
9 

Designing secure agents with 0.0. 
technologies for user's mobility 

David Carlier 
RD2P - Recherche & Diveloppement Dossier Portable 
CHR Calmette, 59037 Lille Cidex - France 
tel: +33 2044 6046, fax: +332044 6045, email: david@rd2p.lifi·fr 

Patrick Trone 
TIT - Tokyo Institute of Technology 
Ookayama 2-12-1 Meguro-ku Tokyo 152 - Japan 
tel: +81 354997001, fax: +81 35734 2817, email: patrick@cs.titech.ac.jp 

Abstract 
Using different kinds of computers from different locations has become a classical phe­
nomenon. A user is said to be mobile when he does not always communicate with the 
outside from the same location. More and more people are being included in this category, 
such as people using a workstation linked to the Internet at their office, a microcomputer 
equipped with a telephone modem at home or a portable computer communicating via a 
wireless link. Features of these stations can be drastically different [GC94] especially for 
mobile computers due to numerous constraints such as weight, size, low communication 
flow and energy consumption [FZ94], [IV94]. Communication with a mobile user depends 
on the terminal used. This paper proposes an agent-based system in which one agent is 
associated to one user in order to simplify his tasks. Object-oriented technologies will 
be used as a way to guarantee agent's data privacy, protect agent acceptor's sites from 
intrusions and, in case of loss, make agent's recovery easier to perform. 

Keywords 
Mobile Computing, Oriented-Object Technology, Fault Tolerance 

1 DESCRIPTION OF THE PROPOSED SYSTEM 

This proposed system aims at enabling anybody to use the same services and data what­
ever the kind of terminal. To do so, a representation agent is widely used. A representation 
agent is a piece of software able to travel throughout the wired network and excecute itself 
on acceptor sites [CT95]. 

J. L. Encarnação et al. (eds.), Mobile Communications
© Springer Science+Business Media Dordrecht 1996



Designing secure agents with 0.0. technologies 79 

A unique representation agent is associated with a given user. An agent takes in charge 
three main tasks : 

• The agent is the user's representation, able to act on his behalf even when he is logged 
out. 

• The representation agent manages data sent from/to a mobile user. This data must 
be specific to the user's current environment in order to allow him to be able to use 
his applications from different terminals. For instance, if the communication flow and 
the resolution of the current user's computer screen are weak, a large image may be 
reduced. 

• The representation agents are located at acceptor sites providing an execution envi­
ronment for agents. An agent is a mandatory intermediary between a. user and all his 
interlocutors. The agent remains fixed during the whole communication even when the 
user is moving. 

The last property allows an easier integration of mobile computing into current systems. 
However, when there is no external communication and when the agent is too far from its 
associated user, the agent is allowed to migrate to get closer to the user. For example, if an 
European person travels to Australia, his associated agent must follow him so as to avoid 
extra use of the network and to reduce message latency; if the user is communicating 
with an Australian station, it would be very inappropiate to have messages travelling 
from Australia to Europe and vice-versa. This step is called the agent migration. Using 
an agent is particularly suited to address the following problems for mobile computing 
described in [MDC93j : 

• Task delegation : It allows the user to save energy and get more processing power. The 
delegation is performed by sending a small program or script to the user's agent. The 
computation results are returned to the user. 

• Asynchronism management: As the user is often disconnected, the representation agent 
can be viewed as an ever active dedicated component on the wired network. Its behavior 
can be defined with the help of scripts. 

• Communication strategies: All data sent to the user are first filtered by the agent 
with respect to both the communication flow and the device features. For example, 
it is no use transferring a 16-million-color picture to the user if his mobile station is 
only equipped with a black-and-white color screen. On the other hand, emitting data 
requires more energy than receiving data. Instead of sending a request each time the 
user wants to access a document, it is more adapted to send a short script describing 
data he wants to receive regularly. For example, if he is used to consulting news relative 
to a specific newsgroup, each time the user is connected, new items are automatically 
sent. 

2 AN OBJECT ORIENTED APPROACH 

The use of representation agents on acceptor sites involves several security problems. 
Some requirements must be taken into account so that, on the one hand, an agent cannot 



80 Part Four Mobile Agents and Multimedia Applications 

voluntarily or otherwise damage an acceptor site and, on the other hand, an agent is not 
able to read or modify another agent's data located on the same site. 

Some constraints are therefore applied on the agent processing domain. Two methods 
are proposed : 

• The first one is to interpret the agent code. The user defines his own agent and sends it 
to an acceptor site. An agent interpreter on this acceptor site verifies that all instruc­
tions are correctly processed. The main drawback is the slow execution speed: running 
interpreted code is much slower than running native code. 

• The other possibility is to predefine the code of the agent. If a user wants to get an 
agent on an acceptor site, he requests it to create one from a predefined code. This 
code can be written in native code, so the execution speed is improved in comparison 
with the first method. The features and the behavior are, however, predefined, that is, 
the agent cannot damage an acceptor site and cannot use another agent's content, as 
will be indicated hereafter. 

The first method allows a user to define his agent the way he wants, according to the 
interpreted language. In the second one, the code is predefined. This code mainly enables 
the agent to communicate with the user and the outside world. It is also used to manage 
data and scripts sent by the user. The agent consists of (1) the code part ie the agent 
code and (2) its individual part, ie personal data and scripts. Thanks to the data and 
scripts, the user can define its own behavior. Moreover, as the agent code is the same for 
all agents, only the agent data and scripts are affected by the migration phase. 

The use of object-oriented concepts enable an easy design of the system. An object is 
composed oftwo sets of elements: the interface (code), and the structure (data). Creating 
an object is achieved by sending a create message to an object server. 

A representation agent can then be viewed as an object. On each acceptor site, an agent 
objet server is responsible for the agent creation. To create an agent within an acceptor 
site, a create message must be sent to the agent server on the site. Once a blank agent 
is created, the user personalizes it by sending a personalize message with a set of data 
related to the user and a set of scripts defined by him. 

To process an agent migration, a create message is sent to the target acceptor site by 
the agent that wants to migrate. It then personalizes it and transfers its own personal 
data and scripts. When these operations are correctly performed, it destroys the copy 
remaining on the user site. 

The agent code itself is not important. It may be different according to acceptor sites. 
However, the interface and the behavior of an agent must be independant of the site. 

3 REPRESENTATION AGENT OBJECT STRUCTURE AND 
SCRIPT OBJECT 

3.1 Agent structure 

The user can add a script into his associated representation agent by sending it the 
message AddScript. When receiving such a message, the agent creates a new instance 



Designing secure agents with 0.0. technologies 81 

Figure 1 Representation agent object structure 

of the class ScriptObject and adds it to its Script Collection as shown in Figure 1. One 
schedule is associated to each script sent to the agent to define the time and the frequency 
of its execution. The AddScript message is followed by two arguments : the script itself 
and the associated execution schedule. Once this method is executed, a script identifier is 
returned to the user. This identifier allows him to modify or remove the script from the 
agent. When the execution of a script is no longer planned in the schedule, the script can 
automatically be removed from the ScriptCollection of the agent object. 

When a script is activated according to the schedule, a thread of the agent's script 
interpreter is created. Its role is to manage the execution of a given script during its 
running time. After the end of the execution, this thread is removed and the script object 
returns to an inactive mode. 

3.2 Script structure and script execution 

As mentioned in the previous part, a script can be in two different states : inactive or 
active. In the former case, the script object can be just considered as data. It is only made 
of two elements: one script text and one schedule. On the other hand, the script object 
structure is extended by an execution block. This one is used as a memory dedicated to 
the execution data of the script. This memory is divided into three elements : a data 
stack, a set of registers (such as an ordinal counter) and a data space for the variables 
storage as represented in Figure 2. 

A method Start run on a script object enables to create an interpreter thread associated 
to this object and to create an execution data space. The thread is then activated by the 
script object. The method Abort kills the thread associated to the script and frees the 
execution data space. 

3.3 Agent object migration 

A representation agent can migrate only when no communication is in progress. All its 
active scripts must not be communicating. The migration must allow the representation 
agent to suspend both its execution and those of its scripts, to travel accross a network 



82 Part Four Mobile Agents and Multimedia Applications 

Object Interface 

Start 
Abort 
Suspend 
Restart 
GetData 
PutData 

reference to the associated interpreter thread 

Object Structure 

Script Features Execution Data 
Block Block 

Figure 2 Active script object structure 

from the current agent's acceptor site to another one and finally to end up with the same 
execution environment as before the migration. 

It is necessary to identify all data to be transferred from one site to another. Minimizing 
the quantity of transferred data is an important issue. As it is entirely re-created according 
to the new site hardware and software features, the agent interface does not need to be 
sent to the target site. Even if the agent code may differ, both its interface and its 
behavior do not change according to their location on various acceptor sites. However, 
the data contained in an agent object must migrate to the target site. The scripts can 
be considered as data. Since the running scripts contain data required by an interpreter 
to continue their execution, the formerly defined script structure allows them to keep 
their execution context even after a migration. For all scripts for which the execution 
has been suspended, a new interpreter thread will be created and will use the execution 
data contained by the script object. Four methods must be added to the script object 
interface: 

• Suspend which stops the execution of a script before a migration. 
• GetData which allows the migrating agent to get data of a script object in order to 

send them to the new script object on the target acceptor site. 
• PutData which is used to put script data from the old agent script object into the 

corresponding new agent's script object. 
• Restart which enables the script object to continue its execution from the instruction 

where the script was suspended. 



Designing secure agents with 0.0. technologies 83 

4 LOSS AND RECOVERY OF AGENTS 

4.1 Identification of problems 

The system presented here entirely relies upon the presence of the agents. As the agents 
are located on acceptor sites and may migrate from one site to another, if an acceptor site 
fails, two main problems may be identified: (1) all agents located on this acceptor site are 
lost, and (2) all agents migrating towards this faulty are will not reach their destination. 
Although the problem of acceptor sites diagnosis is beyond the scope of this paper [TC96], 
it is important to mention that it provides a useful tool to quickly warns the system to 
forbid any further migration towards faulty sites and initiate a recovery process for lost 
agents. 

Recovery of agents must be done with care. Two main problems are identified. Re­
construction of an agent after its acceptor site has failed and restarting from a con­
sistent global state without any message losses. The solution proposed also focuses on 
low-overhead dynamic reconfiguration strategies. Problems are as follow: 

Checkpointing [AB94] must be performed with care so that the saved states form a 
consistent global state. Agent A sends a message Ml to agent B. A has taken a checkpoint 
Ca before sending this message. B takes a checkpoint Cb right after having received this 
message as shown in Figure 3. Subsequently, A fails and restarts from its last checkpoint 
Ca. At this stage, the system global state is inconsistent for A's local state shows no 
message sent to B while B's local state indicates that a message has been received from 
A. This remains true even if B restarts from Cb. 

Rollback-recovery [KT87] from consistent checkpoints may also cause message losses. 
In Figure 3 again, B sends a message M2 to A. A receives it and subsequently fails. Both 
A and B rollbacks to their respective last checkpoints. B's local state shows that it has 
already sent M2 • A's local state indicates that it has not been received. The sytem recovers 
from a consistent state. However, the channel from B to A is empty. Consequently, M2 is 
lost. 

4.2 Proposed solution 

The 0.0. agent approach, that is, code and data (refer to part 2), is particularly suited to 
provide fault-tolerance taking into account the problems mentioned this above. However, 
to ensure consistency and integrity, an agent has to be modelled as follow : 
code: a block of code 
data: (a) a data block, (b) a queue of incoming messages and in case the agent was active 
when the failure occured, (c) its history since last message reception 
As the agent classes located on acceptor sites make the agent code always available 
the code reconstruction problem is directly eliminated. To be able to restart properly, 
a counter of outgoing messages is also required. A change in an agent's local state occurs 
if either (1) the agent sends a message i.e. the outgoing message counter increases, or (2) 
the agent receives a message, i.e. its incoming queue changes, or (3) the agent completes 
a task, i.e. a new checkpoint is performed. 

To be able to recover properly from a sudden failure, two messages are sent together with 
the original one. A shadow of the original message is sent to the shadow of the recipient. 



84 Part Four Mobile Agents and Multimedia Applications 

11 

B 

Cb 

Figure 3 Identification of problems 

A message informing the shadow of the sender that the sender has sent a message is 
also sent so as to increase the message counter. To ensure fault-tolerance, four actors are 
required. The sender (Agent A), its shadow (Agent A'), the receiver (Agent B) and its 
shadow (Agent B'). The process is ordered as follow: (first) Agent A sends a copy of the 
message he wants to send to Agent B', (second) Agent A sends a message to its shadow 
A' to increment its message counter and finally (third) Agent A sends the message to 
the receiver B. All transactions are simultaneous and atomic. When these operations are 
completed, Agent A checkpoints and sends a copy of its state to its shadow. Agent A' 
then replaces its data with the copy it has received. Agent A also keeps a copy in case 
it has to regenerate the shadow. In case the shadow has to be generated, it just takes 
both the checkpointed data block and the queue of incoming messages of the agent and 
transforms itself into a real agent. 

4.3 Implementation 

The agent is a mandatory intermediary between the user and the external world. The 
agent is responsible to update data within its shadow when necessary, that is, after a 
transaction or after a long enough computation modifying the agent data. As an agent 
script is processed by a interpreter thread associated to it, the shadow data management 
can be delegated to the interpreter and to the script object itself. 

Two kinds of script object modifications implying a change in the shadow state are 
identified. The first one is induced by a call of certain script object methods. For instance, 
the call of the Start method involves the creation of the execution data block within the 
script object. In the same way, it must create a similar block in the script shadow of 
the shadow of the agent. The Abort method, which ends the script running, frees this 
part both in the agent script and in the agent shadow script. The PutData method must 
set the execution data block of both the agent script and its shadow. The above shadow 
changes can be taken into account by the code of the method itself. The second kind 
of modification is due to the interpreter running. It changes the script execution data 
block values consequently changes the agent state. It must periodically and just after a 
transaction update the shadow. 



Designing secure agents with 0.0. technologies 85 

5 CONCLUSION 

This paper defines a system enabling a mobile user to obtain facilities from an associated 
assistant: the representation agent. Its structure takes advantage of the object-oriented 
technology. The object instanciation and behavioral notions enable the creation of secure 
agents respecting rules such as privacy of the agents located on the same site and acceptor 
site integrity. This object structure also allows to split agents into two kinds of data: static 
data and dynamic data. The last one are very sensitive and each update must be taken 
into account so that even if an agent is lost, it is possible to restore this agent with the 
same state as before the failure. 
Future works include the implementation of a prototype allowing the management of 
small representation agents responding to the requirements described in this paper. 

ACKNOWLEDGEMENTS 

The authors wish to express their sincere appreciation to members of their respective 
laboratory and more especially to Professor Vincent Cordonnier, Pierre Paradinas from 
RD2P - University of Lille 1, and Professor Nanya from Tokyo Institute of Technology 
who have made this collaboration possible. The authors also would like to thank Sylvain 
Lecomte for lively discussions regarding this research. 

REFERENCES 

[AB94] A. Acharya, B. Badrinath, "Checkpointing Distributed Applications on Mobile 
Computers", in proceedings of the 3rd International Conference on Parallel and Dis­
tributed Information Systems, September 94 

[CT95j D. Carlier, P. Trane, "Security Requirements for Mobile Computing Systems", Tech­
nical Report of IEICE, FTS 95-70, pp 57-65, Tokyo, December 1995 

[FZ94] G.H. Forman, J. Zahorjan, "The Challenges of Mobile Computing", in IEEE Com­
puter, pp 38-47, April 1994 

[GC94] S. Gadol, M. Clary, "Nomadics Tenets - A User's Perspective", Sun Microsystems 
Laboratories Inc. Technical Report, SMLI-TR-94-24, June 1994 

[MDC93j B. Marsh, F. Douglis, R. Caceres, "System Issues in Mobile Computing", Tech­
nical Report TR94-020, Matsushita Information Technology Laboratory (Princeton), 
February 1993 

[IV94] T. Imielinski, S. Viswanathan, "Adaptative Wireless Information Systems", in pro­
ceedings of SIGDBS Conference, Tokyo, October 1994 

[KT87] R. Koo, S. Toueg, "Checkpointing and Rollback-Recovery for Distributed Systems", 
in proceedings of IEEE Transactions on Software Engineering, Vol. SE-13, No 1, pp 
23-31, January 1987 

[TC96] P. Trane, D. Carlier, "Diagnosis Algorithm for Mobility Oriented System", in pro­
ceedings of the 2nd International Conference on Application-specific Systems, Archi­
tectures and Processors, IEEE, Chicago, USA, August 1996 (to appear) 


