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Abstract 
Formal methods, techniques and tools are, at the present time, an active research topic in 
different areas of computer science (knowledge representation, real-time systems, algonthms, 
etc.). These formal techniques are intended to help users specify consistently their needs and 
verif>:: them. Only mathematical techniques are able to prove or to verify the coherence of the 
spectfication of a given system or algorithm, etc. However, there is an enormous difficulty to 
put into use the mathematical techniques and concepts. This difficulty stems from the fact that 
these mathematical techniques and concepts are accessible only by a minority of specialists. To 
solve this problem, we have to develop tools and methods to help users to make the most out of 
formal approaches, without the apparent complexity of mathemattcalJ?roblems. 
This paper presents a tool, called CAST (Computer-Aided Specification Tool) dedicated to help 
users S{lecify communicating processes and systems in concurrent engineering environments. 
CAST IS a graphical tool which provides a fnendly user interface. At the present time, CAST 
allows users to specify design processes by representing them in the form of automata and 
provides an SCCS (Synchronous Calculus of Communicatin~ Systems) specification. This tool 
IS developed in the SHOOD project which aims at prov1ding tools and methods for the 
integration of engineering design systems. 
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1. INTRODUCTION 

The design of integrated concurrent engineering platforms has received much attention in recent 
years, because competition strives for shorter design delays and manufacturing costs among 
competing firms (Dertouzos 1989). Concurrent engineering allows to design products by taking 
into account downstream concerns, such as manufacturability, testability and maintainability of 
the designed products. As artifacts become increasingly sophisticated and as competition 
becomes more global, it has been recognised that desi8n should be a cooperative endeavor 
carried out concurrently by many agents with diverse kmds of expertise, thus lead to shorter 
design to market delays. It requires, however, advanced coordination and integration capabilities 
(Brown 1992). One way to assist the design engineers in such environments is to provide 
flexible collaborative frameworks. They allow various teams to work simultaneously and 
consistently on different parts of a global project (Cutkosky 1993 ; Tenenbaum 1992). But the 
existing software, tools and computer pfatforms used in manufacturing enterprises require 
powerful, versatile and open architectures to take into account these legacy systems (McGuire 
1994 ; Paul 1995). A potential technological breakthrough consists in developing generic 
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integration platforms that provide high-level distributed services (Genesereth 1992b), i.e., at the 
applications' knowledge level (Newell1982).This allows the various tools to communicate and 
cooperate through high-bandwidth networks of distributed computers (Genesereth 1992a). 
These machines offer specific sharable services. One of the first approaches in this area was the 
ARPA's Knowledge Sharing Initiative (Pati11992). 
A requisite for developin~ such platforms is the specification of a model for a generic design 
process, allowing the consistent cooperation of the distributed services. 
SHOOD (SHared Object-Oriented Design) (Nguyen 1993) explores an approach based on the 
monitoring of the evolution of design objects, following the engineers' design decisions. The 
idea is to track closely the design path followed by the engineers, and to provide a suitable 
reactive model of the design artefacts. The reactive object model is designed to evaluate the 
consequences of the design actions. The latter are modeled as modification requests, that are sent 
simultaneously by the various teams working on a concurrent engineering platform. This 
approach capitalizes on specification and verification techniques developed for reactive systems 
(Jourdan 1994). 

2. OVERVIEW OF SHOOD 

The goal of the project SHOOD is to provide tools and methods for the integration of 
engineering design systems. SHOOD is at the same time a knowledge representation system and 
a platform which provides tools and methods for integration of engineering design systems. 
SHOOD proposes three work-packages allowing: (i) the definition of a generic product model 
(based on knowledge representation techniques), (ii) the formal specification of a reactive design 
model (Nguyen 1996) and (iii) the development of an integration platform supporting 
cooperative engineering (Guetari 1996). 

Rules 

Figure 1 - SHOOD's user interface 

As a knowledge representation system, SHOOD is based on object-oriented paradigm (Nguyen 
92a) and supports dynamic, partially inconsistent and possibly incomplete knowledge. The 
model uses a reflexive object model (Bounaas 1995; Nguyen 1991) ana implemented with a 
metaclass kernel that defines all the basic concepts. Over and above the metaclass and 
class/instance concepts, SHOOD allows the multiple inheritance, specialisation, composition and 
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dependency relationships (e.g., existential and sharin~ dependencies, object versions' 
dependencies), generic functions using method s_pecialisauon, active rules makmg SHOOD a 
powerful active-objects store and a classification mechanism for composite objects. The 
knowledge representation system provides an X-11 based easy and friendly user interface 
(figure. 1) allowing the access to the object definitions and manipulations. 
The SHOO D's platform of integration proposes: the formal specification of a reactive design 
model (Nguyen 1995) and the development of an integration platform, that supports concurrent 
engineering of the design products. 
The reactive object model implemented by SHOOD supports three basic requirements of 
engineering design applications (Nguyen 1991): 
• the evolution of des1gn components during the design of products, 
• the multiple representations of the objects being designed concurrently by various teams 

(Nguyen 1992b), 
• the complexity of the product structures, often considered as intricate "part-of" relationships, 

but considered also liere as tightly inter-de~;>endent components. It entails that semantic 
relationships, e.g., existential dependency relatiOnships among components, are considered. 

Modelling the design process requires extensive knowledge on the activities involved, and a 
formal background on which to elaborate a suitable model (Gero 1993). Yet, design decisions 
can be erratic and amenable to multiple trial and error cycles. Also, the intrinsic dynamics of the 
design process makes it difficult to comprehend and control them using formal techniques. 
The process model developed for SHOOD is intended to provide a powerful and flexible 
framework for capitalising on design experience and achieve new engineering projects. It 
supports incremental construction of process models and their dynamic modification to adapt to 
the projects' specific goals. It is based on partially ordered sets of tasks and scheduling 
operations. 

3. OVERVIEW OF sees 
Process models are specified using the sees algebra (Boudol 1985 ; Milner 1989). sees is 
based on a double structure: 
• a set Act of atomic actions (i.e. temporally indivisible and lasting "one instant"). Milner 

defines the simultaneous composition of actions".". 
• a set :P of agents, which can oe seen as the behaviours of processes. 
The basic concept of the calculus is represented by the expression: P ~ P', which means that 
the agent P is able to transform into an agent P' by performin~ an action a. Let us focus on the 
"action" and "instant" concepts. The instant of an electromc transition _process is perhaps a 
nanosecond, whereas it is a millennium for the geophysician. Indeed the mstant of a system is 
the duration of the elementary action (or event) of this system. Instant and clock are basic 
concepts of every synchronous model of time. Milner defines the following "basic" operators on 
the set of agents. 
• The action operator prefixes the behaviour of an agent E with an action a. Its expression is 

a:E. This expression specifies the agent which executes the action a before carrying the 
behaviour of E. 

• Sum: (Ei) is an agent family. L;E; (or E1 + E2 + ... ) defines the non determinist choice between 
the Ej's behaviours. E1 + E2 is the agent where behaviour is E1 behaviour or E2 behaviour. An 
expression without the sum operator is called determinist i.e. after each action performed, an 
agent has a unique behaviour to adopt. The behaviour described by this kind of expressions is 
completely foreseeable. 

• Product: E x F is the synchronous parallel composition of E and F. When E performs a and F 
performs b, th,en E x F performs the action a. b. 

• Restriction: El A shows the agent obtained from the behaviour of E, inhibitin~ all actions not 
members of a given set A. This operator is used to specify the synchromsation between 
processes. 

• Recursive operator: this allows the designation of a family of agents, mutually and recursively 
defined by a system of equations. For instance let us consider a two-legged robot, which can 
put forward its left foot (action "1") and its right one (action "r"). The walk process can be 
modelled by the agent: W = l:r:l:r ... + r:l:r:l..., but this is not correct. The operator "fix" allows 
us to write 1t correctly: 
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fix(X = l:r:X). Then the walk process is specified by the agent: 
W = fix (X = l:r:X) + fix (X= r:l:X) 

• Morphism: this renames actions thanks to an endomorphism «1>. The expression <«<>>E 
designates the agent whose behaviour is obtained from E by re_placing every action a by«<>( a). 

We also use derived operators which are defined using the basic operators. We have especially 
derived the delay "o' which sets an undefined wait, the sequence operator ";" ... The full 
description of SCCS and derived operators is out of the scope of this paper. It is detailed in 
(Milner 1989; Guetari 1995). 
Example: Let P a design process represented by the tasks Tl, T2, T3 and T4. The tasks T1 and 
T2 are executed simultaneously, i.e., in parallel. T3 is realised after T1 and T2. Finally T4 is 
executed at the end of T3. If the task T 4 ends abnormally, we go back to the tasks T 1 and T2. 
The sees expression specifying p is: 
BEHAVIXJR(P)= H & start f1x (X= o start ~(Tl xT2); T3; T4) 
H & start means that the process P waits for the event start to be executed. This event may be 
unified with an event generated by a system clock (H) or emitted by the process P itself. The 
unary"~" operator specifies a triggering action. If s is an action and P is an agent, whose first 
action is a, the expression s ~ P means that the action s is executed simultaneously with action 
a. Thus s triggers agent P. 
The task T1 consists in two sub-tasks T11 and T12 which are basic tasks and in tum executed 
simultaneously. Basic tasks in an SCCS expression are specified in the following form: o preAC: o postAC 
• preAC represents the event triggering the task, 
• postAC is the event emitted when the task ends, 
• the first delay operator (O)indicates that the task waits for an event (preAC) which starts it, 
• the second delay operator represents the duration needed to execute the basic task. 
If we suppose that the tasks T2, T3 and T4 are basic tasks, the SCCS expression representing 
the global design process is : 
BEHAVIOUR (P) = H & start fix (X = 0 start => ( ( (preT11: 0 postT 11) x 
(preT12 : o postT12 : 1)) x (preT2 : o postT2)) : postT : preT3 : o postT3 : preT4 : o postT4 : 
(testOK: 1 + testNOK=>start)) 
testOK is the event emitted if the task T4 ends correctly, testNOK is emitted if T4 ends 
abnormally. 

4. CAST 

The tool CAST is developed to help designers make the most out of SCCS algebra without its 
mathematical and theoretical aspects. Cooperative engineering desi~n processes are graphically 
modeled in the form of automata. The graphic formalism of CAST IS close to the ARGONAUTE 
environment, dedicated to the ARGOS language (Maraninchi 1992 ; Jourdan 1994). This 
formalism is based on hierarchical and parallel composition of automata. CAST offers a friendly 
user interface which allows the designer to build automata representing sees agents, and to 
combine them using a graphical formalism corresponding to SCCS operators (Fig. 2). 

I<DIIcvl 
synchronous parallel composition 

q£1 
Recursive operator 

fix(X) 

181 
Morphism «<><X> 

non deterministic choice 
A+B 

l.s:E?J 
Restriction Xf" A 

Figure 2. CAST graphic formalism 
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An SCCS agent is represented by an automaton where the transitions are the actions that the 
agent is able to perform. Each transition is parametrised by a set of inputs and a set of outputs, 
which are boolean values. The inputs enumerate the events which have to be present or missing 
in order to trigger a transition. The outputs represent the events generated when firing the 
transition. 

4.1. Specifying Cooperative Processes 

This section introduces the use of CAST throu~h the example presented in the section 3. The 
tasks T1 and T2 are executed simultaneously, 1.e., in paralfel. T3 is realized after T1 and T2. 
Finally T4 is executed at the end of T3. If a problem IS detected during the flight tests, we go 
back to the tasks T1 and T2. This process is modeled in CAST by the graph represented in 
figure 3. 

Figure 3. - A CAST -graph for the process P (section 3) 

The different tasks in the design process may be complex. We have to divide each one into a 
partially ordered set of sub-tasks, until we obtain terminal tasks for basic design operations. For 
example, the task T1 of the process P consists in two sub-tasks: Til and T12. Tll and T12 are 
in tum executed simultaneously ... 

4.2. Editing Cooperative Processes 

CAST allows us to hierarchically model cooperative engineering processes. The File/New 
command allows us to open a main window, in whicn we mooel the global automata 
representing the designed process. The different nodes of the automata represent the different 
tasks of the process. Figure 4 shows the CAST user interface. The automata represents the 
global model of an aircnift's design process. 
If we select a given task (by a double click) a new window appears. In this window we must 
design the automata representing the selected task (Fig. 5 represents the task Tl). Each task must 
be divided in tum, until obtaining basic tasks. 
The Edit command allow us to modify an automataon (copy an automaton, cut a task, ... ). 
Finally the Compile command provides an SCCS specification of the designed process. We can 
obtain an sees specification for each agent or an sees specification for the global process. 

4.3. Verifying Cooperative Processes 

It is necessary to specify correctly the process models in order to verify them. The verification 
consists in making sure that the process will not behave abnormally. A simple way to verify a 
process is to compare its effective specification with its ideal specification. This supposes that 
the ideal specification of a given process is known. A second way is to use a temporaJ.logic to 
verify the specification of a given process. This method needs two different formalisms: the 
specification formalism and the verification one. The verification formalism must ensure that all 
tlie information provided by the specification will be considered. Another way to verify the 
specification of a process is given by observers. This method consists in specifying, for each 
process P, an observer process OP which behaviour consists in detecting iHegal behaviours of 
P. The observer are also written in SCCS. 
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Fig. 4 - CAST user interface (global automaton for the process P) 

Fig. 5 -CAST user interface (global automaton for the task Tl of the process P) 

The behaviour of OP consists in enumerating all the illegal situations and to verify that the 
current state of the observed process is correct. The observers can detect illegal situations, for 
example incorrect requests by the designers, objects that are in particular configurations (e.g., 
inconsistent objects cannot be made public). Incorrect interactions are also prevented in this way, 
when the objects are modified by simultaneous updates from the designers. 
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The verification formalism must ensure that all the information provided by the specification will 
be considered. Another way to verify the specification of a process is given by observers. This 
method consists in specifymg for each process P an observer OP which behaviour consists in 
detecting illegal behaviours of P. These observers may be written by SCCS. The behaviour of 
OP consists in enumerating all the illegal situations and to verify that the current state of the 
observed process is right. 
Actually we verify process models by the observer's technique. We plan to implement a 
verification mechamsm in CAST based on a temporal logic. This verification mechanism 
consists in transforming the sees specifications into temporal logic predicates and to apply 
logical proof techniques in these predicates. sees specifications can be verified using linear 
temporal logic (Piard 1994). 

5. IMPLEMENTATION OF PROCESS MODELS 

The cooperative engineering processes are implemented using the object model in SHOOD 
(Nguyen 1992b ). Beside the extensive use of knowledge representation concepts, they are based 
on the use of active rules for the implementation of the operations and for the scheduling of the 
tasks (Bounaas 1995). 
The tasks are modeled in tum by scripts which include sets of active rules. The latter are in 
charge of the activation of the external basic operations in dedicated software, e.g., a geometric 
modeler. The reflexive nature of the object model used allows for the dynamic restructuring of 
the process templates, because they are modeled by classes, which structure and attributes can be 
modified on-line (Nguxen 1993). 
The automaton descnbed in section 4 was first implemented in ARGOS for a technology 
demonstrator (Nguyen 1996). ARGOS is an imperative language for the specification and 
verification of reactive systems. It is based on the hierarchical and parallel composition of 
automata. Unlike Statecharts, it has a sound and formally well defined semantics (Pnueli 1991). 
The full description of ARGOS is out of the scope of this paper. It is detailed extensively in 
(Jourdan 1994). Informally, automata are defined in ARGOS by states and transitions. The 
transitions are labelled by input and output events. Boolean event combinations trigger the 
transitions. Output events are produced when the transitions are fired. This allows the automata 
to communicate and to produce resulting events. The ARGOS compiler produces several output 
formats, which can be read by various specification and verification software, e.g., ESTEREL 
(Berry 1992). The automaton depicted in Figure 4 includes 46 states and 2425 transitions. The 
next step is to implement the process using CAST. 

6. CONCLUSION 

Many factors in different areas of computer science invite us to focus on formal techniques to 
spectfy a system, a software, etc. However, formal techniques are beyond the reach of the 
majonty of the system's designers. Our domain of interest are reactive systems and 
communicating processes in concurrent engineering environments. We have chosen the SCCS 
algebra to specify them. Our experience in this domain shows that it is essential to have an 
approach or a tool which allows users to make the most out of the formal aspects of SCCS 
without the apparent complexity of mathematical problems. This reason lead us to develop 
CAST in order to help designers to model, specify and verify reactive systems and 
communicating processes. Using graphic tools is an advantage for destgn methods, especially if 
these tools are oased on mathematical{'rinciples and allow us to verify the coherence of their 
results. CAST provides means to graphtcally analyse and specify consistently reactive systems 
and communicating {'rocesses. 
The goal of the proJect SHOOD through CAST is to foster new developments that build on 
specification and verification techniques, together with research in knowledge sharing for 
advanced applications. 
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