
45
PCS: A CASE Tool for Distributed Group
Software Development

R.R. Huang and S. Jarzabek
Department of Information Systems and Computer Science
National University of Singapore, Singapore 119260
Tel: (+65)-7722864, (+65)-7722863
Fax: (+65)-7794580
Email: {huangr, stan}@iscs.nus.sg

Abstract
A large software project is usually developed by a group of people who may work for
different companies and at different locations. Such a distributed development of software
project needs support from both methods and CASE tools. In this paper, we suggest a
software process based approach to support distributed group software development, and
present a CASE tool called PCS that we developed to support the proposed method. PCS is
based on Petri net process model, object-delegation role model and object-oriented
repository model. All these models are discussed in the paper. In addition, a visual process
language in PCS is also briefly introduced.

Keywords
CASE tool, group support software development, software process, Petri net, process model,
role model, object repository model.

1 INTRODUCTION

With the wide spread use of high-performance workstations and computer networks,
distributed group software development (DGSD) becomes increasingly popular. Software
engineers working for different companies at different locations may collaboratively develop
a common software project. They can work on their own computers and communicate with
each other and share information through computer networks, ranging from LAN to Internet.

N. Terashima et al. (eds.), Advanced IT Tools
© Springer Science+Business Media Dordrecht 1996

PCS: a CASE tool 403

DGSD is closely related to the subjects of cooperative computing, groupware, and

software process modeling. Cooperative computing mainly focuses on how to make a set of

processes run on different processing nodes synchronously. These processes cooperate to

reach a common goal and together they form a distributed program. Groupware mainly

concentrates on modeling and coordinating the interactions among a group of human agents

who work together for a common goal. Groupware software systems are combinations of

network and cooperative computing. Software process modeling aims at conceptually

modeling a software project. Both dynamic and static information about a software project,

such as development processes and human roles, are captured in a software process.

Distributed group software development involves many project developers who

collaboratively develop a software project in a distributed environment.

DGSD brings new requirements for methods and CASE tool support. First, modeling

means should be powerful enough to cover software project, human agents and distributed

environment. Next, CASE tools are expected to support such a conceptual model more

directly. There are some pioneering work on the subject ofDGSD. For example, GSS (Hay,

1995) is a software system that supports group software development over a PC LAN.

EPOS (Con, 1994) is an object-oriented cooperative process support system in UNIX­

based workstation environment. SPADE (Ban, 1994) is a Petri net based software process

support system. SOCCA is a specification for coordinated and cooperative activities.

PCS is a Petri net based CASE tool for the support ofDGSD. Compared to the existing

methods and systems, the advantages ofPCS are that it supports software process modeling

on high conceptual level and combines Petri net and object repository model to represent

executable software processes. Most existing related systems allow users to model a

software process with tool models or in some programming languages. This hampers the

direct modeling of a problem situation, while forcing the process designer to take into

account a lot of technical features of the modeling formalism. Our conceptual modeling

method provides process designers with graphical modeling means, clear modeling steps

and the way to map a conceptual software process to the system model of PCS. The
existing Petri net based systems usually use traditional Petri net to model a software

process. However, Petri net alone is not powerful enough to represent structure relation­

ships among different condition nodes in Petri net. Therefore, we introduce large grain

condition nodes ("repository") into Petri net.
In section 2, main characteristics of working with PCS are described. In section 3, a

method for conceptually modeling a software process for DGSD is briefly introduced. In

section 4, the system model of PCS is presented. In section 5, modeling facilities on

process, role, repository and a visual process language is outlined. In section 6, brief

description about PCS system is given. In section 7, the whole paper is concluded.

2 SOME CHARACTERISTICS OF WORKING WITH PCS

With PCS, a group of project developers can work together for the development of a

common software project. The working environment is shown in Figure I. Several human

roles can be identified in this Figure. They are Process Designer, Process Manager, Group

Leader, Developer, Object Server and Repository. Process Designer (PD) is responsible for

modeling software processes. Process Manager (PM) is responsible for the control of

process enactment. In PCS, some process control operations, such as "annealing", are

404 Part Seven Intelligent Tool Kits

specifically defined for this role and can not be used by other roles. Group Leader (GL) is
responsible for assigning roles and human agents to process activities. This role has some
special privileges. He is allowed to dynamically change the relationship between human
agents and process activities. Developers (DEs) are responsible for working on develop­
ment tasks, such as GUI programming. This role can be further decomposed into roles on
lower conceptual levels, for example, designer, programmer, QA engineer, etc. Object
Server manages object repository and controls the access to it. Object repository contains
all project related information and project deliverables. Actually, there are global and local
repositories in PCS. Global information, such as software process specification is stored in
global repository. Temporary information is stored in local repositories. Local repositories
are attached to a single or a set of group members and are not illustrated in the Figure.

Figure 1 Working environment with PCS.

PCS supports cooperative working style. When GL, PD, PM work together, they have a
common visual software process description on their screens. Whenever any changes to the
process description by any one of them, other two roles will see the same changes on their
screens instantly. Moreover, they can exchange their opinions about the process being
designed by means of a message passing mechanism in PCS. The situation is the same while
DEs are working together with GL and PM. The significant difference is that DEs can not
change the predefined process. They have to work under the control of it. They also have
the same view of a process execution and can also communicate with each other and share
information resources in object repositories. In addition, when DEs work together for some
activities defined as "simultaneous" in the software process, they can use a co-authoring
tool, a text editor, to jointly write documents or programs.

3 CONCEPTUALLY MODELING A SOFTWARE PROCESS

Software process modeling aims at building a software project model which may capture
both dynamic and static information about the development of a software project. The result
of software process modeling is a software process. A software process is a set of software

PCS: a CASE tool 405

engineering activities and associated information needed to transform a user's requirements
into functioning software. Software engineering activities are completed by project develop­
ers with such roles as designer, programmer, QA engineer, etc. Some kinds of dependencies
exist among these activities. They are, for example, sequential, alternative, parallel,
simultaneous, precedent dependencies.

For conceptually modeling a software process, we first model four individual aspects of a
software project, i.e., Project Activities, Project Developers, Project Deliverables and
Project Constraints. After modeling these individual aspects, we integrate them together and
thus form a complete software process specification. Modeling project activities is the key
step in this process. It includes other three substeps, i.e., Modeling Project Activity Flow,
Optimizing Project Activity Flow, Refining Project Activities. Figure 2 is a graphical
representation of an incomplete software process for a compiler construction project. The
objective of this project is to extend C++ with persistent objects. In Figure 2, big oval nodes
represent project activities. Small oval nodes with hollow arrows indicate roles attached to
project activities. Directed lines indicate data flows between project activities. Dashed lines
mean refinement. Half-circles indicate alternative relationship and triangles indicate parallel
relationship.

Figure 2 An example of a software process.

A software process specification consists of several sections. They are process section,
activity section, role section, deliverable section, etc. Process section describes the
construction of process flow, and the relationships between roles and project activities, as
well as the relationships between project deliverables and project activities. Process section
is an essential section in a software process specification. Details about modeling software
process for other sections are omitted here because of space limitation. Figure 3 is the
process section for above software process, which is composed of several process
primitives. Below are all process primitives that can be used in process section.
(1) INT(D1, Act, D2): This is the first primitive to be used, which means the initial project
activity is Act. Its input is D1 and output is D2• The activity can be further refmed.
(2) SEQ(Act, {Act~, Ach, ... , Act0 }, {D1, D2, ... , D(n·i)}): This primitive means Act can be
further refined by a set of sequential activities {Act,, Ach, ... , Acto} which are separated by
a set of project deliverables {D~o D2, ... , D(n-1)}.

406 Part Seven Intelligent Tool Kits

(3) PAR(Act, {Act,, Actz, ... , Actn}, {D11, D,z, ... , Dt<n-1)}, {Dz" Dzz, ... , Dz<n-1)}): This
primitive means Act can be further refined by a set of parallel activities {Act1, Act2, ••• ,

Actn}. The input and output of Act; are D1; and D2;, respectively.
(4) ALT(Act, {Act~, Actz, ... , Actn}): This primitive means Act can be further refined by a
set of alternative activities { Act1, Actz, ... , Actn}.
(5) SIM({Act,, Actz, ... , Actn}, Act): This primitive means a set of activities {Act1, Actz, ...
, Actn} should be done simultaneously and can be treated as a single activity Act.
(6) ITE(Act~, Actz): This primitive means there is an iteration from Act1 to Actz.
(7) ROL(Act, {R,, Rz, ... , Rn}): This primitive means there is a set of roles {R1, R2, ••• , Rn}
attached to the activity Act.
(8) PRO(Act, P, I/0): This primitive means deliverable P is related to project activity Act.
If it is an input of Act, then the third argument is I, otherwise the third argument is 0.

Process_ Section
Begin

INT(requirement, design_RC++ _compiler, design);
SEQ(design_RC++_compiler.

{ design_parser_repository_manager.
design_transformer,
design_composer

}.

PAR(design_transforrner.
{ design_with_IMPORT_EXPORT.
materializing_persistent_objects

:.
{ IMPORT_EXPORT_Ianguage_comp.
PERSISTENT_Ianguage_comp.

{ parser_design AND repository_manager_design, }.

transformer_design

});

PAR(design_parser_repository_manager,
{ design_parser.
design_repository_manager

}.
{ requirement_for_parser,
requirement_for_repository_manager

}.
{ parner_design,
repository_manager_design

});

~tumright!

{ IMPORT_EXPORT_design.
PERSISTENT_design

f);

ALT(design_parner,
{ design__parser_from_scratch,
generate_parser_from_ Y ACC

f);

ROL6esign_parser_from_scratch. PO);

PRO(Iesign_parser_from_scratch,
requirement_for_parser, I);

End

Figure 3 A fragment of a software process specification.

4 THE SYSTEM MODEL OF PCS

In PCS, four aspects of information, i.e., project activities, human roles, software tools,
deliverables and certainly the relationships among them are considered in process modeling.
The system model ofPCS is a triple (PM, RM, OM), in which PM represents the process model,
RM represents the role model, OM is an object repository model. Tools are modeled with
role. Calls for tools are regarded as behaviors of a role and thus encapsulated in a role
object. The elements modeled by PM are probably also the elements modeled by ~ or OM.
For example, roles and deliverables are elements modeled by PM. However, they are also the
elements modeled by ~ and OM, respectively. Therefore, the system model of PCS is a
multidimensional model, as shown in Figure 4. In PCS, PM is a Petri net model, RM is an
object-delegation model and OM is an object-oriented repository model with single
inheritance.

PCS: a CASE tool

Process Space

/ \/ \ '
,"" / ./ , ' \ '

Role Space "' , "" .,.. /"' ' ' ' ' Object Space

~f;.~~~
(R ... : Role Model) (0": Object Model)

Figure 4 The system model of PCS.

5 MODELING FACILITIES IN PCS

In PCS, modeling facilities include Petri net, visual process language, role model and object

repository model.

5.1 Petri Net Process Representation

For making a process specification executable, we map it onto a Petri net. In PCS, each

process primitive corresponds to a specific Petri net (see Figure 5).

Start D I Act 0 l Finish

r--o---t--0--1
(a) Initial net

(3) PAR(Act, {Act 1 , Ad 1, ••• , Act.J,

{0 11 ,0 12 , ••• ,0 11._11 J,{D 21 ,0 22 , .• ,,0 l(•-•l})

r---;;--;;;:----;;,---r
I

I
I

I nltn-ll 11 '\n-ll I L------c::::IOA<"l
(c)PanUelut

(5) SIM({Act1,Act 1,-.,Act.J,Act)

'

I
I

I : I

I
--.;:---1

.

.

~-..,spolldotol\~(

. . .

(l) SEQ(Act, {Act., Ad 2 , -,Ad .l, {D 11 0 2, ••• , 0 1 .. 11 })

~M,~
'L:corrcspond~ to Act

(b) Sequeatial net

(4) ALT(Act,{Act"Att 1 , ••• ,Act.J)

(6) ITE(Act1 , Act 1)

407

408 Part Seven Intelligent Tool Kits

(7) ROL(A<t, {R 1• R,, ... • R ,}) (8) PRO(Act. P,l) or PRO(Act, P, 0)

.,

~
~

•,

(g) Net with role conditions

~··X:'· ~ "o-
" ',

(h) Net with product conditions

Figure 5 The correspondence between specification primitives and Petri nets.

In Petri net representation, roles and deliverables (/products) are condition nodes.
Project activities are events. Because Petri net alone is not able to represent structure
relationships among condition nodes, we introduce large grain condition nodes
("repository") into Petri net. With object repository model, structure relationships among
condition nodes can be explicitly modeled.

5.2 Visual Process Language

The transformation from process specification to Petri net is automatic in PCS. Users are
provided with a visual process language. They can draw the expected process on the screen.
PCS will check the process diagram according to naming rules, connective rules, integrity
rules and embedding rules, and then transform it from a process diagram to a specification
and finally to a Petri net. An example of a process diagram is shown in Figure 2. For each
process diagram, there is a special "start" node and a "finish" node. This rule is also true for
sub-process diagram (the diagram for refined process activity). Note that all these nodes
and some tokens about data flow between process activities are omitted in Figure 2.

5.3 Object Delegation Role Model

Roles are modeled in an object-oriented way. In PCS system, roles are modeled as classes.
Objects, the instance of role classes, are human agents that take part in the process
activities. Two special cases are considered in the design of role model. First, a human
agent can belong to different role classes at different time. The membership is dynamically
decided by GL. With the traditional inheritance based object-oriented method, such
problems can be solved by multiple inheritance. However, in a more dynamic environment,
this may cause the number of intersection subclasses increasing dramatically and mess up
the class hierarchy. Next, the software tools encapsulated in a role class are dynamically
shared by human agents with different roles. In traditional object-oriented systems, an
object can only belong to a class. This restricts the variability of the behaviors of an object.
Object-oriented systems based on object-delegation model can overcome these weaknesses
(Lieberman, 1986). In PCS, we impose some restrictions on the role delegation mechanism.
For example, delegation is not allowed to be nested; only behavior can be delegated, etc. In
addition, we define some message patterns for interactions between human agents. For
example, DLG(> rolel, role_key2: func_name), which means a behavior of rolel is

PCS: a CASE tool

delegated by role2 and the interactive interface will be displayed on role! 's screen.
Symmetrically, we also have DLG(role_keyl, > role_key2: func_name).

5.4 Object Repository Model

Information related to the software project, such as software process, deliverables and
human agents, are stored in global or local repositories. All repositories support an object­
oriented repository model that has the concepts of class, object, single inheritance, complex
object, set-valued attribute and object version. In addition, check-in/check-out mechanism is
available for objects moving between global and local repositories. A SQL-Iike query
language is also provided. Figure 6 is an example schema in PCS global object repository, in
which big rectangles indicate classes and tokens with * are set-valued attributes. Directed
lines represent "consist-of' relationships and hollow arrow indicates "is-a" relationship.

Figure 6 A schema example.

integer
integer

integer

A query model is designed on the object repository model. Below are three query
examples. Note that "SELECT tl; FROM t2; WHERE t3;" is abbreviated to "{tl; t2; t3}".
Example 1. Get all names of employees who are researchers in OMS research group.

{O.e_name; 0/Employee; 3p/Team(O.status="researcher" A Oep.staff A p.
name="OMS")}
Example 2. Get the name of the report on PCS project, submitted right after Dec. I, 1994.

{ NEXT(O.report[Ol/12/94]).d_name; 0/Project; O.p_name="PCS"}
Example 3. Get person's ID number. If he is employed, month salary higher than US$2000.

{ O.idn; 0/Person; CH(O)=[Employee:O.salary>2000] }

6 SYSTEM OVERVIEW OF PCS

The current version of PCS system was implemented on the platform of SUN OS, X­
Window Motif and LAN. The main components ofPCS system are illustrated in Figure 7.
PCS has a client-sever architecture. Servers include Tool server, Process server, Role server
and Object server. For better efficiency, globaVIocal servers and globaVIocal repositories are
used.

409

410 Part Seven Intelligent Tool Kits

Role Management System Role Support Facilities

VSPL Programming System
Process Support Facilities

Petri Net System

Figure 7 Main components ofPCS.

7 CONCLUSION

In this paper, we introduce the objectives, methods, models of PCS which is a CASE tool
for DGSD. The advantages ofPCS are application independent and model based. However,
further improvements are still needed in many directions. For example, heterogeneous
platforms and Internet, more message patterns for collaborative software development,
inference ability and support for multiple software development methods.

8 REFERENCES

Bandinelli, S. et al. (1994) SPADE: An Environment for Software Process Analysis, Design
and Enactment, in Software Process Modeling and Technology, (ed. A. Finkelstein, J.
Kramer, B. Nuseibeh), Research Studies Press Ltd., England, 223-247.

Conradi, R. et al. (1994) EPOS: Object-oriented Cooperative Process Modeling, in
Software Process Modeling and Technology, (refer to the first reference), 33-70.

Engels, G. et al. (1994) SOCCA: Specifications of Coordinated and Cooperative Activities,
in Software Process Modeling and Technology, (refer to the first reference), 71-102.

Hayne, S.C. et al. (1995) Experiences with Object-oriented Group Support Software
Development. IBM System Journal, 34, 1, 96-119.

Lieberman, H. (1986) Using Prototypical Objects to Implement Shared Behavior in Object
Oriented System. ACM SIGPLAN Notices, 21, 11,214-223.

BIOGRAPHY

Dr. Riri Huang is a postdoctoral fellow at the Department of Information Systems and
Computer Science, National University of Singapore. His research interests include
distributed software engineering, software process modeling, object-oriented repository for
software engineering and CASE tools. He received his Ph.D. degree from Peking
University.
Dr. Stan Jarzabek is a Senior Lecturer at the Department of Information Systems and
Computer Science, National University of Singapore. His research interests include business
aspects of software engineering, software reuse, CASE tools, maintenance, re-engineering
and business process modeling. He received his Ph.D. degree from Warsaw University.

