
25
The AL++ project:
object-oriented parallel programming
on multicomputers

M Di Santo, F Frattolillo, W Russo and E. Zimeo •
University of Salerno- *University of Napoli, Italy
Fax: + 3 9 89 9645 7 4 - E-mail: disanto@dia. unisa. it

Abstract
AL++ is a software system which combines high-level object-oriented facilities with the sim­
plicity, flexibility and power of the Actor computational model. AL++ lets programmers de­
velop C++ parallel applications and run them on multicomputer platforms.

Keywords
Parallelism, Multicomputers, Actors, C++, Object-oriented parallel programming

PROJECT AIMS

Object-oriented programming models provide an attractive base for developing parallel pro­
gramming systems. In fact, they promote the effective application of modern software engi­
neering techniques, which have already proven to be successful in developing complex and
large-scale sequential applications. Moreover, thanks to the dynamic creation and reconfigura­
tion of objects, they also support applications whose computational structures can not be stati­
cally determined and facilitate decisions about object placement and migration, by aggregating
data and code into single semantic units. In short, object-oriented parallel models seem to offer
the expressiveness and the efficiency which are needed to effectively harness the computational
power of modern, distributed-memory multicomputers.

Among the object-based models of parallel computation, Actors (Agha, 1986) is the best
known. It can be classified as a partly abstract model based on process nets (Skillicorn, 1993)
which allows computations to be specified without restricting their form. The Actor model has
recently become the basis for a number of parallel object-oriented programming languages,
such as ABCL (Yonezawa, 1990), CA (Chen, 1993) and HAL (Agha, 1992), even though it
still has to establish itself as a practical tool for the development of parallel software. This is
due to the difficulties encountered in turning the model into a truly general-purpose, object­
oriented parallel programming language, to the scarcity of efficient implementations and to the

2

I. Jelly et al. (eds.), Software Engineering for Parallel and Distributed Systems
© IFIP International Federation for Information Processing 1996

278 Part Two Project Reviews

limited experience for significant applications. In conclusion, the object-oriented approach,
particularly if based on the Actor model, is well-suited for structuring parallel activities, but
many further research and implementation efforts are needed in order to provide parallel pro­
grammers with elegant language ideas efficiently implemented on existing hardware.

These considerations have motivated the AL++ project which began in 1990 as one of the
research proposals to be developed within the national project "Progetto Finalizzato Sistemi
Informatici e Calcolo Parallelo, sottoprogetto Architetture Parallele", sponsored by the Na­
tional Research Council (CNR) of Italy. Part of the research activities were also developed
within the project "Architetture Convenzionali e Non Convenzionali per Sistemi Distribuiti"
sponsored by the MURST (Ministero deii'Universit e della Ricerca Scientifica e Tecnologica).

The AL++ project aims at developing a programming system characterized by the following
requirements: (a) to provide programmers with elegant and simple mechanisms to develop ob­
ject-oriented parallel applications on distributed-memory architectures; (b) to enable applica­
tion code to be independent of underlying hardware/software platforms; (c) to achieve a
modular implementation of the programming system so that it can be ported on new hardware
with a reasonable effort.

2 KEY RESEARCH ISSUES AND ACHIEVEMENTS

Since the design and implementation of a new language is an expensive activity, the simpler
approach of embedding Actor concepts and primitives into a widespread sequential program­
ming language has been followed. In particular, the main achievement of the project has been
AL t +, a semantic extension of C++, implemented through a class library which provides an
object-oriented interface for actor programming. The choice of C++ has been motivated by its
availability and popularity with programmers. Another motivation is that C++ is efficiently im­
plemented with a minimum of run-time support on all the architectures of major interest.

2.1 The actor model

Actors are objects which manifest a pure reactive nature and interact with other actors only via
message passing. They unify both data and code in local states, called behaviors, and are dy­
namically created and referred through system-wide identifiers, called mail addresses

The communication mechanism is point-to-point, asynchronous and one-directional. Be­
cause mail addresses may be transmitted via messages, the actor-net which shows the potential
flow of information may dynamically change. Messages are guaranteed to be delivered to their
destinations, but transmission order is not necessarily preserved at delivery. Incoming messages
are buffered into unbounded queues associated to receiving actors, before being serially proc­
essed. Functional interactions among actors are modeled with the use of continuations; that is
an actor, instead of returning a result, sends it to a continuation actor that it knows about.

The processing of a message triggers the execution of the actor script, the code in the be­
havior of the receiver. During this processing, new actors can be created, messages asynchro­
nously sent and the current behavior substituted by a new one (replacement behavior). In
practice, replacements implement local state changes which can span from simple updates in
the values of state variables to radical changes in the set of state variables and in the script.

2 The AL++ interface

AL ++ enables programmers to exploit software engineering techniques in modeling parallel

The AL + + project 279

applications. In fact, AL++ joins C++ object-oriented powerful facilities, such as data abstrac­
tion, multiple inheritance, overloading and dynamic binding, with the clear, simple and flexible
mechanisms provided by the Actor model. Moreover, thanks to the support for automatic and
dynamic resource management, programmers can design AL++ programs as ideal algorithms,
without having to specifY allocation strategies or other programming details which make them
depending on specific hardware platforms and network topologies.

AL++ supports the SPMD (Single Program Multiple Data) computational model; therefore,
each node in the system stores and runs the same program; data, on the contrary, is distributed
among all the nodes. The library makes available all the basic abstractions and primitives of the
Actor model. Messages and behaviors are dynamically created instances of user classes re­
spectively derived by the library classes Message and Behavior, while mail addresses are in­
stances of the library class Mai/Address. Actors are dynamically created by invoking the mem­
ber function Mai/Address: :create. The behavior of the new actor can be specified at the crea­
tion time or later, by invoking the member function Mai/Address::init. In the latter case it is
possible to create actors whose behaviors mutually refer.

The Message class defines all the communication and message management primitives as its
member functions. In particular, Message::send sends a message to a target actor, while Mes­
sage::request associates to the sent message the identity of a continuation actor, which will be
used as the implicit destination ofthe result when the target actor executesMessage::reply.

Each user class derived from Behavior must include the local data as its data members and
define the pure virtual member function script, which accepts the message to be processed as
an argument. In many cases the script selects, on the basis of the tag associated to the message
and returned by Message::type, the appropriate method and invokes it. Behavior::hecome
permits to specifY the actor replacement behavior, while Behavior::self returns the mail ad­
dress of the current actor.

AL++ enables to control the dynamic placement of actors in two ways: (I) automatically, by
employing one of the dynamic load balancing strategies integrated into the runtime support:
random, ACWN (Shu, 1989) and PWFA (Di Santo, 1995, in preparation); (2) in a programmed
way, by utilizing some primitives which allow both to specifY the node on which an actor is to
be created and to migrate actors according to the computation load at run-time. Moreover,
immutable actors may be duplicated and "garbage" actors explicitly deallocated.

2.3 Implementation issues

The AL++ interface is built on top of a runtime support, called ASK (Actor System Kernel),
which has been designed so as to fully exploit the power of the underlying hardware, and to be
flexible enough to represent a stable basis for further enhancements. A working prototype of
the kernel has been developed for Transputer networks.

To make the kernel portable to different hardware/software platforms and independent of
network characteristics, it is built on top of a low-level interface which consists of two compo­
nents: an abstract node environment, providing each node with facilities for running concur­
rent threads which interact through some shared-memory mechanism (semaphores or equiva­
lent), and an abstract network environment, providing node-to-node asynchronous communi­
cation primitives and taking charge of performing routing between non-adjacent nodes and of
buffering incoming messages.

An instance of the kernel, consisting of a few threads implementing system processes, is
present on each node. One of these threads is the scheduler which cyclically schedules a local
actor and processes messages in its mail queue; it is worth noting that the processing of a mes­
sage can not be suspended and, therefore, once started, proceeds till its completion. Another

280 Part Two Project Reviews

thread is the server which carries out the remote requests as though they were issued locally.
Mail addresses are represented with global identifiers generated according to a completely

distributed scheme that does not introduce overhead. The identifiers are then translated into
physical addresses by a lookup table that returns either a local memory address, or a node
identifier, according to the physical allocation of actors. In the latter case, a system message is
sent to that node, and a new access to the lookup table is performed upon arrival.

Migration can be implemented quite cheaply in an actor based system. In ASK all the steps
needed are fully asynchronous and so, while the actor migration proceeds on a node, other ac­
tivities allocated on the same node have not to wait, but they are allowed to do useful work.
Migration times are therefore masked by the resulting parallel execution of system threads, and
they only affect the response time of the messages in the queue of the migrating actor. The mi­
gration procedure has been adopted as a basis to implement the remote creation primitive. In
fact, an actor is always locally created and only then asynchronously migrated to its remote
destination. This mechanism permits to minimize the time spent for an actor creation and to
maximize the locality of data references in the first phase of actor existence.

2.4 Performances

The prototype implementation of ASK has been developed in the 3L Parallel C programming
environment, and runs on a network of sixteen T800, clocked at 20 MHz, with links at 20
Mbits/s. Two versions of the network environment (NE) are available, respectively for ring­
connected and 2D-torus networks.

Table I shows execution times of the four basic AL ++ primitives (creation of a new actor,
assignment of an initial behavior to a new actor, sending of a void message and replacement of
the current behavior) in the case of purely local execution.

Table I Local execution of some AL++ primitives (jts)

create init send become
39 54 223 65

Table 2 shows execution times of the send primitive as a function of the distance in hops of
the target node. The table also reports the overall amount of time spent in the NE. The execu­
tion time of a remote create is constantly equal to 71 J.l.S, in that ASK always performs a local
creation asynchronously followed by a migration of the actor.

Table 2 Remote execution of the send primitive (,us)

1 hop 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 8 hops
send(NE) 382(113) 466(177) 535(240) 604(305) 690(368) 771(432) 854(496) 920(583)

2.5 Bibliography

In the following we provide a list of the AL++ key publications written in English:

Arcelli F., De Santo M., Di Santo M. and Picariello A. (1993) Computer Vision Applications
Experience with Actors, PARLE '93, 14-18 June 1993, Munich (Germany), LNCS 694,
Springer-Verlag, Berlin (Germany).

Di Santo M. and Iannello G. (1990) ASK: A Kernel for Programming Actor Systems, Procs.
of the 1990 ACM SigSmal/IPC Symposium on Small Systems, ACM Press.

DiSanto M. and Iannello G. (1991) Implementing actor-based primitives on distributed mem-

The AL + + project 281

ory architectures, Procs. ECOOP-OOPSLA Workshop on Object-Based Concurrent Pro­
gramming, 21-22 Oct. 1990, Ottawa (Canada), OOPS Messenger 2(2), ACM Press.

Di Santo M. and Iannello G. (1992) Implementation of dynamic languages on multicomputer
architectures, in Parallel Computing: Problems. Methods and Applications (eds. Messina
P. and Murli A.), Elsevier, Amsterdam (Nederland), selection of papers presented at the
Conference on Parallel Computing: Achievements, Problems and Prospects, 3-1 June
1990, Capri (Italy).

Di Santo M., Iannello G. and RussoW. (1992) ASK: a Transputer implementation of the Ac­
tor model, Jnt'l Conj on Parallel Computing and Transputers Applications, 21-25 Sept.
1992, Barcelona (Spain), lOS Press, Amsterdam (Nederland).

Di Santo M., Frattolillo F. and Iannello G. (1992) Actor System Kernel (ASK) 4.0. Introduc­
tion and User Guide. Tech. Rep. n. 3/108, CNR Progetto Finalizzato Sistemi Informatici e
Calcolo Parallelo.

Di Santo M., Frattolillo F. and Iannello G. (1994) Run-time support for highly parallel algo­
rithms on multicomputer architectures, Tech. Rep. n. 3/139, CNR Progetto Finalizzato Si­
stemi Informatici e Calcolo Parallelo.

Di Santo M., Frattolillo F. and Iannello G. (1995) Experiences in Dynamic Placement of Ac­
tors on Multicomputer Systems, Proceedings Euromicro Workshop on Parallel and Dis­
tributed Processing, San Remo 25-27 Jan. 1995 (Italy), IEEE Computer Society Press.

Di Santo M. and Iannello G. (1995) Actor Models, in General Purpose Parallel Computers:
Architectures, Programming Environments and Tools (eds. Balbo G. and Vanneschi M.),
Edizioni ETS, Pisa (Italy).

Di Santo M., Frattolillo F., RussoW. and Zimeo E. (1995) A Dynamic Load Balancing for
Object-Based Computations on Multicomputers, in preparation.

3 FUTURE DIRECTIONS

The AL ++ project is still alive and we want to utilize the experiences accumulated since its
start in order to globally redesign both its interface and implementation. Precisely, at the inter­
face level, we will proceed to substitute C++ with the new object-oriented language Java
(Gosling, 1995) which will offer the advantages of being, according to its authors: (i) simple
and familiar; (ii) architecture neutral, portable and robust; (iii) interpreted, dynamic, secure and
multi-threaded; (iv) efficient and equipped with extensive and well developed class libraries.
Moreover, we will complete the programming interface with mechanisms for expressing local
.\ynchronization constraints, which permit to delay the processing of messages until they are
"serviceable", and grouping of actors, which permit to express data parallelism, to support
broadcast communication and to implement distributed objects.
On the other hand, at the implementation level, we will move our environment to a network of
workstations equipped with PVM (Geist, 1992), which nowadays have proven to offer viable
and cost-effective platforms for parallel computing in many application domains. Moreover, we
will design and implement new mechanisms for explicit and automatic resource management at
runtime: among these we will include new algorithms for dynamic placement and distributed
garbage collection of actors.

4 ACKNOWLEDGNrnNTS

The AL++ project has been partially supported by CNR, under funds of"Progetto Finalizzato

282 Part Two Project Reviews

Sistemi Informatici e Calcolo Parallelo", and by MURST, under funds 60% and 40%
"Architetture Convenzionali e Non Convenzionali per Sistemi Distribuiti".

In addition to the authors, Giulio Iannello of the University of Napoli "Federico II" has
contributed to the project.

We gratefully acknowledge Gul Agha of the University of Illinois at Urbana-Champaign for
inspiring our work and providing insights into the Actor model and its implementation.

5 REFERENCES

Agha G. (1986) Actors: A Model of Concurrent Computation in Distributed Systems. The
MIT Press.

Agha G. and Houck C. (1992) HAL: A High-level Actor Language and Its Distributed Imple­
mentation, Proceedings of the 21st International Conference on Parallel Processing (ICPP
'92), Aug. 1992, St. Charles (IL - USA).

Chien A. (1993) Concurrent Aggregates: Supporting Modularity in Massively Parallel Pro­
grams. The MIT Press.

Geist G. A. and Sunderam V. S. (1992) Network-Based Concurrent Computing on the PVM
System, Concurrency: Practice and Experience, 4(4).

Gosling J. and McGilton H. (1995) The Java Language Environment: a white paper, available
at http://java.sun.com

Shu W. and Kale L. V. (I 989) Dynamic scheduling of medium-grained processes on multi­
computers, Tech. Rep., Dep. of Computer Science, Univ. of Illinois at Urbana-Champaign.

Skillicorn D. B. (I 993) Models for parallel computation, in Advanced workshop on Program­
ming toolsfor parallel machines, 21-25 June 1993, Otranto (Italy).

Y onezawa A. (ed.) (1990) ABCL: An Object-Oriented Concurrent System. The MIT Press.

6 BIOGRAPHIES

Michele Di Santo is a professor of computer engineering at the University of Salerno, Italy.
He received the degree in electronic engineering, cum laude, from the University of Napoli and
worked at the University of Napoli and the University of Calabria. His scientific interests in­
clude programming languages and environments for parallel and distributed systems. He is a
member of ACM and IEEE Computer Society.

Franco Frattolillo is a faculty member at the "Dipartimento di Ingegneria dell'Informazione e
Ingegneria Elettrica" of the University of Salerno, Italy. He received the degree in electronic
engineering, cum laude, from the University of Napoli. His research interests include parallel
and distributed architectures and programming environments for parallelism.

Wilma Russo is an associate professor of computer engineering at the University of Salerno,
Italy. She received the degree in physics, cum laude, from the University of Napoli and worked
at the University of Calabria. Her scientific interests include programming languages and envi­
ronments for parallel and distributed systems.

Eugenio Zimeo holds a scholarship from CNR at the University of Napoli, Italy. He received
the degree in electronic engineering, cum laude, from the University of Salerno. His research
interests include parallel and distributed architectures and programming environments for paral­
lelism.

