the single icon on the right, which represents the shared transmission medium.
The window in the lower left corner is an insight view of a UT Galaxy, showing in some detail
its interface to the Galaxy simulating the PVM daemon. Figure 2 also shows samples of the
Paragraph performance summaries of the simulated program execution, namely a Spacetime
diagram and a Utilization Gantt chart.

3 CURRENT STATUS OF THE PROJECT - FUTURE DIRECTIONS

Over the last year and half PS has evolved from a largely-incomplete prototype to a fully
working version. The results of all our validation tests, some of which are reported in (A versa,

314

--­........
....

Part Three Demonstrations

tult~-...

Control pall<! lOt BH-...tt ·-

Th

I

Figure 2 Host display during a PS simulation session.

""..,

. ~ . ,,.,., .

-
1994), (Aversa, 1995b), have been particularly encouraging. PS never led to figures more than
5% far from those obtained by running the actual program on the real computing environment.
Using the delay-PVM call model for user task, the PS simulation speed is too high to be
compared to the execution rate of the actual program on a single processor. Whereas, if
execution-driven mode is chosen, the execution of a PVM program is emulated a factor of only
6 to 9 times slower than the execution of the same program in quasi-concurrence on the
simulation host. Unfortunately, we are not equally satisfied of the ease of use and friendliness
of PS. The construction of the delay-PVM call Galaxies modelling user code is not easy and
requires a sufficient degree of familiarity with the simulator itself. Furthermore, setting up the
simulation Universe using the Ptolemy graphical interface is a time-consuming task, and one
that does not lend itself to be automated by any software tool. This is the reason why we
decided not to release the first version of PS outside our research group, and to redesign the
simulator user interface in order to produce a new version amenable to be publicly distributed.

At the state of the art, the core of the version 2.0 of PS has been already implemented and
is currently under testing. Besides the execution-driven mode (which is still supported, since it
seems the best option for expert users), the new version of PS also makes it possible to launch
a simulation session without using the Ptolemy graphical interface. In this case, the simulator is
fed with a trace previously obtained by executing the PVM program in quasi-concurrence on a

The PS project 315

single workstation or in real concurrence on a scaled-down distributed environment, and
tracing the calls to the run-time support by means of a PVM-tracing library. A further issue
that is being addressed in the development of the second version of PS is the possibility to
study the effect of load due to tasks not belonging to the program to be analyzed. This will be
obtained in much the same way as the effect of external network load is taken into account,
i.e., by the addition of statistical interference with the computations on-going in each node.

4 REFERENCES

Anderson, T.E., Culler, D.E. and Patterson, D.A. (Feb. 1995) A Case for NOW (Networks of
Workstations). IEEE Micro, 15, 54-64.

Aversa, R., Mazzocca, N. and Villano, U. (1994) PS: a Simulator for Heterogeneous
Computing Environments, in Massively Parallel Processing Applications and Development
(eds. L. Dekker, W. Smit and J. C. Zuidervaart), Elsevier, 335-343.

Aversa, R., Mazzeo, A., Mazzocca, N. and Villano, U. (1995) The Use of Simulation for
Software Development in Heterogeneous Computing Environments. Proc. Int. Conf. on
Par. and Distr. Processing Techniques and Applications, Athens, GA, 581-590.

Aversa, R., Mazzocca, N. and Villano, U. (1995) Design of a Simulator of Heterogeneous
Computing Environments. to be published in Simulation Practice and Theory.

Brewer, E.A., Dellarocas, C.N., Colbrook, A. and Weihl, W.E. (1991) PROTEUS: a High­
performance Parallel-architecture Simulator. Tech. Rep. MIT!LCS!TR-516, Cambridge, MA.

Buck, J.T., Ha, S., Lee, E.A. and Messerschmitt, D.G., (1994) Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems. Int. Journal of Computer Simulation,
4, 155-182.

Convington, R.C., Madala, S., Mehta, V., Jump, J.R. and Sinclair, J.B. (1988) The Rice
Parallel Processing Testbed. Proc. 1988 ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, 4-11.

Davis, H., Goldschmidt, S.R. and Hennessy, J. (1991) Multiprocessor Simulation and Tracing
using Tango. Proc. 1991 Int. Conf. on Parallel Processing, II99-11107.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V. (1994) PVM:
Parallel Virtual Machine. MIT Press, Cambridge, MA.

Heath, M.T. and Etheridge, J.A. (Sept. 1991) Visualizing the Performance of Parallel
Programs. IEEE Software, 8, 29-39.

Khokhar, A.A., Prasanna, V.K., Shaaban, M.E. and Wang, C. (June 1993) Heterogeneous
Computing: Challenges and Opportunities. IEEE Computer, 26, 18-27.

Mazzeo, A., Mazzocca, N. and Villano, U. (1995) Efficiency Measurements in Heterogeneous
Distributed Computing Systems: from Theory to Practice. submitted to Concurrency:
Practice and Experience.

Mechoso, C.R., Farrara, J.D. and Spahr, J.A., (Summer 1994) Achieving Superlinear Speedup
on a Heterogeneous, Distributed System. IEEE Par. and Distr. Technology, 2, 57-61.

Wang, M., Kim, S., Nichols, M.A., Freund, R.F., Siegel, R.F. and Nation, W.G. (1992)
Augmenting the Optimal Selection Theory for Superconcurrency. Proc. Workshop on
Heterogeneous Processing, IEEE Computer Society Press, 13-21.

