
29 
Problem-Solving on Scalable 
Parallel Systems Using Application 
Specification and Reusable Software 
Components 

Karsten M. Decker, Jiri J. Dvorak, and Rene M. Rehmann 
Swiss Center for Scientific Computing (CSCS/SCSC) 
Via Cantonale, CH-6928 Manno, Switzerland 
E-mail: {decker, dvorak, rehmann} @cscs. ch 

Abstract 
From the application user's point of view, ease of programming of distributed memory 
parallel systems has not been achieved yet. It is the purpose of this paper to demonstrate 
how these limitations can be overcome by our Program Development Environment PDE 
currently under development. The environment features a problem-oriented specification 
formalism and is based on a skeleton- and template-oriented application development 
methodology. The large set of fine-grain algorithmic skeletons and templates used in 
the system provides the basis for a software reuse mechanism and is managed with a 
knowledge-based component. Skeletons are completed with computational components 
by means of automatic program synthesis techniques. We present our current results, 
summarize the major achievements, such as software reuse and portability, and give an 
outlook on future research directions and related publications. 

1 INTRODUCTION 

Despite remarkable progress in hardware and software technology for Distributed Memory 
Parallel Processor (DMPP) systems over the last few years (for an overview of the state­
of-the-art in parallel programming, we refer to (Decker, Dvorak, Rehmann & Riihl1995)), 
simple development of scientific and engineering applications has not yet been realized. 

To improve the unsatisfactory situation, it is the goal of our research to develop an 
easy-to-use application engineering environment (problem-solving or programming envi­
ronment in the following) for the synthesis of new application software in the scientific and 
engineering sector in a user-centered and application driven way. Four key characteristics 
describe and position our approach. First, application-oriented problem description for­
malisms serve to focus on what the problem is and which computational methods should 

Project funded by the Swiss National Science Foundation (SNF) in the framework of the Swiss Priority 
Program Informatics (SPPIF), Grant-No. SPPIF-5009-034402 

I. Jelly et al. (eds.), Software Engineering for Parallel and Distributed Systems
© IFIP International Federation for Information Processing 1996



304 Part Three Demonstrations 

be used to solve it. Second, the use of design skeletons and templates provides a software 
reuse mechanism and hides the difficult parts of programming DMPPs while ensuring 
good scalability, (efficiency-preserving) portability, and parallel efficiency. Third, interac­
tive guidance supports exploitation of user knowledge as completely as possible. Finally, 
automatic program synthesis techniques ensure a transparent coding process. 

Based on the recent success of parallel systems in the business sector, where familiar 
application development interfaces are applied and parallelism is offered transparently, we 
believe that a descriptive formalism is essential. Algorithmic skeletons or similar structures 
were proposed in the past for software engineering and reuse (Waters 1982) as well as 
for parallel computations (Cole 1989). The basic idea underlying these approaches is to 
encode reusable structural characteristics of algorithms in skeletons. A skeleton typically 
contains open, i.e., generic, parts that have to be filled in to adapt the skeleton to the 
given situation and to get a complete algorithm or algorithm component. 

It is the purpose of this paper to outline the achievements of our high-level Program De­
velopment Environment (PDE) and to report on future research directions. For a detailed 
description of the design objectives, the underlying application development methodology, 
and an assessment of the methods we use, the interested reader is referred to (Decker, 
Dvorak & Rehmann 1994b). 

2 RESULTS 

2.1 A Programming Environment for Stencil-based Problems 

In the spirit of a rapid prototyping approach to test system functionality, we started our 
research with feasibility studies for the very simple class of stencil-based problems (Decker, 
Dvorak & Rehmann 1994a) characterized by the operation of a local computational stencil 
on n-dimensional grids. Applications in this class include, for instance, the restoration of 
gray-scale images with different smoothing operators and the solution of partial differential 
equations according to the finite difference method. 

We illustrate the functionality of the PDE for this problem class with the solution of the 
Poisson equation on a simple two-dimensional rectangular grid with periodic boundary 
conditions. The Laplace operator is approximated by the nearest-neighbor, symmetric 
5-point stencil and we use a Gauss-Seidel algorithm with two colors to accomplish the 
iterative solution. 

The declarative problem description can be done graphically with the Stencil Modeling 
Programming Assistant Interface (SMPAI, Fig. 1) which is then translated into the textual 
Stencil Problem Specification Language (SPSL) description shown in Fig. 2. If this is 
preferred by the user, the programming task can start directly in SPSL. 

As can be seen, the problem description consists of the specification of the problem 
type, the geometry of the problem domain, the size and dimensionality of the grid, the 
structure of a grid cell, the boundary conditions for each physical boundary of the grid, 
the computational stencil, the numerical method, and the domain decomposition scheme. 
Since SPSL realizes a complete problem description (Roth 1993), there is no further user 
interaction with the PDE required. 

The PDE now successively transforms the SPSL problem description into a compil-



Problem-solving on scalable parallel systems 

Figure 1 The graphical user interface of the SMPAI. 

grid_spec { 

} ; 

grid_offset z [0,0]; 
grid_size = {512,512}; 
boundary_grid { 

boundary_grid_type = PERIOOIC_BND; 
} SOUTH; 
boundary_grid { 

boundary_grid_type = PERIODIC_BND; 
} NORTH; 

stencil_spec { 
stencil_action a { 

} ; 

f<[O,O]> • 0.25•(f<[-1,0]> + f<[0,-1]> + f<[1,0)> + f<[0,1)>) 
- f_rho<[O,O]> 

} ; 

Figure 2 SPSL description of the programming example. 

305 

able program. The Programming Assistant (PA) first reads the problem representation 
and starts the reasoning process with the goal to find the most appropriate algorithmic 
skeleton for the given problem. The reasoning process is a rule-driven descent in the skele­
ton hierarchy, based on the information given in the problem specification and various 
rule bases maintained by the PA. Expertise about the application domain, parallel pro­
gramming, and software engineering are encoded in the rules that control this skeleton 
selection. Knowledge about characteristics of different hardware platforms will be added 



306 Part Three Demonstrations 

in a future prototype. Together with the specification of the problem at an abstract level, 
the hardware knowledge integrated in the skeleton selection will ensure portability at the 
algorithmic level, above the level of general-purpose programming languages. 

The chosen skeleton contains all information needed for the generation of a parallel 
framework suitable for the problem under consideration. In particular, it defines the data 
distribution scheme and the communication and synchronization structure. Based on the 
chosen skeleton and the problem representation, the PA produces two different outputs 
for the two-component structure of the Program Synthesizer (PS). 

One part of the final code generation step is done by the TINA skeleton genera­
tor (Gutzwiller 1993), which generates the C-code for setting up the process topology, 
data distribution and communication calls for different message-passing interfaces, and 
calls the computational components. 

The computational components are generated by the other component of the program 
synthesizer PS (Rehmann 1994). This component starts from an abstract definition of the 
computational units of the application and the definition of the grid structure. Using this 
input, it generates code for the function which calculates the user-defined computational 
stencil, the functions for filling and scattering the communication buffers from and to the 
grid, and the function calls for the various types of boundary conditions. 

2.2 Towards Programming of General Data-parallel Problems 

From the application user's point of view, the problem domain of stencil-based applications 
discussed in Sect. 2.1 is of rather low importance. To qualitatively increase the usefulness 
and attractivity of the PDE, our most recent and current research is concerned with a 
major step towards supporting the programming of general data-parallel problems which 
are of real practical interest to the scientific user community. 

To achieve this goal, we follow a step-wise approach. Analyzing user requirements and 
identifying the important components of real applications, we first focus on problems 
resulting in the formulation of linear algebra operations. Within this problem ·class, we 
concentrated on developing a programming environment for iterative solvers for general 
linear systems. 

The problem class of iterative solvers for general linear systems has very different char­
acteristics than the class of stencil-based problems: the problem description may be incom­
plete, problem realization may require more than one algorithmic skeleton or template 
with a fixed parallel structure, and consequently, the careful design of data structures 
becomes crucial. 

To realize a programming environment for this problem class, all three functional com­
ponents of the PDE, i.e., the PAl, the PA, and the PS, need to be reconsidered and en­
hanced. In this paper, we report on three activities: the development of the specification 
language for the problem class of iterative solvers, a first prototype for the corresponding 
Data Modeling Programming Assistant Interface (DMPAI), and a related prototype of the 
PA. 

An essential part of the DMPAI is the underlying declarative problem specification 
language. The Basic Language for Iterative, Parallel Solvers (BLIPS) (Toupin 1994) has 
a Pascal-like syntax, provides support for intrinsic and user libraries, supports abstract 
property specification to describe problem characteristics, and has dynamic language sup­
port. The latter characteristic of BLIPS allows the user to define and adapt the language 



Problem-solving on scalable parallel systems 

template solve(A: matrix; x, y: colvector); 
A is symmetric and pos_definite; 
for solve A • x = b; 

do 
{ implementation of the solver algorithm (e.g., CG)} 

end do; 

template solve(A :matrix; x, y : colvector); 
A is non_symmetric and transp_not_avail and storage_limited; 
for solve A • x = b; 

do 
{ implementation of the solver algorithm (e.g., BiCGSTAB)} 

end do; 

procedure main; 
var A: matrix; 

x,b: colvector; 
where A is symmetric and pos_definite; 
do 

read A from "pde.mat"; 
read b from "pde-b. vee"; 
solve A•x=b; 
write x to "pde_soln.vec"; 

end do; 

Figure 3 Definition of a linear solver in BLIPS. 

307 

according to his specific needs. An example showing how to define a linear solver for a 
specific type of matrix is given in Fig. 3. 

The most recent prototype contains the static knowledge base for the PA, i.e., tem­
plates implementing different algorithms for parallel iterative solvers. These templates 
are wrappers for a library of parallel iterative solvers developed in another project at 
CSCS. Additionally, we have extended the dynamic knowledge, i.e., the rules to make use 
of the correct templates for a specified application and we have developed a user interface 
that allows the specification of an application and the editing of new or existing tem­
plates. As the templates only contain calls to library functions, no sophisticated program 
synthesizer is needed. 

3 FUTURE DIRECTIONS 

Our future research will concentrate on improved programming environments for the class 
of data-parallel programs. We intend to successively relax the constraints on the supported 
application spectrum currently imposed. Formalization of the large amount of application 
knowledge to enhance the rule base of the PA will be crucial to ensure the long-term 
success of these systems. 

An important topic which will be investigated is which requirements the user dialog 
with the PDE must satisfy to guarantee successful interaction, respecting (and taking 



308 Part Three Demonstrations 

advantage of) the conceptual models, knowledge structures, and working processes of our 
target user community, i.e., application users. 

Another subject of research is the development of a hardware knowledge base with 
corresponding hardware-dependent algorithmic skeletons and templates. Together with 
appropriate rules to choose the correct skeleton or template for a given hardware, it will 
be possible to generate program code which runs optimally on specific hardware. This 
mechanism ensures true, i.e., efficiency-preserving portability across hardware platforms 
as the application-oriented problem description needs not be changed to optimally run an 
application on different hardware platforms. 

A further important topic which we believe should be addressed in the near future 
is teaching effective usage of DMPPs. Here we envisage machine-assisted learning which 
could be realized more or less easily by suitable enhancements of our PDE. 

Finally, the supported application spectrum should be broadened further, in particular 
with support for non-numerical problems. 

REFERENCES 

Cole, M. (1989), Algorithmic Skeletons: Structured Management of Parallel Computation, 
Research Monographs in Parallel and Distributed Computation, The MIT Press, Cam­
bridge, MA, USA. 

Decker, K. M., Dvorak, J. J. & Rehmann, R. M. (1994a), A Knowledge-based Scientific 
Parallel Programming Environment, inK. M. Decker & R. M. Rehmann, eds, 'Working 
Conference on Programming Environments for Massively Parallel Distributed Systems', 
Birkhauser Verlag, Basel, pp. 127-138. 

Decker, K. M., Dvorak, J. J. & Rehmann, R. M. (1994b), User-driven development of a 
novel programming environment for distributed memory parallel processor systems, in 
'Priority Program Informatics Research Information Conference Module 3 Massively 
Parallel Systems', Swiss National Science Foundation, pp. 4Q-47. 

Decker, K. M., Dvorak, J. J., Rehmann, R. M. & Riihl, R. (1995), 'Matching User Require­
ments in Parallel Programming', Future Generations Computer Systems. accepted for 
publication. 

Gutzwiller, S. (1993), Werkzeuge und Methoden des skelettorientierten Programmierens 
von Parallelrechnern, PhD thesis, University of Basel. In German. 

Rehmann, R. (1994), Automatic Generation of Programs for a Scientific Parallel Pro­
gramming Environment, Technical Report CSCS-TR-94-02, Centro Svizzero di Calcolo 
Scientifico, CH-6928 Manno, Switzerland. 

Roth, M. (1993), Generation of Algorithmic Skeletons from Stencil Specifications, Master's 
thesis, lAM, University of Bern. In German. 

Toupin, T. (1994), SiPS Language Specification Proposal, Technical Note SeRD-CSCS­
TN-94-09, Swiss Scientific Computing Center, CH-6928 Manno, Switzerland. 

Waters, R. C. (1982), 'The Programmer's Apprentice: Knowledge Based Program Editing', 
IEEE Trans. on Software Eng. SE-8(1), 1-12. 



S
te

n
ci

l 

G
lo

ba
l 

'I
 )

 
G

rid
) 

E
xt

e
rn

a
ls

 F
ile

: 
po

ls
so

n:
e1

 

D
e

co
m

p
o

si
ti

o
n

 D
im

e
n

si
o

n
s:

 
__

_,
 

_
_

, _
 _,

 
, 

I 
I 

~
.
!
V
I

·-"
"

_ 
P

ro
b

le
m

 T
yp

e
 

NO
RT

H_
W

ES
T 

NO
RT

H 
p

er
io

d
ic

 

D
 

D
 

W
ES

T 
I 

r
-

in
te

ri
o

r 
L

-

SO
UT

H_
 W

ES
T 

J~
 

0 
D

 
SO

UT
H 

p
er

io
d

ic
 

...
; 

G
ri

d
 O

ff
s
e

t 

X:
 

3 _
_

 L
Jy

j 

l:
 n

 

W
: 

u 
_

. 

A
pp

ly
). 

R
es

et
) 

N
O

RT
IL

EA
ST

 

E
 

p 

P
er

io
di

c 

P
hy

si
ca

l 

un
us

ed
 

SO
U

TI
LE

A
ST

 

S
te

n
ci

l a
n

d
 C

o
lo

ri
n

g
 E

d
it

o
r 

vi
ew

 E
Qn

 T
e

xt
) 

_A
P

P
,!V

 
·,

D
on

e
) 

R
H

S
 M

e
m

b
e

rs
: 

f(
-1

,0
) 

f(
0

,-
1

) 
f(

1
,0

) 
f(

O
,l

) 

LH
S

: 
!:.1

 g
ro

up
1 

C
o

e
ff

ic
ie

n
t:

 0
.2

',.
 

T
im

e
 O

ff
s
e

t:
 (

)_
 __ 

• 
.:~
tt

) 

G
rl

d
va

r 
N

am
e:

 f
 _

_
_

_
 _ 

. a
pp

ly
) 


