
25
Computer-Aided Formal Specification
for Concurrent Engineering Platforms

R. Guetari and G. T. Nguyen
INRIA Rhone-Alpes
655 Avenue de !'Europe
38330 Montbonnot- Saint Martin- France

Abstract
Formal methods, techniques and tools are, at the present time, an active research topic in
different areas of computer science (knowledge representation, real-time systems, algonthms,
etc.). These formal techniques are intended to help users specify consistently their needs and
verif>:: them. Only mathematical techniques are able to prove or to verify the coherence of the
spectfication of a given system or algorithm, etc. However, there is an enormous difficulty to
put into use the mathematical techniques and concepts. This difficulty stems from the fact that
these mathematical techniques and concepts are accessible only by a minority of specialists. To
solve this problem, we have to develop tools and methods to help users to make the most out of
formal approaches, without the apparent complexity of mathemattcalJ?roblems.
This paper presents a tool, called CAST (Computer-Aided Specification Tool) dedicated to help
users S{lecify communicating processes and systems in concurrent engineering environments.
CAST IS a graphical tool which provides a fnendly user interface. At the present time, CAST
allows users to specify design processes by representing them in the form of automata and
provides an SCCS (Synchronous Calculus of Communicatin~ Systems) specification. This tool
IS developed in the SHOOD project which aims at prov1ding tools and methods for the
integration of engineering design systems.

Keywords
Concurrent engineering, formal specification, Object-oriented design, Cooperative engineering
systems

1. INTRODUCTION

The design of integrated concurrent engineering platforms has received much attention in recent
years, because competition strives for shorter design delays and manufacturing costs among
competing firms (Dertouzos 1989). Concurrent engineering allows to design products by taking
into account downstream concerns, such as manufacturability, testability and maintainability of
the designed products. As artifacts become increasingly sophisticated and as competition
becomes more global, it has been recognised that desi8n should be a cooperative endeavor
carried out concurrently by many agents with diverse kmds of expertise, thus lead to shorter
design to market delays. It requires, however, advanced coordination and integration capabilities
(Brown 1992). One way to assist the design engineers in such environments is to provide
flexible collaborative frameworks. They allow various teams to work simultaneously and
consistently on different parts of a global project (Cutkosky 1993 ; Tenenbaum 1992). But the
existing software, tools and computer pfatforms used in manufacturing enterprises require
powerful, versatile and open architectures to take into account these legacy systems (McGuire
1994 ; Paul 1995). A potential technological breakthrough consists in developing generic

N. Terashima et al. (eds.), Advanced IT Tools
© Springer Science+Business Media Dordrecht 1996

218 Part Five Distributed Software

integration platforms that provide high-level distributed services (Genesereth 1992b), i.e., at the
applications' knowledge level (Newell1982).This allows the various tools to communicate and
cooperate through high-bandwidth networks of distributed computers (Genesereth 1992a).
These machines offer specific sharable services. One of the first approaches in this area was the
ARPA's Knowledge Sharing Initiative (Pati11992).
A requisite for developin~ such platforms is the specification of a model for a generic design
process, allowing the consistent cooperation of the distributed services.
SHOOD (SHared Object-Oriented Design) (Nguyen 1993) explores an approach based on the
monitoring of the evolution of design objects, following the engineers' design decisions. The
idea is to track closely the design path followed by the engineers, and to provide a suitable
reactive model of the design artefacts. The reactive object model is designed to evaluate the
consequences of the design actions. The latter are modeled as modification requests, that are sent
simultaneously by the various teams working on a concurrent engineering platform. This
approach capitalizes on specification and verification techniques developed for reactive systems
(Jourdan 1994).

2. OVERVIEW OF SHOOD

The goal of the project SHOOD is to provide tools and methods for the integration of
engineering design systems. SHOOD is at the same time a knowledge representation system and
a platform which provides tools and methods for integration of engineering design systems.
SHOOD proposes three work-packages allowing: (i) the definition of a generic product model
(based on knowledge representation techniques), (ii) the formal specification of a reactive design
model (Nguyen 1996) and (iii) the development of an integration platform supporting
cooperative engineering (Guetari 1996).

Rules

Figure 1 - SHOOD's user interface

As a knowledge representation system, SHOOD is based on object-oriented paradigm (Nguyen
92a) and supports dynamic, partially inconsistent and possibly incomplete knowledge. The
model uses a reflexive object model (Bounaas 1995; Nguyen 1991) ana implemented with a
metaclass kernel that defines all the basic concepts. Over and above the metaclass and
class/instance concepts, SHOOD allows the multiple inheritance, specialisation, composition and

Computer-aided formal specification 219

dependency relationships (e.g., existential and sharin~ dependencies, object versions'
dependencies), generic functions using method s_pecialisauon, active rules makmg SHOOD a
powerful active-objects store and a classification mechanism for composite objects. The
knowledge representation system provides an X-11 based easy and friendly user interface
(figure. 1) allowing the access to the object definitions and manipulations.
The SHOO D's platform of integration proposes: the formal specification of a reactive design
model (Nguyen 1995) and the development of an integration platform, that supports concurrent
engineering of the design products.
The reactive object model implemented by SHOOD supports three basic requirements of
engineering design applications (Nguyen 1991):
• the evolution of des1gn components during the design of products,
• the multiple representations of the objects being designed concurrently by various teams

(Nguyen 1992b),
• the complexity of the product structures, often considered as intricate "part-of" relationships,

but considered also liere as tightly inter-de~;>endent components. It entails that semantic
relationships, e.g., existential dependency relatiOnships among components, are considered.

Modelling the design process requires extensive knowledge on the activities involved, and a
formal background on which to elaborate a suitable model (Gero 1993). Yet, design decisions
can be erratic and amenable to multiple trial and error cycles. Also, the intrinsic dynamics of the
design process makes it difficult to comprehend and control them using formal techniques.
The process model developed for SHOOD is intended to provide a powerful and flexible
framework for capitalising on design experience and achieve new engineering projects. It
supports incremental construction of process models and their dynamic modification to adapt to
the projects' specific goals. It is based on partially ordered sets of tasks and scheduling
operations.

3. OVERVIEW OF sees
Process models are specified using the sees algebra (Boudol 1985 ; Milner 1989). sees is
based on a double structure:
• a set Act of atomic actions (i.e. temporally indivisible and lasting "one instant"). Milner

defines the simultaneous composition of actions".".
• a set :P of agents, which can oe seen as the behaviours of processes.
The basic concept of the calculus is represented by the expression: P ~ P', which means that
the agent P is able to transform into an agent P' by performin~ an action a. Let us focus on the
"action" and "instant" concepts. The instant of an electromc transition _process is perhaps a
nanosecond, whereas it is a millennium for the geophysician. Indeed the mstant of a system is
the duration of the elementary action (or event) of this system. Instant and clock are basic
concepts of every synchronous model of time. Milner defines the following "basic" operators on
the set of agents.
• The action operator prefixes the behaviour of an agent E with an action a. Its expression is

a:E. This expression specifies the agent which executes the action a before carrying the
behaviour of E.

• Sum: (Ei) is an agent family. L;E; (or E1 + E2 + ...) defines the non determinist choice between
the Ej's behaviours. E1 + E2 is the agent where behaviour is E1 behaviour or E2 behaviour. An
expression without the sum operator is called determinist i.e. after each action performed, an
agent has a unique behaviour to adopt. The behaviour described by this kind of expressions is
completely foreseeable.

• Product: E x F is the synchronous parallel composition of E and F. When E performs a and F
performs b, th,en E x F performs the action a. b.

• Restriction: El A shows the agent obtained from the behaviour of E, inhibitin~ all actions not
members of a given set A. This operator is used to specify the synchromsation between
processes.

• Recursive operator: this allows the designation of a family of agents, mutually and recursively
defined by a system of equations. For instance let us consider a two-legged robot, which can
put forward its left foot (action "1") and its right one (action "r"). The walk process can be
modelled by the agent: W = l:r:l:r ... + r:l:r:l..., but this is not correct. The operator "fix" allows
us to write 1t correctly:

220 Part Five Distributed Software

fix(X = l:r:X). Then the walk process is specified by the agent:
W = fix (X = l:r:X) + fix (X= r:l:X)

• Morphism: this renames actions thanks to an endomorphism «1>. The expression <«<>>E
designates the agent whose behaviour is obtained from E by re_placing every action a by«<>(a).

We also use derived operators which are defined using the basic operators. We have especially
derived the delay "o' which sets an undefined wait, the sequence operator ";" ... The full
description of SCCS and derived operators is out of the scope of this paper. It is detailed in
(Milner 1989; Guetari 1995).
Example: Let P a design process represented by the tasks Tl, T2, T3 and T4. The tasks T1 and
T2 are executed simultaneously, i.e., in parallel. T3 is realised after T1 and T2. Finally T4 is
executed at the end of T3. If the task T 4 ends abnormally, we go back to the tasks T 1 and T2.
The sees expression specifying p is:
BEHAVIXJR(P)= H & start f1x (X= o start ~(Tl xT2); T3; T4)
H & start means that the process P waits for the event start to be executed. This event may be
unified with an event generated by a system clock (H) or emitted by the process P itself. The
unary"~" operator specifies a triggering action. If s is an action and P is an agent, whose first
action is a, the expression s ~ P means that the action s is executed simultaneously with action
a. Thus s triggers agent P.
The task T1 consists in two sub-tasks T11 and T12 which are basic tasks and in tum executed
simultaneously. Basic tasks in an SCCS expression are specified in the following form: o preAC: o postAC
• preAC represents the event triggering the task,
• postAC is the event emitted when the task ends,
• the first delay operator (O)indicates that the task waits for an event (preAC) which starts it,
• the second delay operator represents the duration needed to execute the basic task.
If we suppose that the tasks T2, T3 and T4 are basic tasks, the SCCS expression representing
the global design process is :
BEHAVIOUR (P) = H & start fix (X = 0 start => (((preT11: 0 postT 11) x
(preT12 : o postT12 : 1)) x (preT2 : o postT2)) : postT : preT3 : o postT3 : preT4 : o postT4 :
(testOK: 1 + testNOK=>start))
testOK is the event emitted if the task T4 ends correctly, testNOK is emitted if T4 ends
abnormally.

4. CAST

The tool CAST is developed to help designers make the most out of SCCS algebra without its
mathematical and theoretical aspects. Cooperative engineering desi~n processes are graphically
modeled in the form of automata. The graphic formalism of CAST IS close to the ARGONAUTE
environment, dedicated to the ARGOS language (Maraninchi 1992 ; Jourdan 1994). This
formalism is based on hierarchical and parallel composition of automata. CAST offers a friendly
user interface which allows the designer to build automata representing sees agents, and to
combine them using a graphical formalism corresponding to SCCS operators (Fig. 2).

I<DIIcvl
synchronous parallel composition

q£1
Recursive operator

fix(X)

181
Morphism «<><X>

non deterministic choice
A+B

l.s:E?J
Restriction Xf" A

Figure 2. CAST graphic formalism

Computer-aided formal specification 221

An SCCS agent is represented by an automaton where the transitions are the actions that the
agent is able to perform. Each transition is parametrised by a set of inputs and a set of outputs,
which are boolean values. The inputs enumerate the events which have to be present or missing
in order to trigger a transition. The outputs represent the events generated when firing the
transition.

4.1. Specifying Cooperative Processes

This section introduces the use of CAST throu~h the example presented in the section 3. The
tasks T1 and T2 are executed simultaneously, 1.e., in paralfel. T3 is realized after T1 and T2.
Finally T4 is executed at the end of T3. If a problem IS detected during the flight tests, we go
back to the tasks T1 and T2. This process is modeled in CAST by the graph represented in
figure 3.

Figure 3. - A CAST -graph for the process P (section 3)

The different tasks in the design process may be complex. We have to divide each one into a
partially ordered set of sub-tasks, until we obtain terminal tasks for basic design operations. For
example, the task T1 of the process P consists in two sub-tasks: Til and T12. Tll and T12 are
in tum executed simultaneously ...

4.2. Editing Cooperative Processes

CAST allows us to hierarchically model cooperative engineering processes. The File/New
command allows us to open a main window, in whicn we mooel the global automata
representing the designed process. The different nodes of the automata represent the different
tasks of the process. Figure 4 shows the CAST user interface. The automata represents the
global model of an aircnift's design process.
If we select a given task (by a double click) a new window appears. In this window we must
design the automata representing the selected task (Fig. 5 represents the task Tl). Each task must
be divided in tum, until obtaining basic tasks.
The Edit command allow us to modify an automataon (copy an automaton, cut a task, ...).
Finally the Compile command provides an SCCS specification of the designed process. We can
obtain an sees specification for each agent or an sees specification for the global process.

4.3. Verifying Cooperative Processes

It is necessary to specify correctly the process models in order to verify them. The verification
consists in making sure that the process will not behave abnormally. A simple way to verify a
process is to compare its effective specification with its ideal specification. This supposes that
the ideal specification of a given process is known. A second way is to use a temporaJ.logic to
verify the specification of a given process. This method needs two different formalisms: the
specification formalism and the verification one. The verification formalism must ensure that all
tlie information provided by the specification will be considered. Another way to verify the
specification of a process is given by observers. This method consists in specifying, for each
process P, an observer process OP which behaviour consists in detecting iHegal behaviours of
P. The observer are also written in SCCS.

222 Part Five Distributed Software

Fig. 4 - CAST user interface (global automaton for the process P)

Fig. 5 -CAST user interface (global automaton for the task Tl of the process P)

The behaviour of OP consists in enumerating all the illegal situations and to verify that the
current state of the observed process is correct. The observers can detect illegal situations, for
example incorrect requests by the designers, objects that are in particular configurations (e.g.,
inconsistent objects cannot be made public). Incorrect interactions are also prevented in this way,
when the objects are modified by simultaneous updates from the designers.

Computer-aided formal specification 223

The verification formalism must ensure that all the information provided by the specification will
be considered. Another way to verify the specification of a process is given by observers. This
method consists in specifymg for each process P an observer OP which behaviour consists in
detecting illegal behaviours of P. These observers may be written by SCCS. The behaviour of
OP consists in enumerating all the illegal situations and to verify that the current state of the
observed process is right.
Actually we verify process models by the observer's technique. We plan to implement a
verification mechamsm in CAST based on a temporal logic. This verification mechanism
consists in transforming the sees specifications into temporal logic predicates and to apply
logical proof techniques in these predicates. sees specifications can be verified using linear
temporal logic (Piard 1994).

5. IMPLEMENTATION OF PROCESS MODELS

The cooperative engineering processes are implemented using the object model in SHOOD
(Nguyen 1992b). Beside the extensive use of knowledge representation concepts, they are based
on the use of active rules for the implementation of the operations and for the scheduling of the
tasks (Bounaas 1995).
The tasks are modeled in tum by scripts which include sets of active rules. The latter are in
charge of the activation of the external basic operations in dedicated software, e.g., a geometric
modeler. The reflexive nature of the object model used allows for the dynamic restructuring of
the process templates, because they are modeled by classes, which structure and attributes can be
modified on-line (Nguxen 1993).
The automaton descnbed in section 4 was first implemented in ARGOS for a technology
demonstrator (Nguyen 1996). ARGOS is an imperative language for the specification and
verification of reactive systems. It is based on the hierarchical and parallel composition of
automata. Unlike Statecharts, it has a sound and formally well defined semantics (Pnueli 1991).
The full description of ARGOS is out of the scope of this paper. It is detailed extensively in
(Jourdan 1994). Informally, automata are defined in ARGOS by states and transitions. The
transitions are labelled by input and output events. Boolean event combinations trigger the
transitions. Output events are produced when the transitions are fired. This allows the automata
to communicate and to produce resulting events. The ARGOS compiler produces several output
formats, which can be read by various specification and verification software, e.g., ESTEREL
(Berry 1992). The automaton depicted in Figure 4 includes 46 states and 2425 transitions. The
next step is to implement the process using CAST.

6. CONCLUSION

Many factors in different areas of computer science invite us to focus on formal techniques to
spectfy a system, a software, etc. However, formal techniques are beyond the reach of the
majonty of the system's designers. Our domain of interest are reactive systems and
communicating processes in concurrent engineering environments. We have chosen the SCCS
algebra to specify them. Our experience in this domain shows that it is essential to have an
approach or a tool which allows users to make the most out of the formal aspects of SCCS
without the apparent complexity of mathematical problems. This reason lead us to develop
CAST in order to help designers to model, specify and verify reactive systems and
communicating processes. Using graphic tools is an advantage for destgn methods, especially if
these tools are oased on mathematical{'rinciples and allow us to verify the coherence of their
results. CAST provides means to graphtcally analyse and specify consistently reactive systems
and communicating {'rocesses.
The goal of the proJect SHOOD through CAST is to foster new developments that build on
specification and verification techniques, together with research in knowledge sharing for
advanced applications.

224 Part Five Distributed Software

REFERENCES

Berry, G. and Gonthier, G. (1992) The ESTEREL synchronous programming language: design,
semantics, implementation. In: Science of computer programming. 19(2).

Boudol, G. (1985) Le calcul MEUE,Parallelisme, communication et synchronisation, CNRS report.
Bounaas, F. (1995) Using rules for object and schema evolution in an object-oriented system.

Proc. of 17th International Conference TOOLS'95. Santa Barbara (USA).
Brown, D. R. et a! (1992) Next-Cut: a second generation framework for concurrent engineering.

In: Entreprise Modeling and Integration. C. Petrie (ed). McGraw-Hill.
Cutkosky, M. R. eta/. (1993) PACT: an experiment in integrated concurrent engineering systems.

IEEE Computer. 26 (1).
Dertouzos, M. eta/. (1989) Made in America. The MIT Press. Cambridge MA.
Genesereth, M. R. (1992 a) An agent-based framework for software interportability. Proc. DARPA

Software technology conference . Arlington (USA).
Genesereth, M. R. et a!. (1992 b) Knowledge interchange format. Version 3.0 reference manual.

Computer Science Dept. Stanford University. Tech. Report Logic-92-1.
Gero, J. S. (1993) Proceedings of the IFIP WG 5.2 Workshop on "Formal Design Methods for

Computer-Aided Design". Tallinn (Estonia).
Guetari, R. (1995) Conception Orientee-Objet de Systemes d'lnformation et de Decision. PhD

Thesis, Universite de Savoie (France).
Guetari, R. and Nguyen, G. T. (1996) A Class-Based Object-Oriented Model for Parallel

Programming. The 1996 Parallel Object-Oriented Methods and Application, Santa Fe, New
Mexico (USA).

Jourdan, M. (1994) Etude d'un environnement de programmation et de verification des systemes
reactifs, multi-langages et multi-outils. PhD thesis, Universite Joseph Fourier, Grenoble (France).

Maraninchi, F. (1992) Operational and compositional semantics of synchronous automaton
compositions. CONCUR. LNCS 630, Springer Verlag.

McGuire, J. eta!. (1994) SHADE: technology for knowledge-based collaborative engineering. In:
Journal of Concurrent Engineering. 1 (2).

Milner, R. (1989) Communication and concurrency- Prentice Hall.
Newell, A. (1982) The knowledge level. Artificiallntellignece, 18 (1).
Nguyen, G. T. eta/. (1991) Representing design objects. In: Artificial Intelligence in Design'91.

Butterworth-Heinemann. J.S Gero (ed).
Nguyen, G. T. eta/. (1992 a) Multiple object representations. Proc. 20th ACM Computer Science

Conference. Kansas City (USA).
Nguyen, G. T. et al. (1992 b) SHOOD: a design object model. In: Artificial Intelligence in

Design'92. Kluwer Academic Pub!. J.S Gero (ed).
Nguyen, G. T. (1993) SHOOD: plate-forme pour Ia conception assistee. In lngenierie des systemes

d'information, Hermes (ed) Vol. 1, N° 3.
Nguyen, G. T. (1995) A Reactive Object Model for Concurrent Engineering Design. Research

Report INRIA
Nguyen, G. T. and Guetari, R. (1996) A Reactive Object Model for Concurrent Engineering

Platforms. Proc. 9th Inti. Symp. on Methodologies for Intelligent Systems. Zakopane (Poland).
Patil, F. et al. (1992) The DARPA knowledge sharing effort: progress report. Proc. 3rd

International Conference on Principles of knowledge representation and reasonning. Morgan­
Kaufmann.

Paul, A. J. and Sobolewski, M. (1995) Proceedings of the "Concurrent Engineering: a global
perspective" '95 Conference. A. J. Paul, M. Sobdewski (eds). Concurrent Technologies Corp.
Washington D.C.

Piard, F. (1994) Specification et Conception de Systemes d'Information Dynamiques. PhD Thesis,
Universite de Savoie, France.

Pnueli, A. and Shalev, M. (1991) What is in a step: on the semantics of Statecharts. In: Lecture
Notes in Computer Science, no 526. Springer Verlag.

Tenenbaum, J. et al. (1992) Lessons from SHADE and PACT. In Entreprise Modelling and
Integration. C. Petrie (ed). McGraw-Hill.

