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Abstract 
Typical methods for representing business, engineering, and manufacturing processes represent 
process information by means of rather restricted, often graphical languages. These languages are 
often fine as far as they go, but for many purposes-information sharing, in particular-much 
more precise, detailed representations of enterprise processes are required. In this paper we 
develop an approach to the rigorous representation of process information based on situation 
theory. We begin with an informal account of the semantic categories of the approach including 
situations, infons, types, activities, and processes, as well as the central relations that can hold 
between them. A framework known as ST that builds upon the Knowledge Interchange Format 
(KIF) is introduced for expressing information in these terms. The use of ST is then illustrated in 
detail by means of a series of examples. 

Keywords 
Process modeling, situation theory, enterprise integration, knowledge sharing, Knowledge Inter­
change Format, ontology 

1 INTRODUCTION 

A complex enterprise can be characterized essentially by its business processes, i.e., the events 
situations, states of affairs, and other highly-structured, dynamic objects according to which the 
enterprise functions. An integrated enterprise must capture and maintain detailed information 
about these dynamic objects in order to be able to coordinate them and, when necessary, 
reengineer them. That is, such an enterprise must be able to model its business processes 
effectively. This capacity, in turn, requires a well-defined theoretical framework, i.e., a well­
defined language for representing process information, and a clear semantics that determines the 
meanings of the constructs of the language. 
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In this paper we base such an account on situation theory, a relatively recent theory of 
information that we believe provides an excellent conceptual and theoretical foundation for 
representing process information (see, e.g., Barwise and Perry (1983), Barwise (1987), or Devlin 
(1991)). We will begin by introducing the basic concepts of the theory. We will then develop a 
language for expressing process infonnation that builds upon the Knowledge Interchange 
Format, or KIF (Genesereth and Fikes (1992)). Finally, using that language, we will illustrate the 
power of the theory by means of a few of examples that require the specification of detailed 
process information. For detailed formal development of the theory, the reader is referred to 
Menzel and Mayer (forthcoming). 

2 BASIC SITUATION THEORY 

The notion of a situation is hardly unfamiliar in the literature of knowledge representation. 
Perhaps its earliest manifestation was the situation calculus of McCarthy (1968), which has been 
developed and applied more recently, and to great effect, to problems in enterprise integration by 
the TOVE project, especially Groninger and Fox (1994, 1995). The notion in situation theory, 
though related, is significantly different. 

2.1 Situations and infons 

In situation theory, situations are (typically) concrete, spatially and temporally extended pieces of 
the real world, such as a baseball game, a math class, a manufacturing system (though situations 
within nonconcrete systems are admitted as well, e.g., the field of real numbers). Can any more 
be said about them other than this, however? What is it, for example, that makes a situation what 
it is, that distinguishes it from any other situation? The situation theoretic answer to this question 
is that a situation is what it is in virtue of the pieces of information it supports, or that hold in it. 
That, of course, just pushes the question back a step: what is a piece of information? Situation 
theory proper provides an elaborate and quite unique answer to this question. In situation theory, 
individual pieces of information are known as infons. The infons within a given domain are 
themselves constituted by objects, properties, and relations that exist within the domain. (Objects 
here are construed broadly to include not only physical objects, but also abstract ones like 
numbers and intervals of time.) More specifically, the basic infons in a given situation s are the 
fundamental units of information, good and bad, "generated" combinatorially from the relations 
and appropriate arguments for those relations within s; that is, the basic infons of s consist of all 
possible legitimate units of information of the form 

objects at, ... , an stand in relation r, 
and 

objects at, ... , an do not stand in relation r, 
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where the ai are all constituents of s. (Objects here may be concrete, like persons and machines, 
or abstract, like numbers and intervals of time. Relations that hold among objects are known as 
first-order relations.*) These infons will be represented in the language that will be developed 
here as ·q.- a1 ... ,an+)' and •q.- a1 ... ,an-)', respectively. A situations supports a basic "positive" 
infon q: a1 ... ,an+) just in case its ~omponent objects a,, ... , an stand in the relation r ins, and s 
supports a basic "negative" infon ¢ a1 ... an-) just in case a1, ... , an are present in s but do not 
stand in that relation in s. Thus, for example, the infons ~other-of Hillary Chelsea +) and 
~other-of Chelsea Hillary-) are supported by, or hold in, typical White House situations s in 
1993. In the language here, these facts would be expressed as '(supports s ~other-of Hillary 
Chelsea+))', '(supports s ~other-of Chelsea Hillary-))', '(denies s ~other-of Hillary Chelsea­
))' and '(denies s (mother-of Chelsea Hillary+)), respectively, where iss is an appropriate White 
House situation. 

Note that, because situations are (in general) limited pieces of the world, an object b that 
exists in one situation s may not exist in another s'. Hence, s' will be "silent" on b; more exactly, 
it will support no information about b. Situations, that is to say, are partial with respect to 
information; they do not answer every question about every individual or every state of affairs. A 
typical White House situation, for example, carries no information about, say, the number of 
birds nesting on Heron Island in the Great Barrier Reef. It is as important for a theory of 
information to be able to represent partiality as it is to represent misinformation. In our 
adaptation of situation theory, partiality is captured by allowing the supports relation to be 
"gappy," or nonbivalent; that is, it is not the case in general that, for every situations and infon p, 
either (supports s p +)or (supports s p -).However, the logic of situations is still classical, in the 
sense that the law of excluded middle still holds, i.e., we still have, for any s and p, either 
(supports s p +)or (not (supports s p +)). 

To say that s supports a given basic infon ¢ a1 ... an +)is to say that the individuals a1, ... , an 
stand in the relation r throughout s. However, things can change within a situation--e.g., one 
changes from sleeping to waking in typical morning situations. This can be captured in situation 
theory by counting temporal intervals as individuals and including a temporal parameter 
explicitly among the arguments of first-order relations whenever appropriate. Thus, for instance, 
the property asleep will be conceived to be a 2-place relation that holds between individuals and 
temporal intervals. Thus, if s is a typical morning situation between 6:00 a.m. and 8:00 a.m. at an 
individual b's house, it is likely the case both that (supports s (asleep b 0600 +)) and that 
(supports s (asleep b 0800 -)). (If the relevant temporal parameter is understood; then, of course, 
it can be suppressed as a matter of convenience.) It is presupposed in the semantics of the 
version of situation theory presented here that all subintervals of the interval over which a 
situation occurs are present in the situation. Hence, a situation occurring from 6:00 a.m. to 8:00 

*In the account developed here, infons will be restricted to individuals and first-order relations only. Full blown 
situation theory does not have this restriction, but this engenders significant technical complications that do not seem 
at all necessary for the purposes of enterprise process modeling. 
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a.m. supports all relevant temporal information within that period, e.g., that the interval from 
6:00 to 6:15 precedes the interval from 6:30 to 6:45. 

2.2 Types, activities, and processes 

In most physical systems one observes multiple occurrences of situations that are similar in some 
respect. In such cases, the similar situations are said to be of the same type. For instance, a 
situation in which Bill Clinton is running on Tuesday and another in which he is running on 
Wednesday, though perhaps different in many respects, are similar insofar as Clinton is running 
in them, and hence are instances of the same type of situation. Situation types are thus general, 
repeatable patterns that can be exhibited by many different specific situations. A situation type, 
or activity, is specified in situation theory by means of an operator that abstracts over similar 
situations and an appropriate abstraction variable;* here we will use the operator 'type-of. Thus, 
the activity just noted is represented as '(type-of ?sit (supports ?sit (running Clinton)))'. 
Similarly, distinct objects can be the same in certain respects, and hence can be thought of as 
instances of the same object type. Thus, Bill Clinton and Jimmy Carter are alike insofar as they 
are male politicians, i.e., they are both of the type male politician. 

The importance of types in the context of process modeling-and, indeed, of modeling 
generally-is that the semantic content of most all process models concerns types. More exactly, 
a typical process is best thought of as a structured collection of situation types related to one 
another in a manner that reflects the process flow in a given activation of the process, i.e., the 
temporal relations between the instances of those types in an activation. For instance, consider 
the painting process depicted in Figure 1. (We use the graphical notation of the IDEF3 process 
description capture method, but nothing essential hinges upon this choice.) This diagram depicts 
a general process that must begin with an instance of Paint Part (represented by the Paint Part 
box with no predecessor), followed by an instance of Test Coverage. At that point, depending, 
presumably, on the outcome of the test, an instance of the process can either loop back to another 
instance of Paint Part or continue on to have the part dried. Thus, there are, in principle, 
infinitely many possible ways this single process can be instantiated by particular courses of 
events, depending on how many times such a course of events loops back to repeat the Paint Part 
activity. 

*In situation theory proper, variables correspond semantically to actual 'variable objects' in the world, known 
sometimes as 'parameters' or 'indeterminates'. For purposes here, these entities can be avoided, though there are 
certain representational needs that require them, and hence they would be present in a complete account. 
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More generally, then, an activity, or situation type, is specified in terms of the variable-binding 
operator 'type-of, a variable '?sit' ranging over arbitrary situations, and a formula <p specifying 
the conditions common to situations of that type: '(type-of ?sit <p)', read 'the type of situation 
such that <p.' Thus, recalling the example above, '(type-of ?sit (supports ?sit (running Clinton)))' 
is read 'the type of situation such that it supports Clinton running,' or a little more naturally in 
this case, 'the type of situation in which Clinton is running.' A situation s is of of type T = 
(type-of ?sit <p) just in case <pis true when '?sit' refers to s. ('?sit', of course, will typically occur 
as a free variable in <p.) If <pis of the form '(supports ?sit t)', where tis an infon term, the activity 
is said to be specified internally; otherwise it is specified externally. The difference is that an 
internal specification describes the activity in terms of the infons that its occurrences support, 
whereas an external specification may refer instead to properties of the activity beyond the infons 
that its occurrences support, such as, e.g., the causes of its occurrences or the costs involved in 
maintaining them. 

Analogously, an object type T is specified in tenns of a variable ?x ranging over arbitrary 
objects and a sentence <p specifying the conditions common to objects of that type; specifically, 
'(type-of ?x <p)'. Analogous to situation types, an object a is of type T = (type-of ?x <p) just in 
case the sentence <p is true when '?x' refers to a. 

2.3 A budget of relations 

Situation theory is highly typed in the sense that the world it describes is partitioned into a 
number of different semantic categories, most notably, objects, first-order properties and 
relations, infons, situations, courses-of-events, object types, situation types, processes, and 
temporal intervals. To capture these distinctions, the theory of situations developed in this paper 
defines terms that denote each of these categories. In addition, a variety of terms are defined that 
signify a class of special relations, along with axioms that express precisely what categories of 
objects can stand in these relations. With these terms at his or her disposal. a user is able clearly 
to express any additional infonnation or constraints not expressible in terms of a typical 
graphical language. 
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Specifically, then, the supports relation between situations and infons was discussed at length 
above. The occurrence-of relation holds between a situation s and an activity A just in case s is 
an instance of A. The activation-of relation holds between a course-of-events c and the process P 
just in case cis an activation of P. The occurs-in relation holds between a situations and courses­
of-events c just in case s occurs in c. The activity-in relation mirrors this relation at the type level: 
it holds between an activity A and a process P just in case A is among the situation types that 
constitute P. The of-type relation holds between a situations and an activity A just in cases is an 
instance of A. The object-in relation holds between an object b and either a situation s or an 
activity A just in case b occurs in s or in instances of A. 

A variety of temporal relations are needed to describe the temporal structure of complex 
processes. The only primitive relation required is meets, where, intuitively, one interval i meets 
another j just in case the endpoint of i is the starting point of j. Further relations-e.g., precedes, 
starts,finishes, overlaps, during-can be defined in terms of this relation, as illustrated in Allen 
and Hayes (1987). It should be noted that because intervals are treated as first-order objects, i.e., 
individuals, the temporal relations are all first-order relations. Temporal relations are used to 
define a variety of corresponding temporal relations among situations, as illustrated below. 

3 USEFUL DEFINITIONS AND AXIOMS 

The KIF axiomatizations for logical connectives, quantifiers, and other logical operators, sets, 
numbers, and lists, and the like are presupposed and are not repeated here. For details, see 
Genereth and Fikes ( 1992). Similarly, a standard axiomatization of the temporal predicates 
expressing the intuitive semantics noted above, such as in Allen and Hayes (1987) or van 
Benthem (1983) is assumed. 

The following definitions and axioms are especially useful or important. Most of these are 
expressed as axiom schemas that pick out an infinite number of axioms that differ uniformly only 
in their choice of terms or sentences. To achieve this, the metavariables cp and 'If will serve as 
placeholders for any sentences, and V, V1, V2, etc. are any variables. An instance of a schema is 
the result of replacing each occurrence of a meta variable uniformly with an appropriate linguistic 
item (making sure always to replace all occurrences of the same metavariable with occurrences 
of the same linguistic item). cp[VN1] is the result of replacing every free occurrence of V in cp 
with V1. An occurrence of a variable V in a sentence or term e occurs free in e just in case it 
does not occur within an expression of the form (OP V ... ) or (OP (V 1 ... V ... V n) ... ) or (OP 
(V 1 ... V ... V n such-that ... ) ... ) in e, where OP is (in the first form) the term operator 'the' or 
'setofall' or one of the numerical quantifiers 'exists-1 ', 'exists!-1 ', 'exists-2', exists!-2', etc., or 
(in any of the three forms) either 'forall' or 'exists'. It is assumed below that V1 is free for V in 
cp in the sense that V1 occurs free in cp[VN1] wherever Vis free in cp. 

We will call the theory developed here "ST" for short. 
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Restricting variables with 'such-that' 
Frequently when one uses universal quantification, one qualifies the range of things one is 
talking about. The way that this phenomenon manifests itself in a formal language is through the 
use of a conditional. For example, if the range of things one is talking about includes all people, 
then to talk about all the members of one specific class of person-professors, say-the claim is 
qualified in the following fashion: "For all x, if x is a professor, then x is overpaid." In terms of 
ST, 

(forall ?x (=>(professor ?x) (overpaid ?x))). 

In ordinary language, however, it is rare that a conditional "if ... then" would be used to express 
such a proposition. Rather, one would say simply "All professors are overpaid." Something of 
this naturalness can be captured using the 'such that' construction, which enables one to restrict 
the class of things one is talking about without a conditional; one essentially builds the 
qualification into the variable directly, as follows: 

(forall (?x such-that (professor ?x)) (overpaid ?x)), 

i.e., in logician's English, "For all x such that x is a professor, xis overpaid." Granted, there is 
generally no savings in the number of characters, but the form itself comports better with the 
grammar of ordinary language, hence making the proposition being expressed more under­
standable. 

Note that the expression 'such-that' has no actual semantic content; it is there only to enhance 
readability. Hence, it could be eliminated from the formal syntax entirely. Though this would 
reduce clutter, it is significantly less readable, and readability, after all, was the point of 
introducing the construct in the first place. A reasonable compromise (following a fairly common 
practice in logic) is to permit the optional use of a colon in place of 'such-that'. Thus, the 
example above can also be written as follows. 

(forall (?x: (professor ?x)) (overpaid ?x)). 

This option will be used in the remainder of this paper. The 'such-that' construct is axiomatized 
generally in the obvious way as follows. 

( <=> (exists-v (V : q>1 ••• <pn) 'If) (exists-v V (and <p1 ••• q>n 'If))), v is any numeral other than '0'. 

( <=> (exists!-v (V : q>1 ... cpn) 'If) (exists!-v V (and q>1 .. ·<t>n 'If))), vis arty numeral other thart '0'. 
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Numerical quantifiers 
Next, we introduce axioms for numerical quantifiers. Numerical quantifiers enable one to say 
that some specific number of things have a certain property without having to introduce that 
number of variables to indicate the objects. The required axioms illustrate the difference in 
syntactic complexity quite markedly. The weak numerical quantifiers are introduced first. The 
meaning of these quantifiers is that at least a certain specific number n of objects (of the type 
over which the variable V ranges) satisfy the sentence q>. These quantifiers are axiomatized as 
follows. 

( <=> (exists- I V q>) 
(exists V q>)) 

(<=> (exists-2 V q>) 
(exists (Vl V2: (/= Vl V2)) 

(and q>[VNl] q>[VN2]))) 

(<=> (exists-3 V q>) 
(exists (Vl V2 V3: (/= Vl V2) (/= V2 V3) (/= Vl V3)) 

(and q>[VNl] q>[VN2] q>[VN3]))) 

So it continues, for all natural numbers n. The strong numerical quantifiers simply add to each of 
these axioms the qualification that no other objects besides the specific ones in question have the 
specified property, i.e., that exactly n things (of the type over which the variable V ranges) 
satisfy the sentence q>. The strong numerical quantifiers are thus axiomatized by adding this 
constraint to the axioms for the weak numerical quantifiers as follows. 

(<=> (exists!-1 V q>) 
(exists (V: q>) (forall (Vl : q>[VlN]) (= V Vl)))) 

(<=> (exists!-2 V q>) 
(exists(Vl V2: (/= Vl V2)) 

(andq>[VNl] q>[VN2] 
(forall (V3: cp[VN3]) (or(= V3 Vl) (= V3 V2)))))) 

(<=> (exists!-3 V q>) 
(exists (Vl V2 V3: (/= Vl V2) (/= V2 V3) (/= Vl V3)) 

(andq>[VNl] q>[VN2] q>[VN3] 
(forall (V4: cp[VN3]) (or(= V4 VI)(= V4 V2) (= V4 V3)))))) 

Similarly, once again, for all numbers n. 
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Number-of 
Given the strong numerical quantifiers, it is important to axiomatize their connection with the 
number-of function. Specifically, the number of things that satisfy the sentence cp is n if and only 
if there exist exactly n things that satisfy cp, i.e.: 

(<=> (= (number-ofV cp) ?n) (exists!-?n V cp)). 

The interval over which a situation occurs 
In describing processes and their activations, it is very important to be able to talk about the 
interval of time over which a given situation occurs. For this reason, a function is defined (using 
the "define-function" operator) that, when applied to a given situation, yields exactly that 
interval. (As noted, an interval logic such as that defined in Allen and Hayes (1987) is assumed.) 
First, an axiom is provided to the effect that every situation occurs over exactly one temporal 
interval: 

(forall ?sit (exists!-1 ?t (occurs-over ?sit ?t))). 

This fact is now used to justify the desired definition: 

(define-function interval-of(?sit) :=(the ?t (occurs-over ?sit ?t))). 

That is, the interval-of function applied to a situation returns the interval of time over which it 
occurs. 

The starting and ending points of an interval 
Given the ability to pick out the interval over which a situation occurs, it becomes equally 
important to be able to talk about its starting and ending points. This is accomplished by defining 
two more functions that yield the required points. Clearly, however, this requires that the 
property of being a temporal point be defined. This is accomplished with the following 
definition. 

(define-relation point (?t) :=(not (exists ?tl (and(/= ?t ?tl) (during ?tl ?t))))). 

That is, a point is an interval during which no other interval occurs. Given facts that are left 
implicit here about the structure, or topology, of the space of temporal intervals, an interval 
satisfying this property is as small as possible, i.e., it is a point. The desired functions are then 
defined in the obvious way: 

(define-function start-of (?t) := 
(the ?tl (and (point ?tl) (starts ?tl ?t)))) 

(define-function end-of (?t) := 
(the ?tl (and (point ?tl) (ends ?tl ?t)))). 
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That is, (start-of ?t) is the (unique) point that starts ?t; and (end-of ?t) is the point that ends it. 

The starting and ending points of a situation 
Given these functions, it is useful to define the starting (ending) point of a situation to be the 
starting (ending) point of its interval. 

(define-function start-of (?sit) := 
(start-of (interval-of ?sit))) 

(defme-function end-of (?sit) := 
(end-of (interval-of ?sit))). 

Note that the highly typed character of ST permits 'start-of to be "polymorphic" and to select the 
appropriate function in virtue of the type of its argument. 

Precedence for situations 
In the same fashion, it is useful to define temporal precedence for situations in terms of their 
intervals as well: 

(define-relation precedes (?sitl ?sit2) := 
(precedes (interval-of ?sitl) (interval-of ?sit2))). 

Similar definitions can be given for all of the other temporal relations as well. 

The next relation 
The interval-of function also permit the definition of another useful notion, namely, the relation 
next that holds between occurrences s and s' of two activities A and A' in an activation e of a 
process when s' is the first occurrence of A' in e to follow s. 

(defme-relation next (?coe ?P ?Al ?A2 ?sitl ?sit2) := 
(and(activation-of ?coe ?P) 

(activity-in ?Al ?P) 
(activity-in ?A2 ?P) 
(occurs-in ?sl ?coe) 
(occurs-in ?s2 ?coe) 
(occurrence-of ?sl ? Al) 
(occurrence-of ?s2 ?A2) 
(precedes ?sl ?s2) 
(forall(?s3: (/= ?s3 ?s2) (occurs-in ?s3 ?coe) 

(occurrence-of ?s3 ?A2) (precedes ?sl ?s3)) 
(precedes ?s2 ?s3)))). 
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That is, the next relation holds between s and s' within an activation e just in case s precedes s' 
and s' precedes any other occurrence in e of the same activity. 

The immediate successor relation 
Finally, a somewhat more general notion than next is that of the immediate successor of a 
situation in an activation, or more generally, in a course-of-events. This relation is defined to 
hold between two situations s and s' and a course of events e just in case s precedes s' in e and 
there is no other situation s" in e that s precedes but which starts before s' does. Specifically: 

(define-relation imm-succcessor (?sitl ?sit2 ?coe) := 
(and(occurs-in ?sitl ?coe) 

(occurs-in ?sit2 ?coe) 
(precedes ?sitl ?sit2) 
(not (exists ?sit3 (and (occurs-in ?sit3 ?coe) 

(precedes ?sitl ?sit3) 
(precedes (start-of ?sit3) (start-of ?sit2)))))). 

4 ILLUSTRATIVE EXAMPLES 

To illustrate the use of ST, consider a more complex PaintffestJDry process than the one 
depicted in Figure 1, namely, the Paint/Review/Queue/Dry process depicted in Figure 2; call this 
process 'PRQD'. 

Dry Parts 

s 

Figure 2 Paint/Review/Queue/Dry Scenario with an Additional Loopback. 

The schematic itself provides a good general picture of the structure of PRQD. However, certain 
features of the process cannot be represented in the graphical language explicitly. To capture 
these, it will be best to define several auxiliary notions. First, the new objects, properties, and 
relations introduced by this scenario need to be introduced into ST explicitly. There is, for 
instance, the first-order properties being painted and being dried, the object types Part and 
Queue, and so on. These are introduced into the language with explicit declarations: 
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(define-PO-relation painted) 

(define-FO-relation dried) 

(define-type Part) 

(define-type Queue (exists!-1 ?x (of-type ?x Queue))). 

Note that in the case of 'Queue', an 'axiom' is given that further characterizes the type. (The 
form is known as a 'partial definition' in KIF jargon.) This is one important way that basic, 
unchanging facts about the domain being described are expressed. In this case, the axiom 
expresses that the queue in PRQD is understood as a single object that remains constant across 
all activations-despite its changing length from moment to moment. (This fact is simply being 
assumed as part of the example; it is obviously not a fact about queues per se.) The existence of 
a single queue in the domain, in turn, justifies introducing a name 'Q' for the queue by means of 
a complete definition: 

(define-object Q :=(the ?x (of-type ?x Queue))), 

that is, Q is the unique object of type Queue. 

To express information involving the queue, it will be useful to introduce a relation in-queue that 
holds between an object, a queue, and a temporal interval (or point) just in case the first is in the 
second during the third. Since this is a primitive predicate, it is possible only to circumscribe its 
meaning by indicating that it only holds between an object and a queue. Accordingly, the new 
predicate is given an appropriate partial definition that specifies this condition explicitly, namely, 

(define-relation in-queue (?xl ?x2 ?t) :=> 
(and (of-type ?x2 Queue) (interval ?t))). 

The presence of the ':=>' operator indicates that the sentence that follows expresses a necessary 
condition that must be met if the relation is to hold. That is, the following statement follows 
logically from the above defmition: 

(forall (?xl ?x2) (=>(in-queue ?xl ?x2 ?t) (and (of-type ?x2 Queue) (interval ?t)))). 

It is now possible to express some of the features of PRQD that are merely implicit in the above 
schematic. For instance, clearly, the following constraint is intended: 

In an activation of PRQD, the part that is queued in an occurrence of Queue Part is different 
from the part that is painted in the next occurrence of Paint Part (if there is such an occurrence). 

Though not expressible in the graphical language, this proposition can be expressed easily in ST. 
As is often the case, however, some groundwork needs to be laid. Because there are typically 
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numerous parts in the queue during an occurrence of Queue Part, the part that is queued during 
that occurrence needs to be distinguished from the others already in the queue. This could be 
accomplished in a number of ways, but here it will be assumed that the (unique) part that is 
added to the queue in an occurrence of Queue Part is added in such a fashion that it is not in the 
queue at the beginning of that occurrence (it is being moved, for instance), but is in the queue at 
the end. In terms of ST, 

(forall (?coe : (activation-of ?coe PRQD)) 
(forall (?sit: (occurs-in ?sit ?coe) (occurrence-of ?sit Queue-Part)) 

(exists!-1 ?x (and (of-type ?x Part) 
(supports ?sit (in-queue ?x Q (start-of ?sit)-)) 
(supports ?sit (in-queue ?x Q (end-of ?sit)+)))))). 

(Note that this constraint could have been expressed as '(forall (?coe ?sit : ... )',but it is often 
more natural to group sequences of universally quantified variables according to type.) The 
above constraint can now be expressed as follows. 

(forall (?coe : (activation-of ?coe PRQD)) 
(forall (?sitl ?sit2: (occurs-in ?sitl ?coe) (occurrence-of ?sitl Queue-part) 

(occurs-in ?sit2 ?coe) (occurrence-of ?sit2 Paint-part) 
(next ?coe PQD Queue-part Paint-part ?sitl ?sit2)) 

(I= (the ?x (and (object-in ?x ?sitl) (of-type ?x Part))) 
(the ?x (and (object-in ?x ?sit2) (of-type ?x Part))))) 

Contrast this with the first loopback in the scenario depicted in Figure 2, in which the following 
is also clearly intended: 

In an activation of PRQD, the part under review in an occurrence of Review is identical with the 
part in the next occurrence of Paint Part. 

This is so, of course, because an activation "loops back" to Paint Part after an occurrence of 
Review only if the part in that occurrence itself needs to be repainted after failing the test for 
adequate coverage. This general constraint on PRQD can be expressed much as the previous 
constraint. 

(forall (?coe : (activation-of ?coe PRQD)) 
(forall(?sitl ?sit2: (and (occurs-in ?sitl ?coe) (occurrence-of?sitl Review) 

(occurs-in ?sit2 ?coe) (occurrence-of ?sit2 Paint-part) 
(next ?coe PRQD Review Paint-part ?sitl ?sit2))) 

(=(the ?x (and (object-in ?x ?sitl) (of-type ?x Part))) 
(the ?x (and (object-in ?x ?sit2) (of-type ?x Part))))) 
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It is important to note that these two types of cycle in PRQD--one in which a part returns to 
Paint Part and another in which a fresh part is painted-are depicted in the graphical language in 
precisely the same fashion, and hence the difference between the two goes unrepresented unless 
expressed explicitly in ST. 

Consider now a simplified version of PRQD in which the Review activity has been removed, as 
depicted in Figure 3. Call this process 'PQD'. In addition to obviously intended constraints such 
as those just indicated, there could be a wide variety of additional constraints on the process that 
cannot be expressed in the graphical language. 

In an activation of PQD, exactly one part is painted in any given occurrence of Paint Part. 

This constraint is expressed as follows. 

(forall (?coe: (activation-of ?coe PQD)) 
(forall(?sit: (occurs-in ?sit ?coe) (occurrence-of ?sit Paint-part)) 

(exists!-! ?x (supports ?sit (painted ?x +))))) 

Paint 
Part 

1 

Paint 
Part 

2 

Figure 3 Paint/Queue/Dry Process. 

Dry Parts 

4 

This example illustrates the usefulness of the strong numerical quantifier 'exists! -1' and the use 
of the 'such-that' operator for qualifying the range of a variable. Note that this constraint, as 
expressed, attaches to the entire PQD scenario depicted in the diagram. However, it is more 
natural to add the constraint directly to the characterization of Paint Part, where it is intended to 
apply to each occurrence of Paint Part in a given activation of PQD. The general universally 
quantified conditions at the beginning of the constraint can thus be dropped, as they are implicit, 
and thus the constraint can be expressed much more simply and directly as follows: 

(exists!-1 ?x (supports ?sit (painted ?x +))). 
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Note that, as a constraint on Paint Part, the situation variable '?sit' is not to be thought of as 
implicitly universally quantified, but rather as a parameter playing the role of a given occurrence 
of Paint Part in a given activation; the same is true for the object variable '?x'. 

In an activation of PQD, no instance of Paint Part begins at any time if there are five objects in 
the queue at that time. 

(forall (?coe: (activation-of ?coe PQD)) 
(forall(?sit: (occurs-in ?sit ?coe) (occurrence-of ?sit Paint-part)) 

(not (exists-5 (?x: (instance-of ?x Part)) 
(supports ?sit ~n-queue ?x Q (start-of (interval-of ?sit)) + )))))) 

That is, for any activation of PQD there is in that activation no occurrence s of Paint Part such 
that there are five objects in the queue at the start of s. Again, this constraint is expressed 
generally about PQD, but if it is added directly to the characterization of Paint Part where it is 
intended to apply to the occurrences of Paint Part within a given activation, it can be expressed 
directly as follows. 

(not (exists-5 ?x (and (instance-of ?x Part) 
(supports ?sit (in-queue ?x Q (start-of (interval-of ?sit))+))))) 

A final constraint on PQD illustrates the decision logic attached to the second of the two XOR 
junctions, namely: 

If the number of parts in the queue at the end of an occurrence of Queue Part is less than 5, the 
next activity to occur is Paint Part; otherwise, if the number of parts in the queue is equal to 5, 
then the next activity to occur is Dry Parts. 

Attached to the junction, this constraint is easily expressible in terms of the immediate successor 
relation (defined above) as follows: 

(forall (?sitl ?coe: (occurs-in ?sitl ?coe) (occurrence-of ?sitl Queue-part)) 
(and(=> (<(number-of ?x (supports ?sit ~n-queue ?x Q (end-of ?sit)+))) 5) 

(exists ?sit2 (and (occurrence-of ?sit2 Paint-part) 
(imm-succcessor ?sitl ?sit2 ?coe)))) 

(=> (=(number-of ?x (supports ?sit ~n-queue ?x Q (end-of ?sit)+))) 5) 
(exists ?sit2 (and (occurrence-of ?sit2 Dry-parts) 

(imm-succcessor ?sitl ?sit2 ?coe)))))). 

Since the constraint is attached to the junction, that ?coe is an activation of PQD is determined by 
context and hence can be left implicit. 
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