
27

Development Framework for real-time
control system design

J. M. Bass t, A. R. Browne t, M. S. Hajji t, P. R. Crott*
and P. J. Fleming t
t Dept. of Automatic Control and Systems Engineering,
:t Dept. of Computer Science, University of Sheffield, Mappin Street,
Sheffield, S1 3JD, UK. Tel. +.44 (0)114 282 5236,
Fax. + 44 (0)114 273 1729, E-mail: J.Bass@sheffield.ac.uk

Abstract
The Development Framework provides a highly automated translation from a specification to
a parallel implementation. The specification is in a popular graphical control engineering
notation, typically representing a system with stringent dependability requirements and hard
real-time constraints. An interface has been constructed between the Development Frame­
work and the dependability modelling tool, SURF-2. The demonstration will illustrate the
Development Framework design approach using a primary flight control Case Study. The
example application consists of a three channel autopilot and airframe model. Dependability
models of competing autopilot architectures will be contrasted in the demonstration.

Keywords
Computer-aided control system design, dependability modelling, computer-aided software
engineering, real-time systems, distributed systems.

1 INTRODUCTION

The Development Framework, an environment to support the specification, design and im­
plementation of real-time distributed computer control systems is described here. It is argued
that both good design practice and fault-tolerance are required to ensure that stringent reli­
ability targets are met. Distributed computer control systems have the advantage that redun­
dant processing elements are available for use to provide fault-tolerance.
The Framework, provides support for three phases in the development of the system under
design. The Specification Phase, described in Section 2, allows the designer to specify, ana­
lyse and simulate the control system under development. The Development Framework in­
cludes tools that automatically translate the control engineering representation into a soft­
ware engineering representation. The Software Design Phase uses a software engineering
notation, described in Section 3, to enable analysis and refinement of the system under
development. One type of analysis available to the developer is the generation of stochastic
Petri net dependability models, described in Section 3-1. Further Development Framework
tools translate the software engineering representation into source code that can be compiled
into executable code for a network of processors. The resulting parallel implementation is
discussed in Section 4.

I. Jelly et al. (eds.), Software Engineering for Parallel and Distributed Systems
© IFIP International Federation for Information Processing 1996

292 Part Three Demonstrations

The demonstration will use a Case Study to illustrate the Development Framework approach.
The Case Study is not described in detail here, due to lack of space, but is introduced in
Section 5. Conclusions are provided in Section 6. Further information regarding the Devel­
opment Framework can be found in (Browne, 1994) and (Bass, 1994).

The Development Framework addresses a similar problem area to the ControlH!MetaH
design environment (Vestal, 1994). In common with the Framework, the ControlH!MetaH
tools use an application-specific graphical specification notation and an intermediate soft­
ware engineering notation. However, the Framework integrates commercially available tools
using translators, while ControiH!MetaH is implemented entirely using purpose built tools.
Further, the ControlH!MetaH environment does not provide facilities for dependability mod­
elling. Detailed dependability modelling, without the benefits of system specification, design
and implementation support, can be performed using Markov chains or stochastic activity
networks. The SAVE environment uses a textual system description to provide dependability
measures (Blum, 1993). In contrast, the UltraSAN environment provides a graphical inter­
face based on stochastic activity networks (Sanders, 1993). The dependability modelling tool
selected for this work, SURF-2, is Markov-based using stochastic Petri nets.

The Development Framework approach encourages the designer to concentrate on the
control engineering design aspects of the proposed system. This is achieved by providing a
highly automated path from a control engineering specification to a distributed system im­
plementation. Figure 1 shows the three phases supported by the Framework and the main
benefits provided in each phase. The Development Framework provides an open architecture
to encourage the designer to intervene at appropriate stages of the design lifecycle for the
purposes of optimisation.

2 SPECIFICATION PHASE

The specification of software with the use of diagrams is seen as one of the main advantages
of CASE systems. It is generally recognised that diagrams allow the representation of system
structure in a much more accessible and natural form than written language or mathematics.
Graphical notations have been developed that are appropriate for the specification of control
systems and are used within the Development Framework. Therefore a control engineer
should readily be able to understand the specification of a control system in such a notation.
This would not generally be true if the design of the control system was in, for example, a

Specification
Pha5e

Functional
Simulation

- Popular Notation

- Simulation

- Graphical ~pecification

Functional Requirement Refinement

Temporal Requirement Refinement

Software
De5ign
Pha5e

Temporal
Simulation

- Documentation

I---+--+! Implementation
Pha5e

• Automatic code generation

- Dependability Improvement • Software reu~e

- Deadlock avoidance

Figure 1 Development Framework overview.

Real-time control system design 293

software engineering notation. Simulink was selected for the specification of real-time con­
trol systems in the Development Framework because it: accommodates both continuous and
discrete elements, and supports the hierarchical decomposition of diagrams enabling repre­
sentation of complex control systems. Simulink supports modelling and simulation during
control law design and is also used to provide a well documented mechanism for the specifi­
cation of control systems. Simulation enables verification that the system meets requirements
prior to implementation. The notation used by Simulink, in common with similar notations,
was not designed to represent many of the features central to parallel and distributed sys­
tems, however. The Software Design Phase is, therefore, implemented to enable deadlock
analysis, mapping and, if required, dependability analysis and the introduction of fault-toler­
ant mechanisms.

3 SOFIW ARE DESIGN PHASE

The most novel and powerful feature of the Development Framework is the automatic trans­
lation of specifications, using an application-specific notation, into designs, using a general­
ised software engineering notation. An equivalent dataflow diagram is created for each
Simulink diagram within a model, and a data structure diagram is created for every connec­
tion between blocks in each Simulink diagram. All functional blocks within the Simulink
diagram (gains and transfer functions, for example) are converted into equivalent process
symbols. Each Simulink inport/outport symbol is converted into an off-page connector, al­
lowing processes and their decompositions to be linked. Thus, a complete description of the
application system under design is maintained in the CASE tool. This complete description
is required to allow the analysis, implementation and documentation of the proposed design.

The Framework draws on the CSP message passing paradigm (Hoare, 1985). The mes­
sage-passing approach of CSP provides an elegant platform for the development of such
distributed systems. Dataflow diagrams are used to model concurrent processes and mes­
sage-passing channels. CSP-based processes and communication channels are, thus, conven­
iently modelled using CASE tools. The CASE tool environment, Software through Pictures
(StP), was adopted for the Development Framework project because it: supports the well
documented and widely known Yourdon methodology with Hatley/Pirbhai real-time exten­
sions (Hatley, 1987); enables the generation and manipulation of diagrams with minimal user
intervention; and has a flexible and extendible storage structure for specific information

D Alternative
Specification

Notation

Specification
Phaee

Software Deeign
Phaee

Figure 2 Development Framework tools.

Implementation
Phaee

294 Part Three Demonstrations

about each object (diagram, process, data flow etc.) within the system.
Tools to perform replication of selected processes, generation of hierarchical coloured

Petri nets and to cluster processes have been implemented. These allow analysis or perform
optimisations on the distributed system under development in the software engineering do­
main. These optimisations can be performed with minimal intervention by the user. An ap­
proach to generating dependability models of the system under development is described
below.

3-1 Stochastic Petri net tool

Generalised stochastic Petri nets enable the evaluation of system safety and reliability meas­
ures. The SURF-2 environment performs model processing based on graphical Petri net (or
Markov chain) representations (Beounes, 1993). The SURF-2 Gateway, shown in Figure 3,
supports automated generation of Petri nets from external software tools. The Framework
stochastic Petri net tool analyses the system under development and translates the dataflow
representation into a textual Petri net notation (Bass, 1995). Dependability models of se­
lected fault-tolerant mechanisms are currently supported. Figure 4 shows typical translations
for recovery block and n-version systems. The dependability models can be used to perform
sensitivity analysis or contrast competing system architectures.

4 IMPLEMENTATION PHASE

A formalism is required in order to generate code from dataflow diagrams. Without this
formalism there is no way of expressing the control of processes or the synchronisation of
communications between them. The formalism represents each non-decomposed process
symbol in the dataflow diagrams for a system as a separate process in the implementation.
All these processes execute iteratively. In each iteration, the process: receives data from all
input data flows; executes the functional code (transfer function or gain, for example); and
sends data to all the output data flows. If a process has no input data flows the process waits
for a signal from the process manager before executing the functional code. The process
manager is a separate task responsible for the correct real-time operation of all the processes
on a processor.

The formalism used limits the prototype Framework to the specification, design and im-

Dataflow to GPSN
T ranelation Algorithm

Framework Information
Interchange Lil>rary

~---.I
9 '"~'-

CASE Tool
(Software through Pictures)

MO<:Iel Deecrlptlon
(Text Files)

Figure 3 Development Framework to SURF-2 interface.

Dependal>ility Modelling Tool
(SURF·2)

Real-time control system design 295

plementation of purely periodic systems. No concept of aperiodic tasks or events has yet
been developed. All inter-process communication is strictly synchronous. The Framework
currently produces source code in the language "C" for the Virtuoso real-time kernel execut­
ing on a network of lnmos Transputers. Transputers provide a convenient platform for the
CSP model and have found numerous applications in real-time control (Irwin, 1992). The
Virtuoso kernel includes a flexible, reconfigurable, synchronous message passing system and
a rate-monotonic scheduler which makes it particularly suitable for the Framework.

The Framework code generator produces all the code required to compile, link and exe­
cute the system. For each process within the system two source code files are produced, a
harness code file, and an application code file. The harness file contains code that manages
inter-process communication and communication with the process manager. It is automat­
ically generated to match the needs of the process. The application code file contains the
code for the functional part of the process e.g. transfer function or gain. This code is an
expansion of a template taken from a library of reusable source code modules. The develop­
ment of such a library reduces both the implementation time, by automatically reusing exist­
ing code, and improves software reliability. The choice of a suitable library module for a
process is performed automatically based on the number and type of input and output data
flows and the type of routine (e.g. gain) that is required. This information is all stored within
the CASE system when the control systems design is converted into data flow diagrams.

Concurnnt Rccow::ry &lock S!Jb-.eyetem

.... ...,.u

Figure 4 Typical dataflow to stochastic Petri net translations.

296 Part Three Demonstrations

5 CASE STUDY

The software demonstration will use a primary flight control Case Study to illustrate the
Development Framework design approach. The application consists of a generic three chan­
nel autopilot and airframe model.

6 CONCLUSIONS

The prototype Development Framework described here enables a highly automatic transla­
tion from an application-oriented system specification to an implementation executed on a
parallel platform using a real-time kernel. In summary, the Framework approach offers a
number of benefits. The system specification is in an application-oriented notation which can
be simulated, to ensure correct functional behaviour, prior to implementation. Code re-use
and automation of error-prone manual translations, reduce development time and increase
confidence in implementation reliability. The open architecture provided by the Development
Framework allows the addition of tools to address problems at different stages of the design
lifecycle.

7 ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of UK EPSRC (under grant number
GRIK64310) and Intelligent Systems International, suppliers of the Virtuoso kernel.

8 REFERENCES

Bass, J. M., A. R. Browne, M.S. Hajji, D. G. Marriott, P.R. Croll and P. J. Fleming (1994),
"Automating the Development of Distributed Control Software", IEEE Parallel and Dis­
tributed Technology, Vol. 2, No.4, Winter 1994, pp. 9-19.

Bass, J. M., S. Metge, P. R. Croll and P. J. Fleming (1995), "Dependability Modelling in a
Prototype Development Framework", IEEE 25th Ann. Int. Symp. on Fault-Tolerant
Computing Systems, Pasadena, June 1995, pp. 131-6.

Beounes, C., et al (1993), "SURF-2: A program for Dependability Evaluation of Complex
Hardware and Software Systems", Digest of Papers, IEEE 23rd Ann. Int. Symp. on
Fault-Tolerant Computing Systems, Toulouse, June 1993, pp. 668-73.

Blum A. M. et al, (1993), "System Availability Estimator (SAVE) Language Reference and
User's Manual", Research Report RA219S, ffiM Research Division, T. J. Watson Re­
search Centre, Yorktown Heights, N.J., June 1993.

Browne, A. R., J. M. Bass, P. R. Croll and P. J. Fleming (1994), "A Prototype Framework
of Design Tools for Computer-Aided Control Engineering", Joint IEEEIIFAC Symp. on
Computer-Aided Control System Design, 1994, pp. 369-74.

Hatley, D. J. and I. A. Pirbhai (1987), "Strategies for Real-Time System Specification",
Dorset House Publishing Co. Inc.

Hoare, C. A. R. (1985), "Communicating Sequential Processes", Prentice-Hall.
Irwin, G. W. and P. J. Fleming (eds.) (1992), "Transputers in Real-Time Control", Research

Studies Press.
Sanders, W. H. and W. D. Obal ll (1993), "Dependability Evaluation using UltraSAN",

Digest of Papers, IEEE 23rd Ann. Int. Symp. on Fault-Tolerant Computing Systems,
Toulouse, June 1993, pp. 674-79.

Vestal C., (1994), "Integrating Control and Software Views in a CACFJCASE Toolset",
IEEEIIFAC Joint Symp. on Computer-Aided Control System Design, Tuscon, Arizona,
March 1994, pp. 353-58.

