
23
Tool support of orderly transition from
informal to formal descriptions in
requirements engineering

J Xu, L. Jin and H Zhu
Computer Software Institute, Nanjing University,
Nanjing, 210093, China, Te/.:+86 (25)6637551-3283.

Abstract
In the analysis and specification of user requirements, software engineers are often confronted
with difficulties due to the complexity of the problem, the communication barriers between
peoples of diverse backgrounds, the inconsistency and incompleteness of user's statement of
requirements and frequent changes of user's requirements. This paper reports a tool that
supports engineers to cope with these difficulties by automatic consistency and completeness
checking and automatic generation of functional specifications.

Keywords
Requirements definition, functional specification, transformation, CASE tools, Z language

1 INTRODUCTION

The requirements analysis and specification are concerned with eliciting, clarifying and
documenting user's requirements of a computation system and producing the corresponding
functional specification. Many studies have shown that errors made at this stage are very
costly (even impossible) to rectify. Neglected or only partially completed requirements
analysis tends to lead to problems later in development. It is perceived as an area of growing
importance. However, in the analysis and specification of user requirements, software
engineers are often confronted with difficulties due to the complexity of the problem, the
communication barriers between peoples of diverse backgrounds, the inconsistency and
incompleteness of information and frequent changes of user's requirements.

To overcome these difficulties, the literature has advanced a number of proposals such as:

N. Terashima et al. (eds.), Advanced IT Tools
© Springer Science+Business Media Dordrecht 1996

200 Part Four Language Description

• integrating multiple views and representations to soothe the communications of people;
(System Designers, 1985; Nuseibeh et al., 1994)

• modelling requirements engineering processes in various paradigms to provide guidelines
for the development of requirements definitions; (Leonhardt et a!., 1995; Finkelstein &
Potts, 1986)

•developing methods and software tools to support resolving conflict requirements (Feather
& Fickas, 1991), coping with incompleteness and inconsistency (Bell eta!., 1977; Heimdahl
& Leveson, 1995), automating the transformation of the informal to the formal (Fraser et al.,
1991), etc.;

• modelling software systems and their environments and employing domain knowledge and
object-oriented methodology to manage requirements changes (Borgida et a!., 1985; Diaz
and Arango, 1991).

We regard overcoming these difficulties as the major driving force of requirements
analysis. They are the most important issues that a CASE tool for requirements engineering
should address. Our ultimate research goal is to automate the process of requirements
engineering. At present, the researches aim at developing software tools to support
requirements analysis with the methods of current state of practice and to link requirements
specification to the formal methods by generating formal functional specifications in well
established specification languages such as Z (Spivey, 1992).

We can identify two kinds of supports to requirements analysis and specification: (a) the
language support, and (b) the tool support. Language supports provide language facilities in
which user's requirements are represented, expressed and communicated. They may help
software engineers to cope with difficulties due to the complexity of the problem and
communication barriers. Tool supports use software tools to perform or help to fulfil various
tasks involved in requirements analysis and specification, such as the storage, management
and retrieval of user's requirements, the analysis of expressed requirements, and the
transformation of one representation into another. They may help to deal with incompleteness
and inconsistency and frequent changes of user's requirements.

In the literature, there is a great number of tools and languages to aid in the production of
requirements definitions and the generation of functional specifications. Among the most
famous are:
• SREM (Bell et a!., 1977), which supports management and consistency checking of

requirements written in a language RSL based on finite state machines;
• KBRA (Czuchry and Harris, 1988), which offers facilities for reasoning with requirements

represented as a knowledge base through inheritance, automatic classification and constraint
propagation;

•the work of Fraser et a/.(1991) on semi-automatic generation of formal functional
specifications in VDM from data flow diagrams.

There is a big gap between the informal descriptions in requirements definition and the
formal functional specifications. User's initial requirements statement must be in informal or
semi-formal representations such as in natural languages and diagrams, whilst any decent
analysis of the requirements has to be based on a formal representation. Given the current
state of the art of natural language understanding, it seems impossible to build a practical tool
to bridge the gap between informal and formal descriptions. Therefore, we take a progressive

Transition from informal to formal descriptions 201

and orderly transition approach to requirements engineering. That is, the process of

requirements elicitation, analysis, documentation and specification is divided into a sequence

of interacting and iterating phases. It starts with an informal and vague requirements

statement, which is then gradually transformed into a formal and consistent functional
specification.

In this paper, we report a requirements definition language NDRDL and its requirements

analysis support system NDRASS, which support the progressive and orderly transition

process of requirements analysis and specification.

2 THE NDRDL LANGUAGE

The NDRDL language (Dong et al., 1995) is based on the classic methods of structured

analysis (Yourdon, 1989). A requirements definition in NDRDL has quite standard

hierarchical structure, which consists offour parts:
• an introduction to the background to user's requirements in natural language;

~

AN: account number

M: amount of money

(a) Entity-Relationship Diagram (b) Data Flow Diagram

Data name Description Form

customer name the name of a customer String
bank database the database for storing Set (Record

information about Customer: customer;

valid=No

(c) Control Flow Diagram

Constraint

Balance<: 0

customers and accounts. Account : account_ number;
Balance: real End) ------------------ L_ _______________ L-------------------

(e) Data dictionary

Relationship Entities Description Definition

owns customer, Owns(John, 21 0093) means that owns(c,ac) <::> (:Jr E database.
account John owns the account 210093.

0:_:_~~:_o~~L.<::~-:_u~t~~~~ -------- ------- ------------------
(f) Relationship dictionary

Op. Input Output Description Definition

validate en: customer name; valid: validate the personal valid-

cid: customer identity; Boo! information of a (:Jr E database.((acn = r.account)
acn: account number; customer against the

A(cid = r.customer.identity)
database.

A(en= r.customer.name))
---- I ------------ ----- -----------L------------------

(g) The operation dictionary

Figure 1 Example of diagrams and dictionaries in NDRDL.

202 Part Four Language Description

•a general description of functions, user characteristics, restrictions and environment;
• the requirements details, which are further divided into two parts: one for functional

requirements, and the other for non-functional requirements. The former consists of three
parts: (a) a list of functions in informal representation; (b) a set of diagrams including an
entity-relationship diagram (ERD), a data flow diagram (DFD) and a control flow diagram
(CFD); (c) a set of dictionaries including a data dictionary, a relationship dictionary and an
operation dictionary to provide definitions of the terminology. Non-functional requirements,
such as goals and constraints, are also expressed in natural language.

• appendix and index, which are also in informal representation:
Figure 1 gives the diagrams and segments of dictionaries of an example requirements

definition in NDRDL. This example will also be used later in the paper to illustrate the
transformation from requirements definitions to functional specifications.

Due to the redundancy among the diagrams, inconsistency and incompleteness may occur.
The definitions of the data, relationships or operations in the dictionaries may also be
inconsistent with their uses in the diagrams. Therefore, some constraints on them are imposed
to obtain complete and consistent requirements definitions; see Table 1.

Table 1 Completeness and consistency constraints ofNDRDL.
Views Constraint
DFDI The collection of data in a DFD must be the same as the collection of data represented as the
ERD entities or their attributes in the corresponding ERD.
CFDI The set of processes associated with the arcs in a CFD must be the same as the set of processes
DFD in the corresponding DFD.

Any sequence of events in a CFD must satisfY the permissible condition.
CFD/ Any data used in a CFD must be contained in the collection of data in the corresponding ERD.
ERD
ERD/ Every entity in an ERD must be defined in the data dictionary. I fan entity has a set of
DO attributes, the definition of the entity in the data dictionary must also specifY the attributes

consistently.
ERD/ Every relationship in an ERD must be defined in the relationship dictionary with the same
RD participant entities.

DFDI Every process in a DFD must be defined in the operation dictionary that the signature of the
PO operation must be consistent with the data flowing inwards and outwards the process node.

3 THE NDRASS SYSTEM

NDRASS system is a requirements analysis support system. As shown in Figure 2(a), it
provides the following facilities:
• A text editor for the edition and modification of texts in natural language ;
• Graphic editors for the edition and modification of various diagrams;
• Managers of dictionaries for the edition, modification, browse and management of

dictionaries;
• An automatic checker for the check of consistency and completeness among dictionaries

and diagrams;
• Two automatic generators: one for generation of frameworks of dictionaries; the other for

the generation of formal functional specifications in Z.

Transition from infonnal to fonnal descriptions

diagrams

functional
specification

(a) The overall structure.
Figure 2 The NDRASS system.

203

As illustrated in Figure 2(b), a typical requirements analysis process that NDRASS
supports starts with production of an informal description of user's requirements. This is
supported by a text editor. The second step is the construction of semi-formal models of
required system. This is supported by the graphic editors of NDRASS. Once consistence
between the diagrams is checked, the dictionary generator can be invoked to generate
frameworks of the dictionaries. A framework of data dictionary consists of all the data names
used in the diagrams, their data structure according to the ERD. The fields of informal
description and constraints are left to be filled by requirements engineer manually. A
framework of relationship dictionary consists of the names of the relationships appeared in
ERD, and the entities involved in the relationship. The fields of informal description of the
relationship and formal definition of the relationship are left to be filled in manually. The
framework of operation dictionary consists of the names of the processes appeared in the data
flow diagram, and the input, output of the process. The fields of informal description and
formal definition of the process are left to be filled in manually. The completion of the
dictionaries are supported by the dictionary manager. Once the dictionaries have been
completed, the consistence between the diagrams and dictionaries can be checked, and then a
formal functional specification in Z can be automatically generated.

4 TRANSFORMATION INTO FUNCTIONAL SPECIFICATION

This section will focus on the automatic generation of functional specifications in Z from
consistent and complete requirements definitions in NDRDL. The Z language provides
schemas to modular descriptions of the state space and the operations and functions of a
software system. Readers are referred to (Spivey, 1992) for the Z notations.

204 Parl Four Language Description

deposit
Type_ of_ Database­

Customer : customer
Account : account
Balance : real

bank database-- bank_ database, 1\bank_database, b! :Real
Var_database: m?: money, an?: account_number

P(Type_of_Database} balance_of(an?, x} =>

Balance~ 0 (balance_ of\ an?, x'} A(x'=x+m?}A(b!=x'))

(a} (b)

Figure 3 (a) Data store schema; (b) operation schema.

4.1 The generation of state space descriptions

Two types of schemas, entity schema and relationship schemas, are generated according to
the information contained in ERD, data dictionary and relationship dictionary. For each entity
in the ERD, an entity schema is generated such that
(A) the name of the schema is the entity name;
(B) for each attribute attr of type T of the entity, a declaration attr:T is included in the

declaration part of the schema;
(C) if the entry of the entity in the data dictionary contains a predicate to describe the

restrictions on the values of the entity, the predicate is copied into the predicate part of the
schema with some syntactical transformations.
Entity schemas are used as types of state variables, parameters, input and output of

functions and operators, and the types of attributes of other entity schemas. The system state
space is determined by the data stores contained in the DFD. For each data store DS in the
DFD, a schema is generated to define the components of the data store. For example, the
schemas (b) in Figure 3 are generated for the database in the DFD of Figure I. A relationship
schema defines a relation. It is generated for each relationship R in the ERD. The generation
of these schemas is similar to that of entity schemas. Readers are referred to (Xu et al., 1995)
for details.

4.2 The generation of function/operation definitions

The definitions of functions and operations are generated according to the information
contained in the DFD and operation dictionary. For each process in DFD, an operation
schema is generated according to the following rules.
(A) The name of the schema is the name of the process;
(B) For each inward dataflow that does not come out of a data store, "X? : TX" is included in

the declaration part for the data X of type TX associated with the flow;
(C) For each outward data flow that does not go into a data store, "Y! : TY" is included in the

declaration part for the data Y of type TY associated with the flow;
(D)If a data store DS has data flowing into the process node, the DS schema is included into

the operation schema; if there are data flowing from the process node into a data store DS,
the DS schema is included with decoration .1;

(E) The predicate P in the operation dictionary is transformed into P' in Z notation and
included in the predicate part. In addition to the syntactical transformations, variables in P
must also be systematically decorated according to the following rules:

Transition from informal to formal descriptions 205

(a) for each input variable x, if it is associated with an inward data flow coming out from a
data store, it is unchanged. Otherwise, x is replaced with x?;

(b) for each output variable y, if it is associated with an outward data flow going to a data
store, it is replaced withy'. Otherwise, it is replaced withy!.

For example, Figure 3(b) is the schema for the deposit operation.

4.3 The generation of system operation structure

In Z language, a software system is described as a function on the state space. This function
will be generated according to the CFD.

The generation of system control function is based on Fenton et al.'s theory of structured
programming (Fenton eta/., 1985) to improve the readability of generated Z code. According
to the theory, every flow graph can be uniquely decomposed into a set of prime graphs so that
it is the composition the prime graphs by the nest and composition operations. Figure 4 gives
some examples of prime graph which correspond to control structures. The generation process
consists of the following three steps.
(A) A flow graph is normalised so that it contains only one start node and one exit node and

every node has at most two outward arcs;
(B) The flow graph is decomposed into prime graphs such that the flow graph is represented

as a decomposition tree. Given a flow graph, the decomposition starts with finding prime
flow graphs. A prime flow graph is then reduced to an arc from the start node to the exit
node of the prime sub-graph. Such a reduction process is recorded and a decomposition
tree is constructed;

(C) The Z description of the flow graph is generated according to the decomposition tree.

NDRASS selects a set of prime flow graphs as well structured CFD. Such prime flow
graphs have well structured and readable Z descriptions as shown in Figure 4. Prime flow
graphs not in the set are considered as not well structured control structures. Once such a
prime flow graph is detected, the user is warned and asked if modification will be made. If no
modification is made, a recursive Z description of the prime flow graph will be generated. The
distinction of well structured from not well structured sub-graphs enables us to control
software complexity at requirements engineering stage and helps quality control.

206 Part Four Language Description

5 CONCLUDING REMARKS

The progressive and orderly transition approach to requirements engineering is characterised
by a step by step transition from informal to semi-formal, and finally, into formal
descriptions. This approach is supported by the NDRDL language and the NDRASS system.
Once a complete and consistent requirements definition is obtained, a formal functional
specification in Z can be automatically generated by NDRASS system. NDRASS system has
been implemented on Sun Workstation Spare 490 at the Institute of Computer Software at
Nanjing University.

6 REFERENCES

System Designers, (1985) CORE-- The method, Systems Designers Scientific, Issue 1.0.
Nuseibeh, B., Kramer, J. and Finkelstein, A. (1994) A framework for expressing the relation­

ships between multiple views in requirements specification, IEEE TSE, 20(10), 76()-773.
Leonhardt, U., Kramer, J., Nuseibeh, B. and Finkelstein, A. (1995) Decentralised process

modelling in a multi-perspective development environment, Proc. of I7'th ICSE, 255-264.
Finkelstein, A. and Potts, C. (1986) Structured common sense: the elicitation and

formalization of requirements, In Software Engineering'86 (eds Barnes, D. and Brown, P.),
Peter Peregrinus, 236-250.

Bell, T. E. Bixler, D. C. and Dyer, M. E. (1977) An extendible approach to computer-aided
software requirements engineering, IEEE TSE, SE-3, 849-860.

Fraser, M. D., et al. (1991) Informal and formal requirements specification languages:
bridging the gap, IEEE TSE, 17(5).

Borgida, A., Greenspan, S. and Mylopoulos, J. (1985) Knowledge representation as the basis
for requirements specifications, IEEE TSE, 18, 82-91.

Prieto-Diaz, R. and Arango, G. (1991) Domain Analysis and Software Systems Modelling,
IEEE Computer Society.

Yourdon, E. (1989) Modern Structured Analysis, Prentice-Hall, New Jersey.
Czuchry, A.J., and Harris, D.R. (1988) KBRA: a new paradigm for requirements engineering,

IEEE Expert, 3, 21-35.
Spivey, J. M. (1992) The Z notation-- A Reforence Manual, Second Edition, Prentice Hall.
Dong, L., Fei, Z. Zhu, H. and Jin, L. (1995) The software requirements definition language

NDRDL, J. Computer Science. (In Chinese)
Xu, J., Zhu, H., et al. (1995) From requirements definition to formal functional specification­

-an automatic transformational approach, Science in China, 38(Supp).
Feather, M. S. and Fickas, S. (1991) Coping with requirements freedom, in Proc.

International Workshop on Development of Intelligent Information Systems, Niagara-on­
the-lake, Canada, 42-46.

Heimdahl, M. P. E. and Leveson, N. G.(l995) Completeness and Consistency analysis of
state-based requirements, in Proc. of 17'th ICSE, 3-14.

Fenton, N. E., Whitty, R. W. and Kaposi, A. A.(l985) A generalised mathematical theory of
structured programming, Theoretical Computer Science, 36, 145-171 .

