
14

A Situation Theoretic Approach to the
Representation of Processes
Christopher Menzel and Richard J. Mayer
Texas A&M University and Knowledge Based Systems, Inc.
1500 University Avenue E., College Station, TX 77843 (409) 260-5274
(phone), (409) 260-1965 (fax), cmenzel@tamu.edu, rmayer@kbsi.com

Abstract
Typical methods for representing business, engineering, and manufacturing processes represent
process information by means of rather restricted, often graphical languages. These languages are
often fine as far as they go, but for many purposes-information sharing, in particular-much
more precise, detailed representations of enterprise processes are required. In this paper we
develop an approach to the rigorous representation of process information based on situation
theory. We begin with an informal account of the semantic categories of the approach including
situations, infons, types, activities, and processes, as well as the central relations that can hold
between them. A framework known as ST that builds upon the Knowledge Interchange Format
(KIF) is introduced for expressing information in these terms. The use of ST is then illustrated in
detail by means of a series of examples.

Keywords
Process modeling, situation theory, enterprise integration, knowledge sharing, Knowledge Inter­
change Format, ontology

1 INTRODUCTION

A complex enterprise can be characterized essentially by its business processes, i.e., the events
situations, states of affairs, and other highly-structured, dynamic objects according to which the
enterprise functions. An integrated enterprise must capture and maintain detailed information
about these dynamic objects in order to be able to coordinate them and, when necessary,
reengineer them. That is, such an enterprise must be able to model its business processes
effectively. This capacity, in turn, requires a well-defined theoretical framework, i.e., a well­
defined language for representing process information, and a clear semantics that determines the
meanings of the constructs of the language.

P. Bernus et al. (eds.), Modelling and Methodologies for Enterprise Integration
© Springer Science+Business Media Dordrecht 1996

202 Part One Papers

In this paper we base such an account on situation theory, a relatively recent theory of
information that we believe provides an excellent conceptual and theoretical foundation for
representing process information (see, e.g., Barwise and Perry (1983), Barwise (1987), or Devlin
(1991)). We will begin by introducing the basic concepts of the theory. We will then develop a
language for expressing process infonnation that builds upon the Knowledge Interchange
Format, or KIF (Genesereth and Fikes (1992)). Finally, using that language, we will illustrate the
power of the theory by means of a few of examples that require the specification of detailed
process information. For detailed formal development of the theory, the reader is referred to
Menzel and Mayer (forthcoming).

2 BASIC SITUATION THEORY

The notion of a situation is hardly unfamiliar in the literature of knowledge representation.
Perhaps its earliest manifestation was the situation calculus of McCarthy (1968), which has been
developed and applied more recently, and to great effect, to problems in enterprise integration by
the TOVE project, especially Groninger and Fox (1994, 1995). The notion in situation theory,
though related, is significantly different.

2.1 Situations and infons

In situation theory, situations are (typically) concrete, spatially and temporally extended pieces of
the real world, such as a baseball game, a math class, a manufacturing system (though situations
within nonconcrete systems are admitted as well, e.g., the field of real numbers). Can any more
be said about them other than this, however? What is it, for example, that makes a situation what
it is, that distinguishes it from any other situation? The situation theoretic answer to this question
is that a situation is what it is in virtue of the pieces of information it supports, or that hold in it.
That, of course, just pushes the question back a step: what is a piece of information? Situation
theory proper provides an elaborate and quite unique answer to this question. In situation theory,
individual pieces of information are known as infons. The infons within a given domain are
themselves constituted by objects, properties, and relations that exist within the domain. (Objects
here are construed broadly to include not only physical objects, but also abstract ones like
numbers and intervals of time.) More specifically, the basic infons in a given situation s are the
fundamental units of information, good and bad, "generated" combinatorially from the relations
and appropriate arguments for those relations within s; that is, the basic infons of s consist of all
possible legitimate units of information of the form

objects at, ... , an stand in relation r,
and

objects at, ... , an do not stand in relation r,

A situation theoretic approach to the representation of processes 203

where the ai are all constituents of s. (Objects here may be concrete, like persons and machines,
or abstract, like numbers and intervals of time. Relations that hold among objects are known as
first-order relations.*) These infons will be represented in the language that will be developed
here as ·q.- a1 ... ,an+)' and •q.- a1 ... ,an-)', respectively. A situations supports a basic "positive"
infon q: a1 ... ,an+) just in case its ~omponent objects a,, ... , an stand in the relation r ins, and s
supports a basic "negative" infon ¢ a1 ... an-) just in case a1, ... , an are present in s but do not
stand in that relation in s. Thus, for example, the infons ~other-of Hillary Chelsea +) and
~other-of Chelsea Hillary-) are supported by, or hold in, typical White House situations s in
1993. In the language here, these facts would be expressed as '(supports s ~other-of Hillary
Chelsea+))', '(supports s ~other-of Chelsea Hillary-))', '(denies s ~other-of Hillary Chelsea­
))' and '(denies s (mother-of Chelsea Hillary+)), respectively, where iss is an appropriate White
House situation.

Note that, because situations are (in general) limited pieces of the world, an object b that
exists in one situation s may not exist in another s'. Hence, s' will be "silent" on b; more exactly,
it will support no information about b. Situations, that is to say, are partial with respect to
information; they do not answer every question about every individual or every state of affairs. A
typical White House situation, for example, carries no information about, say, the number of
birds nesting on Heron Island in the Great Barrier Reef. It is as important for a theory of
information to be able to represent partiality as it is to represent misinformation. In our
adaptation of situation theory, partiality is captured by allowing the supports relation to be
"gappy," or nonbivalent; that is, it is not the case in general that, for every situations and infon p,
either (supports s p +)or (supports s p -).However, the logic of situations is still classical, in the
sense that the law of excluded middle still holds, i.e., we still have, for any s and p, either
(supports s p +)or (not (supports s p +)).

To say that s supports a given basic infon ¢ a1 ... an +)is to say that the individuals a1, ... , an
stand in the relation r throughout s. However, things can change within a situation--e.g., one
changes from sleeping to waking in typical morning situations. This can be captured in situation
theory by counting temporal intervals as individuals and including a temporal parameter
explicitly among the arguments of first-order relations whenever appropriate. Thus, for instance,
the property asleep will be conceived to be a 2-place relation that holds between individuals and
temporal intervals. Thus, if s is a typical morning situation between 6:00 a.m. and 8:00 a.m. at an
individual b's house, it is likely the case both that (supports s (asleep b 0600 +)) and that
(supports s (asleep b 0800 -)). (If the relevant temporal parameter is understood; then, of course,
it can be suppressed as a matter of convenience.) It is presupposed in the semantics of the
version of situation theory presented here that all subintervals of the interval over which a
situation occurs are present in the situation. Hence, a situation occurring from 6:00 a.m. to 8:00

*In the account developed here, infons will be restricted to individuals and first-order relations only. Full blown
situation theory does not have this restriction, but this engenders significant technical complications that do not seem
at all necessary for the purposes of enterprise process modeling.

204 Part One Papers

a.m. supports all relevant temporal information within that period, e.g., that the interval from
6:00 to 6:15 precedes the interval from 6:30 to 6:45.

2.2 Types, activities, and processes

In most physical systems one observes multiple occurrences of situations that are similar in some
respect. In such cases, the similar situations are said to be of the same type. For instance, a
situation in which Bill Clinton is running on Tuesday and another in which he is running on
Wednesday, though perhaps different in many respects, are similar insofar as Clinton is running
in them, and hence are instances of the same type of situation. Situation types are thus general,
repeatable patterns that can be exhibited by many different specific situations. A situation type,
or activity, is specified in situation theory by means of an operator that abstracts over similar
situations and an appropriate abstraction variable;* here we will use the operator 'type-of. Thus,
the activity just noted is represented as '(type-of ?sit (supports ?sit (running Clinton)))'.
Similarly, distinct objects can be the same in certain respects, and hence can be thought of as
instances of the same object type. Thus, Bill Clinton and Jimmy Carter are alike insofar as they
are male politicians, i.e., they are both of the type male politician.

The importance of types in the context of process modeling-and, indeed, of modeling
generally-is that the semantic content of most all process models concerns types. More exactly,
a typical process is best thought of as a structured collection of situation types related to one
another in a manner that reflects the process flow in a given activation of the process, i.e., the
temporal relations between the instances of those types in an activation. For instance, consider
the painting process depicted in Figure 1. (We use the graphical notation of the IDEF3 process
description capture method, but nothing essential hinges upon this choice.) This diagram depicts
a general process that must begin with an instance of Paint Part (represented by the Paint Part
box with no predecessor), followed by an instance of Test Coverage. At that point, depending,
presumably, on the outcome of the test, an instance of the process can either loop back to another
instance of Paint Part or continue on to have the part dried. Thus, there are, in principle,
infinitely many possible ways this single process can be instantiated by particular courses of
events, depending on how many times such a course of events loops back to repeat the Paint Part
activity.

*In situation theory proper, variables correspond semantically to actual 'variable objects' in the world, known
sometimes as 'parameters' or 'indeterminates'. For purposes here, these entities can be avoided, though there are
certain representational needs that require them, and hence they would be present in a complete account.

A situation theoretic approach to the representation of processes

Paint
Part

1

Paint
Part

2

Figure 1 Paint/fest/Dry Scenario.

Dry Part

4

205

More generally, then, an activity, or situation type, is specified in terms of the variable-binding
operator 'type-of, a variable '?sit' ranging over arbitrary situations, and a formula <p specifying
the conditions common to situations of that type: '(type-of ?sit <p)', read 'the type of situation
such that <p.' Thus, recalling the example above, '(type-of ?sit (supports ?sit (running Clinton)))'
is read 'the type of situation such that it supports Clinton running,' or a little more naturally in
this case, 'the type of situation in which Clinton is running.' A situation s is of of type T =
(type-of ?sit <p) just in case <pis true when '?sit' refers to s. ('?sit', of course, will typically occur
as a free variable in <p.) If <pis of the form '(supports ?sit t)', where tis an infon term, the activity
is said to be specified internally; otherwise it is specified externally. The difference is that an
internal specification describes the activity in terms of the infons that its occurrences support,
whereas an external specification may refer instead to properties of the activity beyond the infons
that its occurrences support, such as, e.g., the causes of its occurrences or the costs involved in
maintaining them.

Analogously, an object type T is specified in tenns of a variable ?x ranging over arbitrary
objects and a sentence <p specifying the conditions common to objects of that type; specifically,
'(type-of ?x <p)'. Analogous to situation types, an object a is of type T = (type-of ?x <p) just in
case the sentence <p is true when '?x' refers to a.

2.3 A budget of relations

Situation theory is highly typed in the sense that the world it describes is partitioned into a
number of different semantic categories, most notably, objects, first-order properties and
relations, infons, situations, courses-of-events, object types, situation types, processes, and
temporal intervals. To capture these distinctions, the theory of situations developed in this paper
defines terms that denote each of these categories. In addition, a variety of terms are defined that
signify a class of special relations, along with axioms that express precisely what categories of
objects can stand in these relations. With these terms at his or her disposal. a user is able clearly
to express any additional infonnation or constraints not expressible in terms of a typical
graphical language.

206 Part One Papers

Specifically, then, the supports relation between situations and infons was discussed at length
above. The occurrence-of relation holds between a situation s and an activity A just in case s is
an instance of A. The activation-of relation holds between a course-of-events c and the process P
just in case cis an activation of P. The occurs-in relation holds between a situations and courses­
of-events c just in case s occurs in c. The activity-in relation mirrors this relation at the type level:
it holds between an activity A and a process P just in case A is among the situation types that
constitute P. The of-type relation holds between a situations and an activity A just in cases is an
instance of A. The object-in relation holds between an object b and either a situation s or an
activity A just in case b occurs in s or in instances of A.

A variety of temporal relations are needed to describe the temporal structure of complex
processes. The only primitive relation required is meets, where, intuitively, one interval i meets
another j just in case the endpoint of i is the starting point of j. Further relations-e.g., precedes,
starts,finishes, overlaps, during-can be defined in terms of this relation, as illustrated in Allen
and Hayes (1987). It should be noted that because intervals are treated as first-order objects, i.e.,
individuals, the temporal relations are all first-order relations. Temporal relations are used to
define a variety of corresponding temporal relations among situations, as illustrated below.

3 USEFUL DEFINITIONS AND AXIOMS

The KIF axiomatizations for logical connectives, quantifiers, and other logical operators, sets,
numbers, and lists, and the like are presupposed and are not repeated here. For details, see
Genereth and Fikes (1992). Similarly, a standard axiomatization of the temporal predicates
expressing the intuitive semantics noted above, such as in Allen and Hayes (1987) or van
Benthem (1983) is assumed.

The following definitions and axioms are especially useful or important. Most of these are
expressed as axiom schemas that pick out an infinite number of axioms that differ uniformly only
in their choice of terms or sentences. To achieve this, the metavariables cp and 'If will serve as
placeholders for any sentences, and V, V1, V2, etc. are any variables. An instance of a schema is
the result of replacing each occurrence of a meta variable uniformly with an appropriate linguistic
item (making sure always to replace all occurrences of the same metavariable with occurrences
of the same linguistic item). cp[VN1] is the result of replacing every free occurrence of V in cp
with V1. An occurrence of a variable V in a sentence or term e occurs free in e just in case it
does not occur within an expression of the form (OP V ...) or (OP (V 1 ... V ... V n) ...) or (OP
(V 1 ... V ... V n such-that ...) ...) in e, where OP is (in the first form) the term operator 'the' or
'setofall' or one of the numerical quantifiers 'exists-1 ', 'exists!-1 ', 'exists-2', exists!-2', etc., or
(in any of the three forms) either 'forall' or 'exists'. It is assumed below that V1 is free for V in
cp in the sense that V1 occurs free in cp[VN1] wherever Vis free in cp.

We will call the theory developed here "ST" for short.

A situation theoretic approach to the representation of processes 207

Restricting variables with 'such-that'
Frequently when one uses universal quantification, one qualifies the range of things one is
talking about. The way that this phenomenon manifests itself in a formal language is through the
use of a conditional. For example, if the range of things one is talking about includes all people,
then to talk about all the members of one specific class of person-professors, say-the claim is
qualified in the following fashion: "For all x, if x is a professor, then x is overpaid." In terms of
ST,

(forall ?x (=>(professor ?x) (overpaid ?x))).

In ordinary language, however, it is rare that a conditional "if ... then" would be used to express
such a proposition. Rather, one would say simply "All professors are overpaid." Something of
this naturalness can be captured using the 'such that' construction, which enables one to restrict
the class of things one is talking about without a conditional; one essentially builds the
qualification into the variable directly, as follows:

(forall (?x such-that (professor ?x)) (overpaid ?x)),

i.e., in logician's English, "For all x such that x is a professor, xis overpaid." Granted, there is
generally no savings in the number of characters, but the form itself comports better with the
grammar of ordinary language, hence making the proposition being expressed more under­
standable.

Note that the expression 'such-that' has no actual semantic content; it is there only to enhance
readability. Hence, it could be eliminated from the formal syntax entirely. Though this would
reduce clutter, it is significantly less readable, and readability, after all, was the point of
introducing the construct in the first place. A reasonable compromise (following a fairly common
practice in logic) is to permit the optional use of a colon in place of 'such-that'. Thus, the
example above can also be written as follows.

(forall (?x: (professor ?x)) (overpaid ?x)).

This option will be used in the remainder of this paper. The 'such-that' construct is axiomatized
generally in the obvious way as follows.

(<=> (exists-v (V : q>1 ••• <pn) 'If) (exists-v V (and <p1 ••• q>n 'If))), v is any numeral other than '0'.

(<=> (exists!-v (V : q>1 ... cpn) 'If) (exists!-v V (and q>1 .. ·<t>n 'If))), vis arty numeral other thart '0'.

208 Part One Papers

Numerical quantifiers
Next, we introduce axioms for numerical quantifiers. Numerical quantifiers enable one to say
that some specific number of things have a certain property without having to introduce that
number of variables to indicate the objects. The required axioms illustrate the difference in
syntactic complexity quite markedly. The weak numerical quantifiers are introduced first. The
meaning of these quantifiers is that at least a certain specific number n of objects (of the type
over which the variable V ranges) satisfy the sentence q>. These quantifiers are axiomatized as
follows.

(<=> (exists- I V q>)
(exists V q>))

(<=> (exists-2 V q>)
(exists (Vl V2: (/= Vl V2))

(and q>[VNl] q>[VN2])))

(<=> (exists-3 V q>)
(exists (Vl V2 V3: (/= Vl V2) (/= V2 V3) (/= Vl V3))

(and q>[VNl] q>[VN2] q>[VN3])))

So it continues, for all natural numbers n. The strong numerical quantifiers simply add to each of
these axioms the qualification that no other objects besides the specific ones in question have the
specified property, i.e., that exactly n things (of the type over which the variable V ranges)
satisfy the sentence q>. The strong numerical quantifiers are thus axiomatized by adding this
constraint to the axioms for the weak numerical quantifiers as follows.

(<=> (exists!-1 V q>)
(exists (V: q>) (forall (Vl : q>[VlN]) (= V Vl))))

(<=> (exists!-2 V q>)
(exists(Vl V2: (/= Vl V2))

(andq>[VNl] q>[VN2]
(forall (V3: cp[VN3]) (or(= V3 Vl) (= V3 V2))))))

(<=> (exists!-3 V q>)
(exists (Vl V2 V3: (/= Vl V2) (/= V2 V3) (/= Vl V3))

(andq>[VNl] q>[VN2] q>[VN3]
(forall (V4: cp[VN3]) (or(= V4 VI)(= V4 V2) (= V4 V3))))))

Similarly, once again, for all numbers n.

A situation theoretic approach to the representation of processes 209

Number-of
Given the strong numerical quantifiers, it is important to axiomatize their connection with the
number-of function. Specifically, the number of things that satisfy the sentence cp is n if and only
if there exist exactly n things that satisfy cp, i.e.:

(<=> (= (number-ofV cp) ?n) (exists!-?n V cp)).

The interval over which a situation occurs
In describing processes and their activations, it is very important to be able to talk about the
interval of time over which a given situation occurs. For this reason, a function is defined (using
the "define-function" operator) that, when applied to a given situation, yields exactly that
interval. (As noted, an interval logic such as that defined in Allen and Hayes (1987) is assumed.)
First, an axiom is provided to the effect that every situation occurs over exactly one temporal
interval:

(forall ?sit (exists!-1 ?t (occurs-over ?sit ?t))).

This fact is now used to justify the desired definition:

(define-function interval-of(?sit) :=(the ?t (occurs-over ?sit ?t))).

That is, the interval-of function applied to a situation returns the interval of time over which it
occurs.

The starting and ending points of an interval
Given the ability to pick out the interval over which a situation occurs, it becomes equally
important to be able to talk about its starting and ending points. This is accomplished by defining
two more functions that yield the required points. Clearly, however, this requires that the
property of being a temporal point be defined. This is accomplished with the following
definition.

(define-relation point (?t) :=(not (exists ?tl (and(/= ?t ?tl) (during ?tl ?t))))).

That is, a point is an interval during which no other interval occurs. Given facts that are left
implicit here about the structure, or topology, of the space of temporal intervals, an interval
satisfying this property is as small as possible, i.e., it is a point. The desired functions are then
defined in the obvious way:

(define-function start-of (?t) :=
(the ?tl (and (point ?tl) (starts ?tl ?t))))

(define-function end-of (?t) :=
(the ?tl (and (point ?tl) (ends ?tl ?t)))).

210 Part One Papers

That is, (start-of ?t) is the (unique) point that starts ?t; and (end-of ?t) is the point that ends it.

The starting and ending points of a situation
Given these functions, it is useful to define the starting (ending) point of a situation to be the
starting (ending) point of its interval.

(define-function start-of (?sit) :=
(start-of (interval-of ?sit)))

(defme-function end-of (?sit) :=
(end-of (interval-of ?sit))).

Note that the highly typed character of ST permits 'start-of to be "polymorphic" and to select the
appropriate function in virtue of the type of its argument.

Precedence for situations
In the same fashion, it is useful to define temporal precedence for situations in terms of their
intervals as well:

(define-relation precedes (?sitl ?sit2) :=
(precedes (interval-of ?sitl) (interval-of ?sit2))).

Similar definitions can be given for all of the other temporal relations as well.

The next relation
The interval-of function also permit the definition of another useful notion, namely, the relation
next that holds between occurrences s and s' of two activities A and A' in an activation e of a
process when s' is the first occurrence of A' in e to follow s.

(defme-relation next (?coe ?P ?Al ?A2 ?sitl ?sit2) :=
(and(activation-of ?coe ?P)

(activity-in ?Al ?P)
(activity-in ?A2 ?P)
(occurs-in ?sl ?coe)
(occurs-in ?s2 ?coe)
(occurrence-of ?sl ? Al)
(occurrence-of ?s2 ?A2)
(precedes ?sl ?s2)
(forall(?s3: (/= ?s3 ?s2) (occurs-in ?s3 ?coe)

(occurrence-of ?s3 ?A2) (precedes ?sl ?s3))
(precedes ?s2 ?s3)))).

A situation theoretic approach to the representation of processes 211

That is, the next relation holds between s and s' within an activation e just in case s precedes s'
and s' precedes any other occurrence in e of the same activity.

The immediate successor relation
Finally, a somewhat more general notion than next is that of the immediate successor of a
situation in an activation, or more generally, in a course-of-events. This relation is defined to
hold between two situations s and s' and a course of events e just in case s precedes s' in e and
there is no other situation s" in e that s precedes but which starts before s' does. Specifically:

(define-relation imm-succcessor (?sitl ?sit2 ?coe) :=
(and(occurs-in ?sitl ?coe)

(occurs-in ?sit2 ?coe)
(precedes ?sitl ?sit2)
(not (exists ?sit3 (and (occurs-in ?sit3 ?coe)

(precedes ?sitl ?sit3)
(precedes (start-of ?sit3) (start-of ?sit2)))))).

4 ILLUSTRATIVE EXAMPLES

To illustrate the use of ST, consider a more complex PaintffestJDry process than the one
depicted in Figure 1, namely, the Paint/Review/Queue/Dry process depicted in Figure 2; call this
process 'PRQD'.

Dry Parts

s

Figure 2 Paint/Review/Queue/Dry Scenario with an Additional Loopback.

The schematic itself provides a good general picture of the structure of PRQD. However, certain
features of the process cannot be represented in the graphical language explicitly. To capture
these, it will be best to define several auxiliary notions. First, the new objects, properties, and
relations introduced by this scenario need to be introduced into ST explicitly. There is, for
instance, the first-order properties being painted and being dried, the object types Part and
Queue, and so on. These are introduced into the language with explicit declarations:

212 Part One Papers

(define-PO-relation painted)

(define-FO-relation dried)

(define-type Part)

(define-type Queue (exists!-1 ?x (of-type ?x Queue))).

Note that in the case of 'Queue', an 'axiom' is given that further characterizes the type. (The
form is known as a 'partial definition' in KIF jargon.) This is one important way that basic,
unchanging facts about the domain being described are expressed. In this case, the axiom
expresses that the queue in PRQD is understood as a single object that remains constant across
all activations-despite its changing length from moment to moment. (This fact is simply being
assumed as part of the example; it is obviously not a fact about queues per se.) The existence of
a single queue in the domain, in turn, justifies introducing a name 'Q' for the queue by means of
a complete definition:

(define-object Q :=(the ?x (of-type ?x Queue))),

that is, Q is the unique object of type Queue.

To express information involving the queue, it will be useful to introduce a relation in-queue that
holds between an object, a queue, and a temporal interval (or point) just in case the first is in the
second during the third. Since this is a primitive predicate, it is possible only to circumscribe its
meaning by indicating that it only holds between an object and a queue. Accordingly, the new
predicate is given an appropriate partial definition that specifies this condition explicitly, namely,

(define-relation in-queue (?xl ?x2 ?t) :=>
(and (of-type ?x2 Queue) (interval ?t))).

The presence of the ':=>' operator indicates that the sentence that follows expresses a necessary
condition that must be met if the relation is to hold. That is, the following statement follows
logically from the above defmition:

(forall (?xl ?x2) (=>(in-queue ?xl ?x2 ?t) (and (of-type ?x2 Queue) (interval ?t)))).

It is now possible to express some of the features of PRQD that are merely implicit in the above
schematic. For instance, clearly, the following constraint is intended:

In an activation of PRQD, the part that is queued in an occurrence of Queue Part is different
from the part that is painted in the next occurrence of Paint Part (if there is such an occurrence).

Though not expressible in the graphical language, this proposition can be expressed easily in ST.
As is often the case, however, some groundwork needs to be laid. Because there are typically

A situation theoretic approach to the representation of processes 213

numerous parts in the queue during an occurrence of Queue Part, the part that is queued during
that occurrence needs to be distinguished from the others already in the queue. This could be
accomplished in a number of ways, but here it will be assumed that the (unique) part that is
added to the queue in an occurrence of Queue Part is added in such a fashion that it is not in the
queue at the beginning of that occurrence (it is being moved, for instance), but is in the queue at
the end. In terms of ST,

(forall (?coe : (activation-of ?coe PRQD))
(forall (?sit: (occurs-in ?sit ?coe) (occurrence-of ?sit Queue-Part))

(exists!-1 ?x (and (of-type ?x Part)
(supports ?sit (in-queue ?x Q (start-of ?sit)-))
(supports ?sit (in-queue ?x Q (end-of ?sit)+)))))).

(Note that this constraint could have been expressed as '(forall (?coe ?sit : ...)',but it is often
more natural to group sequences of universally quantified variables according to type.) The
above constraint can now be expressed as follows.

(forall (?coe : (activation-of ?coe PRQD))
(forall (?sitl ?sit2: (occurs-in ?sitl ?coe) (occurrence-of ?sitl Queue-part)

(occurs-in ?sit2 ?coe) (occurrence-of ?sit2 Paint-part)
(next ?coe PQD Queue-part Paint-part ?sitl ?sit2))

(I= (the ?x (and (object-in ?x ?sitl) (of-type ?x Part)))
(the ?x (and (object-in ?x ?sit2) (of-type ?x Part)))))

Contrast this with the first loopback in the scenario depicted in Figure 2, in which the following
is also clearly intended:

In an activation of PRQD, the part under review in an occurrence of Review is identical with the
part in the next occurrence of Paint Part.

This is so, of course, because an activation "loops back" to Paint Part after an occurrence of
Review only if the part in that occurrence itself needs to be repainted after failing the test for
adequate coverage. This general constraint on PRQD can be expressed much as the previous
constraint.

(forall (?coe : (activation-of ?coe PRQD))
(forall(?sitl ?sit2: (and (occurs-in ?sitl ?coe) (occurrence-of?sitl Review)

(occurs-in ?sit2 ?coe) (occurrence-of ?sit2 Paint-part)
(next ?coe PRQD Review Paint-part ?sitl ?sit2)))

(=(the ?x (and (object-in ?x ?sitl) (of-type ?x Part)))
(the ?x (and (object-in ?x ?sit2) (of-type ?x Part)))))

214 Part One Papers

It is important to note that these two types of cycle in PRQD--one in which a part returns to
Paint Part and another in which a fresh part is painted-are depicted in the graphical language in
precisely the same fashion, and hence the difference between the two goes unrepresented unless
expressed explicitly in ST.

Consider now a simplified version of PRQD in which the Review activity has been removed, as
depicted in Figure 3. Call this process 'PQD'. In addition to obviously intended constraints such
as those just indicated, there could be a wide variety of additional constraints on the process that
cannot be expressed in the graphical language.

In an activation of PQD, exactly one part is painted in any given occurrence of Paint Part.

This constraint is expressed as follows.

(forall (?coe: (activation-of ?coe PQD))
(forall(?sit: (occurs-in ?sit ?coe) (occurrence-of ?sit Paint-part))

(exists!-! ?x (supports ?sit (painted ?x +)))))

Paint
Part

1

Paint
Part

2

Figure 3 Paint/Queue/Dry Process.

Dry Parts

4

This example illustrates the usefulness of the strong numerical quantifier 'exists! -1' and the use
of the 'such-that' operator for qualifying the range of a variable. Note that this constraint, as
expressed, attaches to the entire PQD scenario depicted in the diagram. However, it is more
natural to add the constraint directly to the characterization of Paint Part, where it is intended to
apply to each occurrence of Paint Part in a given activation of PQD. The general universally
quantified conditions at the beginning of the constraint can thus be dropped, as they are implicit,
and thus the constraint can be expressed much more simply and directly as follows:

(exists!-1 ?x (supports ?sit (painted ?x +))).

A situation theoretic approach to the representation of processes 215

Note that, as a constraint on Paint Part, the situation variable '?sit' is not to be thought of as
implicitly universally quantified, but rather as a parameter playing the role of a given occurrence
of Paint Part in a given activation; the same is true for the object variable '?x'.

In an activation of PQD, no instance of Paint Part begins at any time if there are five objects in
the queue at that time.

(forall (?coe: (activation-of ?coe PQD))
(forall(?sit: (occurs-in ?sit ?coe) (occurrence-of ?sit Paint-part))

(not (exists-5 (?x: (instance-of ?x Part))
(supports ?sit ~n-queue ?x Q (start-of (interval-of ?sit)) +))))))

That is, for any activation of PQD there is in that activation no occurrence s of Paint Part such
that there are five objects in the queue at the start of s. Again, this constraint is expressed
generally about PQD, but if it is added directly to the characterization of Paint Part where it is
intended to apply to the occurrences of Paint Part within a given activation, it can be expressed
directly as follows.

(not (exists-5 ?x (and (instance-of ?x Part)
(supports ?sit (in-queue ?x Q (start-of (interval-of ?sit))+)))))

A final constraint on PQD illustrates the decision logic attached to the second of the two XOR
junctions, namely:

If the number of parts in the queue at the end of an occurrence of Queue Part is less than 5, the
next activity to occur is Paint Part; otherwise, if the number of parts in the queue is equal to 5,
then the next activity to occur is Dry Parts.

Attached to the junction, this constraint is easily expressible in terms of the immediate successor
relation (defined above) as follows:

(forall (?sitl ?coe: (occurs-in ?sitl ?coe) (occurrence-of ?sitl Queue-part))
(and(=> (<(number-of ?x (supports ?sit ~n-queue ?x Q (end-of ?sit)+))) 5)

(exists ?sit2 (and (occurrence-of ?sit2 Paint-part)
(imm-succcessor ?sitl ?sit2 ?coe))))

(=> (=(number-of ?x (supports ?sit ~n-queue ?x Q (end-of ?sit)+))) 5)
(exists ?sit2 (and (occurrence-of ?sit2 Dry-parts)

(imm-succcessor ?sitl ?sit2 ?coe)))))).

Since the constraint is attached to the junction, that ?coe is an activation of PQD is determined by
context and hence can be left implicit.

216 Part One Papers

5 REFERENCES

Allen, J., and Hayes, P. (1987) Moments and points in an interval-based temporal logic.
Technical Report TR180, Departments of Computer Science and Philosophy, University of
Rochester.

Barwise, J., and Perry, J. (1983) Situations and Attitudes. MIT Press/Bradford Books,
Cambridge.

Barwise, J. (1987) The Situation in Logic. CSLI Lecture Notes, CSLI Publications, Center for the
Study of Language and Information, Stanford University.

Devlin, K. (1991) Logic and Information. Cambridge University Press, Cambridge.

Enderton, H. (1972) A Mathematical Introduction to Logic. Academic Press, New York.

Genesereth, M. R., and Fikes, R. E. (1992) Knowledge Interchange Format version 3.0 -
Reference Manual. Technical report Logic-92-1, Logic Group, Department of Computer
Science, Stanford University, CA.

Griininger M., and Fox, M. (1994) The design and evaluation of ontologies for enterprise
engineering. Ms., Department of Industrial Engineering, University of Toronto.

Griininger, M., and Fox, M. (1995) Methodology for the design and evaluation of ontologies.
IJCAI-95 Workshop on Basic Issues in Ontology, Montreal, August 1995.

Griininger M., and Pinto, J. (1995) A theory of complex actions for enterprise modelling, AAAI
Spring Symposium: Extending Theories of Action, Stanford University, March 1995.

Hayes, P. (1977) In defense of logic. Proceedings of the Fifth International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, Los Altos, CA, 559-565.

Lee, J., Yost G., and the PIF Working Group (1994) The PIF process interchange format and
framework. Working Paper 180, MIT Center for Coordination Science. Available in
postscript format by anonymous ftp from pound.mit.edu as CCSWP180.ps in the directory
/PUB/CCSW orking_Papers/.

McCarthy J., and Hayes, P. (1969) Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie (eds.), Machine Intelligence 4, Edinburgh
University Press, Edinburgh, pp. 463-502. Also in B. L. Weber and N. Nilsson, Readings in
Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, 1981.

McCarthy, J. (1968) Programs with Common Sense. In M. Minsky (ed.), Semantic Information
Processing, MIT Press, Cambridge, MA, 403-418.

A situation theoretic approach to the representation of processes 217

Menzel, C., and Mayer, R. (forthcoming) A Situation Theoretic Framework for Process
Modeling. Forthcoming in the International Journal for Concurrent Engineering Research
Applications.

van Bentham, J. (1983) The Logic of Time. D. Reidel Publishing Co., Dordrecht, Holland.

6 BIOGRAPIDES

Christopher Menzel is an associate professor in the Department of Philosophy at Texas A&M
University. He also works as a senior consultant with Knowledge Based Systems, Inc., in
College Station, Texas. Dr. Menzel has published widely in the area of philosophical logic. His
more recent research focuses on both formal and philosophical issues in quantified modal logic.
More generally, he is interested in the nature of formal representation, an interest that has led to a
separate line of research in the application of formal methods to the domain of information
modeling. He is particularly interested in logic-based approaches to enterprise model integration.

Richard J. Mayer is an associate professor in the Department of Industrial Engineering and
director of the Knowledge Based Systems Laboratory at Texas A&M. He is also president and
co-founder of Knowledge Based Systems, Inc. From 1977 through 1984, Dr. Mayer was project
manager of the Integrated Computer Aided Manufacturing (ICAM) effort for the Manufacturing
Technology Division at Wright-Patterson Air Force Base. His areas of expertise include: large
scale information integration of logistical engineering and manufacturing information; AI
applications to manufacturing, design, and engineering; knowledge engineering tool and method
development; and information engineering methods development.

