
15
Business patterns:
reusable abstract constructs
for business specification

H. Kilov ID. Simmonds
Insurance Research Center
IBM T J Watson Research Center
30 Saw Mill River Road, Hawthorne, NY 10532, USA
{kilov, isimmond}@watson.ibm.com

'Alice had never been in a court of justice before, but she had read about them in
books, and she was quite pleased to find that she knew the name of nearly every­
thing there. "That's the judge," she said to herself, "because of his great wig." ...

"And that's the jury-box," thought Alice; "and those twelve creatures," (she
was obliged to say "creatures," you see, because some of them were animals, and
some were birds,) "I suppose they are the jurors

Lewis Carroll. Alice 's Adventures in Wonderland.

Abstract
Business patterns are powerful, high-level constructs that provide a natural and well­
structured way of both understanding and specifying businesses and their rules. To be of use,
business specifications have to be presented in an abstract and precise manner, and this paper
shows how to do just that. Key concepts include business invariants and operations, and a
higher level notion of ''business pattern". Specifications built in this way can be parameter­
ized and reused in various business contexts. Business patterns in particular promise to be
extremely helpful as a basis for systematic business analysis and subsequent implementation
of the results of this analysis. We have successfully used these concepts and constructs in our
engagements with (insurance) customers (Kilov et al., 1996).

The motivation for our work is to allow the production of complete, rigorous business
specifications understandable by both business users and system developers. These specifica­
tions require rigorous expressions of semantics - that is, assertions - rather than loose,
"intuitive," descriptions. We present different kinds of reusable and abstract specification
fragments - patterns - such as "action" and "module" patterns, which have different char­
acteristics. We include examples of both elementary patterns - such as "composition" -
and nonelementary patterns - such as "information gathering" and 'joint ownership". Un-

P. Humphreys et al. (eds.), Implementing Systems for Supporting Management Decisions
© Springer Science+Business Media Dordrecht 1996

226 Implementing Systems for Supporting Management Decisions

like typical programming constructs, instantiations of business patterns are inherently inter­
active and so must adapt to their changing environment.

Keywords
Precision, abstraction, reuse, change, business pattern, generic relationships, collective behav­
ior

1. INTRODUCTION

1.1 Motivation
There are countless examples showing that system development almost inevitably fails in the
absence of complete, clear and rigorous specification of the business in business terms. For
example, "The [US] Treasury Department has acknowledged that its decade-long effort to
modernize the Internal Revenue Service's [...] computers is 'badly off the track' and must be
rethought from top to bottom. [...] The Deputy Secretary of the Treasury, Lawrence Sum­
mers, told a House appropriations subcommittee that the [$20 billion] project [...] was driven
by what technology was available rather than what would make the best tax collection sys­
tem." (International Herald Tribune, March 16-17, 1996, page 3).

When a customer wishes to address a business goal with a partially automated solution,
specifications are required of fundamental business needs (the "problem specification" or
"business specification"), of a desired business strategy (the "business design"), of a system
providing appropriate functionality (the "system specification"), and of how this system is to
be produced (the "system implementation"). Whilst these four concerns are naturally and
clearly separated in activities other than information management (eg in traditional engineer­
ing (Parnas, Madey, 1995; Parnas, 1995)), the practice of information management often fails
to separate them, leading to excessive complexity, inconsistency, incompleteness, and there­
fore to failure of the development project.

The goal of a business analyst is similar to the goal of a traditional architect when under­
standing and eliciting a customer's wishes: it is to provide a business (rather than software)
specification that will be unambiguously understood by both business users and system de­
velopers. The business specification can then be used as a basis for projects that enhance or
put in place new business processes or products, some of which are to be partially automated;
it is also a sound basis for defining the scope of such a project. In order to be useful for these
purposes, the business specification must be abstract (with no implementation details), com­
plete (having no gaps for developers to fill), precise (requiring no guesses over ambiguities),
simple and concise (so that it will be read and understood by all).

Swatrnan (1994) and others have noted that the strengthening of the analysis-design
boundary will be of increasing importance as companies outsource more and more of their
software and system development and maintenance. Each participant - service consumer
and provider - in the outsourcing relationship should have well-defined (contractual (Meyer,
1988)) obligations and responsibilities. The business specification and business design are a
natural responsibility of the service consumer.

Our general goal is to ensure the widespread production and use of rigorous business
specifications that can be unambiguously understood and used by subject matter experts
(SMEs), business analysts, and system designers and developers. We believe that business

Business patterns 227

specifications are an essential, and alarmingly undervalued, basis for the development of so­
lutions to business problems. They are undervalued because too often they are not produced,
and when they are, they are incomplete and insufficiently rigorous. Alternatively they are pre­
sented in terms of possible solutions and system constructs which, for reasons of lack of con­
ceptual familiarity, may be difficult for business users to understand and thus check for
completeness or accuracy. Finally, they may be too complex due to artificial restrictions im­
posed by using constructs based on current implementation technology.

More specifically, we have the feeling that fragments of business specification are often
reinvented. Consider, as a specific example, the description and thus implementation of in­
surance underwriting for different kinds of insurance (life, health, etc) which have important
non-trivial concepts and constructs in common, such as the insurance application folder
which itself is a composition of insurance application, requests for changes to insurance ap­
plication, and an underwriter's decision. (The concept ofa composition is defined below.)

We want to understand and precisely and unambiguously capture these fragments, and
make them available for reuse. This has been done elsewhere - and successfully - by "Real
Engineers" (for example, Ohm's Law of electrical resistance! (Parnas, 1995a», architects (in
Alexander's "Pattern Language" (Alexander, 1979» and even programmers (Backus-Naur
form for specifying context-free grammars). As can be clearly seen from the previous sen­
tence, formulating such a pattern ranks like a scientific discovery (and the discoverer's name
is assigned to the pattern)!

A first level of generic reusable business specification fragments is presented in (Kilov,
Ross, 1994; ISO, 1995a; ISO, 1995b). Experience of using these fragments - generic rela­
tionships - is presented in, for example (Kilov et al., 1996; Redberg, 1996). This paper is
our first attempt at achieving a second - and perhaps more business-specific - level. There­
fore the paper points to areas of future research, and contains only a few ready-made and re­
usable solutions.

Specifications exist at all stages of information management and, therefore, there is an
opportunity to find patterns at all stages. In particular, our first level generic patterns have
been successfully applied to the specification of both entire domains of business (eg medical
insurance) and details of technological infrastructure (eg long transactions).

1.2 Patterns elsewhere
One definition of "pattern" given by the Concise Oxford Dictionary, is a "regular or logical
form, order, or arrangement of parts". The value of a pattern when used in a specification or
design is that someone familiar with it may either recognize an occurrence of it (and so better
and more quickly understand the overall design), or recognize that a pattern is applicable
within a particular situation (and so reuse the pattern as a known and proven specification or
design strategy). The same pattern is encountered in many different contexts, and therefore
can be invented once and reused afterwards rather than being separately reinvented for all
contexts it is encountered in. To be reusable, a pattern must be specified in a precise, explicit,
and unambiguous manner, so that it should be immediately clear whether or not it is applica­
ble in a particular situation.

I"No Electrical Engineer confuses the "dot" notation for derivatives with the fact that an ideal resistor obeys Ohm's law. They also under­
stand that the existence of resistors that are not ideal does not mean that the mathematics they have learned is irrelevant."

228 Implementing Systems for Supporting Management Decisions

At the time of writing, the notion of design pattern has come to be considered as a key
element of good software implementation practise, and especially when using an object­
oriented programming language. A catalogue of generic and widely reusable design patterns
has been published (Gamma et al., 1995) and others seek to fmd more specific patterns for
application to more specific software design and implementation problems, such as for
achieving data persistency or concurrency control.

Design patterns for software were themselves inspired by Christopher Alexander's work
in architecture and civil engineering (Alexander, 1979). Alexander noted many common pat­
terns that had been frequently reused in architecture, many over millennia and across several
continents. Alexander's patterns are rigorously defmed and make explicit use of specification
notions such as invariants. In particular, Alexander states that " ... a pattern defines an invari­
ant field which captures all the possible solutions to the problem given, in the stated range of
contexts"; that "the task of fmding, or discovering, such an invariant field is immensely
hard ... " and that, nevertheless, "anyone who takes the trouble to consider it carefully can un­
derstand it". Our goal in discovering and formulating business patterns is to do just that,
while being at the appropriate level of precision, so that ''these statements can be challenged,
because they are precise"! For example, "each room has light on two sides"; "establish ...
marketplaces ... made up of many smaller shops that are autonomous and specialized"; "traffic
accidents are far more frequent where two roads cross than at T junctions" (Alexander,
1977).

Even within architecture, Alexander's work on patterns remains controversial. Nonethe­
less his work has originated in a mature and ancient discipline. Both his work and that of
patterns for software design satisfy another (reuse-related) definition of pattern from the
Concise Oxford Dictionary - "a model or design [...] from which copies can be made."

2. REUSABLE BUSINESS SPECIFICATION FRAGMENTS

2.1 Basic concepts and approach
Business analysis should be done before, and separately from, the design of any imagined
automated support, with coding of such a system a distant third. Business analysis involves
understanding the business: elicitation of all written and unwritten business rules, and ensur­
ing that rules are documented precisely and in a manner that will be both read and unambigu­
ously understood by all interested parties. It tames complexity by identifying only pure busi­
ness ''things'', relationships, rules and constraints, and the behaviors of collections of these
''things''. It does not refer to computers, screens, databases, tables, etc., because these are
both unnecessary details and may confuse many (non-specialist) readers. It relies upon ex­
plicitly defined concepts and semantics rather than meaning presented only implicitly, either
in names or informal descriptions. Implicit semantics result in the need for each reader to
"interpret" - that is, invent a meaning for - the named or described concepts; each reader
inevitably invents a different meaning, and the resulting system fails to meet the needs of the
business, which were never explicitly captured. The major part of a business specification­
the deliverable of business analysis - is a structured representation of all rules that govern
the business.

Our analysis approach insists on being simple, abstract and concise. Its concepts address
primarily: collections of related things (objects); what you can do to these collections

Business patterns 229

(operations); and what is always true, no matter what you do to them (invariants). Most op­
erations and invariants involve several interrelated things (example: milk a cow, buy a house,
take money from customer's account). A contract for an operation (elsewhere called a use
case) should state: what "things" are relevant (signature), when you have to do it (triggering
conditions), when you can do it (preconditions), what is achieved (postconditions), and what
doesn't change (relevant invariants only). Contracts do not say how they are to be fulfilled:
this will be specified during their refinement, ie design and development.

2.2 First level - basic reusable patterns
As mentioned above, a business specification consists primarily of operations (specifications
of changes to collections of things) and invariants (specification of unchanging properties of
collections of things). Most invariants are about constraints on the properties of collections of
several objects rather than constraints on individual objects. Given this, it was natural to look
for powerful, reusable and abstract constructs - patterns of invariants, as it were - for ex­
pressing invariants (and their properties) in the relationships between objects. It appeared that
a very small number of generic relationships - such as composition (see below) and depend­
ency - are encountered in all applications and thus - if and when precisely defined -
provide an excellent basis for reuse. As noted in (Mac an Airchinnigh, 1994), "abstractions
are, of course, the ultimate in reusability!"; thus abstractions such as generic relationships
(and invariants!) are essential for saving intellectual efforts, time, and money.

Most high-value reusable patterns are likely to refer to collections of objects since most
of business is about collective behavior: that is, properties that are not about a single "thing"
but, rather, about a "set ofrelated things". A pattern defines a collection of interrelated things
together with available operations (like the module described more formally in an object­
oriented extension of Z (Alencar, Goguen, 1992)), so that these things are not considered in
isolation. Therefore, in specitying a business pattern it will not be necessary - as implied by
many legacy 00 languages and thus many 00 "analysis and design" methods - to overspec­
ify and make unnecessary choices by attaching the collective state (invariant) or collective
behavior (operation's pre- and postconditions) to a particular object referred to in the invari­
ant or in the operation. An emphasis on collective-behavior-oriented (rather than isolated­
object-oriented) approach has been used in such ISO standards as (ISO, 1995a, ISO, 1995b)
and is essential for successful business specifications; in particular, the constructs available to
the subject matter expert and the business analyst are not restricted to the ones available in a
particular family of implementations.

Specifications whose invariants are expressed in terms of generic relationships can be
extremely compact and readable when compared to other specification approaches, while re­
maining complete and precise (several examples are shown later in this paper). Nevertheless,
there still remains a need to present summary views of each specification on a small number
of pages, covering both operations and invariants. An important international (ISO) standard
- the Reference Model for Open Distributed Processing (ISO 1995b) - provides concepts
for doing just that. Moreover, certain business-specific aspects of such concepts are referred
technically as the enterprise viewpoint, and, at the time of writing, are a research topic for an
ISO standardization technical committee. Our hope is that business patterns will be a
(however partial) contribution to providing an enterprise viewpoint for business specifica­
tions.

230 Implementing Systems for Supporting Management Decisions

The generic relationships of (Kilov, Ross, 1994; ISO, 1995a) can be seen to be
"elementary molecules" or "elementary business patterns", in the sense that some or all of
them are encountered in all business specifications. They may be considered as building
blocks from which both complex and complete business specifications, and higher-level, re­
usable yet still generic "nonelementary business patterns" can be constructed. Some simple
nonelementary patterns were shown in (Kilov, Ross, 1994a). A "notification" is a typical ex­
ample widely used in telecommunications and elsewhere: it results in the creation of an in­
stance of a thing (such as a "traffic violation ticket") only if a triggering condition
("notification criteria") is satisfied for a particular state of a particular instance of a
"monitored object". A notification is composed out of two elementary generic (reference)
relationships. Another example of a non elementary pattern - a composition of symmetric
relationships - will be used in the joint ownership pattern below.

2.3 Second level
First level, basic, reusable patterns, like the generic relationships mentioned above, can be
used not only for business specifications, but also for specifying their refinements, including
business design and system design and development. Moreover, they can be used (and have
been successfully used) to specifY a "meta-model" of the information management lifecycle
itself. This can happen because concepts underlying generic relationships - such as invari­
ants and collective behavior - are encountered at all stages of information management Iife­
cycle. Thus, these concepts are of (re)use at all stages of information management; they pro­
vide a great help as powerful generic constructs used to understand the business and specifY
this understanding. Composition is a good example of a first-level basic construct. Interest­
ingly enough, others have already termed these generic relationships "patterns" (Ayers,
1996).

In moving to a second level of reusable constructs, we must formulate these patterns in
terms of the solid and powerful foundation provided by the basic patterns. In particular, the
patterns must continue to promote abstraction and precision, and therefore both their discov­
ery and formulation should be free from unnecessary and irrelevant - at this level of ab­
straction - details, to "enhance understanding" (ISO, I 995b)

When we try to identifY "second-level" concepts and constructs for business specifica­
tions, they will inevitably define and refer to common business notions. As such they will not
immediately be useful in implementation, for example, although we will indicate that many
business patterns may have components relevant at other stages of information management
lifecycle. While a second-level pattern may refer to business notions, it will still be generic
enough to be of (re)use for all kinds of businesses. Obviously, first level, basic constructs can
and should be used to specifY the second-level ones. Information gathering is a good example
of a second-level construct.

2.4 Composing patterns to form a specification
To quote Alexander, "each pattern helps to sustain other patterns [... J the individual configu­
ration of anyone pattern requires other patterns to keep itself alive" (Alexander, 1979).

When creating a business specification, we want to construct a unified view of a business
by composing fragments, specified as viewpoints (Harrison et aI., 1996) each of which is a
composition of patterns. An entire viewpoint (eg Underwriting) may itself follow a pattern.

Business patterns 231

Composition is essential both laterally and vertically. Laterally, different - peer - parts of a
specification which refer to some common "things" must be brought together, at which point
the invariants of these components must be conjoined (and reconciled, as necessary). This is
a highly non-trivial problem (outside the scope of this paper); however, we want to note that
business patterns provide at least a good way to specifY the problem. Vertically, a high-level
and, of necessity, less detailed component must be composed with its details, again requiring
a conjoining of invariants. Correspondingly, at a software level, we must learn how to com­
pose software frameworks which operate at differing levels of abstraction. Indeed, we expect
that business patterns - and, correspondingly, software frameworks - may be instantiated
at different levels of abstraction within a single business specification, and so may need to be
composed both laterally and vertically with other instances of themselves! This most cer­
tainly happens with abstract patterns like invariants and generic relationships.

2.5 Where to look for business patterns
It seems reasonable to presume that we can identifY and develop business patterns more or
less on paper, at least for the early stages of the information management process such as
business specification and business design. Thorough understanding of business specification
and design concepts can be - indeed, is best - achieved without resort to software design
considerations. After all, businesses existed and flourished for a long time without any soft­
ware implementation, and business specifications existed and were even taught (eg for bank­
ing, insurance, accounting, law, etc.) without any reference to computer systems. As an ex­
ample, consider a complex specification for life insurance including parameterizable con­
tracts with customers published in 1835 (Proposals, 1835). Probably, it was not the first such
specification (it appears that the concept of life insurance dates back to the 16th century, and
insurance for merchant voyages goes back over millennia).

There may be a substantial amount of work in designing and implementing each business
pattern. Typically, each business pattern permits several refinements depending in part upon
the business and system environments; and these refinements may also be precisely formu­
lated as reusable patterns. In this way we will incrementally build up an asset base of business
patterns with corresponding software frameworks.

2.6 A more technical foundation
As mentioned earlier, our approach is concerned with collections of things ("objects"), what
you can do to these collections of things ("operations" specified in terms of a "signature",
"precondition", "postcondition" and "triggering condition"), and what is true about the things
no matter what you do to them ("invariants"). Careful consideration of (dynamic) triggering
conditions will probably require dealing with obligations (Meyer, Wieringa, 1993) and re­
lated issues which may be better discussed in the framework ofa workflow specification (and
thus provide precise specifications of important fragments of the workflow framework). It is
common practice to factorize out system invariants - conditions that cannot be violated at
any time except, perhaps, as an intermediate step in an operation passing between two valid
states.

A number of highly reusable "generic relationships" (Kilov, Ross 1994; ISO, 1995a)
greatly simplifY the specification of many, if not most, invariants. These include
"composition", "dependency", "symmetric" and "reference", some of which appear in the

232 Implementing Systems for Supporting Management Decisions

examples given below. Each generic relationship has been formally defined (in terms of its
invariant) for reuse, and comes with specifications of associated basic CRUD (Create, Read,
Update, Delete) operations applied to its participants. Specializations of the generic relation­
ships (Kilov, Ross, 1994) (such as different mutually orthogonal kinds of composition) aug­
ment the invariants of the most generic relationships. These specializations are still generic.

Quite a few things are known about each pattern. Some of these things are captured as in­
variants, which are typically expressed in terms of generic relationships. Many of the things
included in these invariants represent formal parameters - "slots" to be filled as the pattern
is instantiated. A "slot" is a "parameter", "formal" (in the generic specification) or "actual"
(in its instantiation). For example, in the generic Composition pattern below, the formal pa­
rameter (see below) "composite type" may be filled by the type "Underwriting case folder",
and the formal parameter "component types" may include "Application for insurance" (with
exactly one instance), "Changes to application" (with a possibly empty set of instances) and
"Underwriting decision". For a perhaps more often encountered example of a Composition,
the "composite type" formal parameter may be filled in by the type "Croque Monsieur", with
the "component types" formal parameter filled in by an (ordered!) set {"Toasted white
bread", "Mustard", "Ham", "Melted Swiss Cheese"} (with at least one instance of each of
these component types).

3. FROM A WARM AND FUZZY FEELING TO A PRECISE
SPECIFICATION

3.1 An example of a first-level (business) pattern: Composition
Even for very abstract and generic patterns, such as composition, it is possible to say very
many things - the invariant for a composition tells a lot, and reusable CRUD (Create, Read,
Update, Delete) operations are very well defmed, taking several pages (Kilov, Ross, 1994).
Let us consider this pattern (a generic composition) in more detail.

Firstly, "everyone knows what a composition is", thus having a warm and fuzzy feeling
about this construct. A car is a composition of an engine, a body, and four wheels; a book is a
composition of pages; and an insurance contract is a composition of "contract components",
right?

Secondly, we observe that using examples is not sufficient: a new construct may not ex­
actly correspond to any existing one; and we need to abstract away from details specific only
to particular examples.

What do these constructs - presented by examples above - have in common? There
exists a "composite" and "components"; and there may be several components of different
types in the same composition (in Alexander's example of a marketplace composition above,
the autonomous and specialized shops - components - are certainly of different types).
Also, not all component instances may be present in the composition (is a car without a
wheel still a car? probably, yes). Moreover, a composite and a component in the same com­
position should be of different types, that is, they should have distinguishable properties. We
may also observe (or reuse the observation of others (Wand, 1989» that a composite has two
kinds of properties: independent of properties of any component in a composition (eg 1he
author(s) and title of a book) and those determined by properties of components (eg the num-

Business patterns 233

ber of pages of a book, or -more interestingly - the book's abstract, or the price of Croque
Monsieur in the example above).

After some effort we discovered (abstracted out) the invariant of a composition (Kilov,
Ross, 1994): a composite type corresponds to one or more component types, and a composite
instance corresponds to zero or more instances of each component type. The application­
specific types for the composite and each of its components should not be equal. There exists
at least one resultant property of a composite instance (determined by the properties of its
component instances), and at least one emergent property of a composite instance
(independent of the properties of its component instances)2.

The composition and its invariant have thus been expressed in terms of formal parame­
ters: composite type, composite instance, set of component types, sets of component in­
stances for each component type, set of resultant properties of the composite, and set of its
emergent properties. This list of formal parameters constitutes the signature of a composition.

Even with all this we had not captured everything interesting about a composition. We
noticed that there were several different generic kinds of composition, and specified them.
Indeed, a composition may be:
• ordered or not
• hierarchical or not
• fixed or not (an example of a fixed, ordered, hierarchical composition is the composite lay­

ering of a highway)
• and, finally, it is possible to determine whether a composite or a component can exist inde­

pendently of the existence of a composition.
Thus, we described four mutually orthogonal generic subtypes of composition. These

subtypes are defined in a more precise manner, using invariants, in (Kilov, Ross, 1994).
Moreover, we may and probably should define generic operations (like "add a new compo­
nent of this type to that composition") for each of these subtypes. Such an operation will be
defined precisely, just as any other operation, by using pre- and postconditions, etc., as noted
above; some of these conditions are implied by the invariant of the appropriate subtype of the
generic composition (eg ordered composition).

When we (re)use composition or its subtype, we do not need to repeat its invariant: it is
quite sufficient to refer to it by using the name, as in:

Fast French Food: Ordered composition (croque monsieur,
{Toasted white bread, Mustard, Ham, Melted Swiss cheese}),

or, graphically, as in:

2 It is interesting and instructive to note that this invariant corresponds to Alexander's description oran invariant (see above).

234 Implementing Systems for Supporting Management Decisions

If we are still concerned about the precision of this specification (and we may well be),
the next step will include using aformal specification language such as Z (Nicholls, 1995),
perhaps with extensions. Ifwe do that (Kilov, 1993) and translate the result back into stylized
English - such as the one used above in the specification of the invariant - then this rcsult
will provide important insights and perhaps will point at still existing omissions and ambi­
guities, as indicated, for example, in (Mac an Airchinnigh, 1994).

Do you still think that "everyone knows what a composition is"?

3.2 An example of a second-level business pattern
As with many patterns that we have noticed reoccurring and have subsequently explicitly ab­
stracted, described and "named," information gathering is an abstraction of a wide variety of
incredibly common business operations performed in many, if not all businesses. Moreover,
and frustratingly, we know that we have reinvented this pattern many times over the years,
without having ever before explicitly preparing it for reuse. Examples of information gather­
ing include: get a credit report, establish birthdate, interview candidates for a job opening,
find a job, find a spouse, find a divorce lawyer.

Informally, the information gathering pattern is about obtaining some information from
some environment. Gathering the information may be a non-trivial task, requiring several re­
quests from several external sources. The information eventually obtained may not be what
was originally requested, and the expectation of the requester may change over time. In gen­
eral there should be a set of "quality" criteria specified in the information gathering opera­
tion's postcondition stating whether an obtained value is acceptable. There may be several
sufficiency criteria, with a relation "is better than," and a way to decide when to "stop" in re­
questing more and more acceptable information, perhaps based on some cost-benefit assess­
ment. This description is better than "everyone knows what a composition is," but still too
imprecise to be of substantial practical use. Let us make it more precise.

Less informally, the overall operation to request information starts with some source in­
formation, some desired information (eg type of resulting value) and some sufficiency crite­
ria, together with believed sources of further information (if any). After the operation, a result
has been obtained and is deemed acceptable, although the result may not be what was origi­
nally desired. However, this obtained result will (have to) have at least some of the properties
(that is, be a supertype) of the desired result. Moreover, the sufficiency criteria may be
changed between the start and the end of the operation.

Inherent in information gathering is the fact that you may not receive what you requested,
at which point you must resort to suboperations that decide the need for better information,
seek to obtain that better information, change sufficiency criteria, and even change assump­
tions about what result may be the best obtainable in the situation.

Note that already we have considered aspects of both business specification - what out­
comes we will accept - and business design - how we might change our sufficiency crite­
ria based on successive responses to our requests (however, the definitions of these "change"
operations belong to the business specification). Additionally in business design, we might
want to assign each operation and suboperation to a particular job role within the enterprise,
or decide what parts of the information gathering process may be wholly manual, wholly
automated, or supported interactively, and so on.

Business patterns 235

4. TECHNICAL DETAILS

4.1 Naming of patterns and their components; precision
We have been using the tenn "business pattern" to cover that concept which includes "slots"
for all infonnation management stages. Alternatively, we could - probably should - choose
separate stage-specific names for those fragments of a pattern that are fully instantiated at the
end of each stage. Since we have yet to fully comprehend all relevant concepts, fmd satisfac­
tory names for these specific notions, or fully define the boundaries between these "stages", it
seems a little premature to fmalize (or even suggest) names. This approach of using view­
points, or stages, is consistent - in intention if not in name - with the ISO Reference
Model for Open Distributed Processing (ISO I 995b).

Patterns and their slots must themselves be given names. These names should be carefully
chosen to help people build an intuition - a "correct" warm and fuzzy feeling - as to when
and how to consider applying the patterns. For example, we feel that minimal explanation
and documentation can render both "infonnation gathering" and "composition" sufficiently
plain and intuitive that the potential applicability of these patterns to appropriate situations
will be evident. Here we are more fortunate than our colleagues who are seeking names for
design patterns, since the language and abstractions of business and society with the corre­
sponding "intuitive understanding" have emerged together over centuries if not millennia
rather than the few decades of mostly isolated maturation of the computer industry. But even
for business patterns, names and feelings are certainly not sufficient.

Inventing names - for patterns, slots, and so on - does not, by itself, define these
things. This is because however intuitive they may seem, different people will interpret the
same, however "meaningful" or "natural," names in different ways. In contrast, the usage of
precise specifications, including invariants and pre- and postconditions, does define things,
their relationships, behavior, and so on, in a complete and unambiguous way.

4.2 Completeness/ instantiation
The (re)use of a pattern is tenned instantiation. A complete pattern instantiation has to pro­
vide values for all fonnal parameters. However, at anyone time only some of the fonnal pa­
rameter slots may have been filled. It is a very deliberate decision, on our part, to allow this,
making explicit our concern to enable rigorous capture of incomplete knowledge and, more
generally, to enable independence in decision making; that is, to actively encourage separa­
tion of concerns when capturing business knowledge. Note that a fonnal specification lan­
guage Z (Nicholls, 1995) pennits the specifier to do just that, but in a fonnal- rather than
just rigorous - manner. For example, it pennits specifying abstract, generic, and often in­
complete constructs of open distributed processing, thus leading to better understanding and
reuse (Kilov, Johnson, 1996).

A parameter may be, and often is, a nonelementary thing, such as a set, a relation, a se­
quence, and so on (as shown above in the composition examples). As such, and in the same
vein as the previous paragraph, a slot may be partially filled (for example, only some mem­
bers of the set may be provided), and an explicit decision must be made that the slot is com­
plete. For example, as noted above, a composition may be "fixed", implying that all compo­
nents have been enumerated and there will be no more additional components; or, more of-

236 Implementing Systems for Supporting Management Decisions

ten, a composition may be variable. Note that making a decision that something is
"complete" is a different concern from declaring that the decision will not be changed at
some time in the future.

4.3 Stages of completion / instantiation
As suggested above, the instantiation of a pattern usually occurs in a number of stages, during
business specification, business design, system design and implementation.

For each slot we can state in which (possibly many) stages it is possible to add (or refine
existing) values to the slot. For example:
• most information specifically related to business processes, job roles, organizations and so

on must be supplied during business design
• only those job roles (for example) that are mandated by laws, regulations and so on should

be considered part of business specification
No processes, job roles or organizations should be either invented or modified during

system design and system implementation, whose goals are simply to produce a system that
satisfies a specification and scope of automation as identified in business specification and
business design. However, a stage-specific (for example, implementation-specific) refine­
ment may be required, probably resulting in a (for example, implementation-specific) predi­
cate being conjoined to an existing pattern's invariant.

Some patterns may be primarily used to complete slots of other patterns at a stage beyond
business specification. As such, they have no slots that are completed during business speci­
fication. An example might be a pattern to specify relationships between a business's sub­
organizations; since internal structuring of a business - even if subject to external regulation
- is a matter of business design, this pattern would probably have no business specification­
level aspect.

5. GENERAL FORM OF PATTERNS
This section is concerned with the content and documentation of patterns. We discuss generic
aspects of the "form" of patterns. In documenting a pattern, we seek to ensure that the pattern
is rigorously expressed and both easily taught and appropriately presented for reference when
applied in a particular situation. Also, it should be clear whether a particular business pattern
is or is not applicable in a particular situation, and thus an understandable and unambiguous
definition of each pattern is essential.

Inventing (discovering) a new pattern is hard, and does not need to be done by everyone
involved. As reading and thus reusing is substantially easier than writing, reusing existing
patterns is substantially easier than discovering new ones; and leads to reuse with substantial
savings of intellectual effort, and thus time and money.

All patterns "exist" in some context. Obviously, providing all details about a context will
lead to a substantial, often unacceptable, increase in the size and complexity of the specifica­
tion. Therefore, only the top-level information (resultant properties of the "composite", see
"composition" pattern above) about the context should be provided - and referred to - in a
business pattern specification. This information (as well as any other) should be provided
explicitly.

Business patterns 237

5.1 Classification of patterns into "modules" and "actions"
We have broadly classified all patterns that we have so far encountered as being either
"actions" or "modules". This classification is related to the overall intent of the pattern. If the
intent is to provided a reusable structuring of an operation and its suboperations, albeit with
reusable invariants for the values of its slots, the pattern is an "action" (like "infonnation
gathering"). If the intent is to provide a reusable way of expressing a complex invariant, al­
beit with related operations consistent with and supporting the invariant, the pattern is a
"module" (Alencar, Goguen, 1992) (like "composition" or "joint ownership").

We would like to follow our intuition and believe that many or even most patterns are
either "modules" or "actions". Modules can be seen to be predominantly about high-level,
reusable invariants. Actions are predominantly about high-level, reusable pre- and postcondi­
tions. In other words, a module describes constructs that exist "all the time", whilst an action
- constructs that "start" and "end" (eg "repayment of mortgage"). This description is quite
infonnal. Sometimes it is difficult (and may not be necessary) to distinguish between mod­
ules and actions: a marriage, for example, has a start and an end, but, unlike a mortgage re­
payment, is not about one particular operation. This should not prevent us for specifYing a
marriage as a business pattern - after all, both an action and a module exist in some context
and have an invariant! In a similar vein, other possible broad categories could conceivably be
those that are predominantly about "obligations", "triggering conditions", or "pennissions".
This classification of business patterns may thus be somewhat arbitrary; but the specification
of a business pattern should in any case be precise, explicit, and therefore unambiguous.

Example actions might include: assessment, infonnation gathering, negotiation, receipt of
a communication and transfer of ownership. Example modules might include: ownership,
joint ownership, officially registered event, bill of materials and, more abstractly, composi­
tion (see above) and reference from (Kilov, Ross, 1994; ISO, 1995a). Another example ofa
module has been discussed at some length by Wegner in (Wegner, 1995) - a marriage con­
tract. This example includes obligations and permissions of the kind described in (Meyer,
Wieringa, 1993), and often includes operations leading to the change of some invariants -
quite typical for an open (externally interacting) system. In fact, as noted in (Wegner, 1995),
this distinguishes an open system from a closed one.

Note that all of these patterns - and particularly the actions - may be applicable at sev­
erallevels of granularity, while still remaining at the business specification stage of infonna­
tion management. For example, "in verifYing the correctness of the transfer of ownership of a
house I must: verifY that the purported seller is the current owner (which may require that I
gather infonnation about the present ownership of the house ...) and verifY that funds are
available for the transfer (which may require that I gather infonnation about the availability
of funds for the transfer ...) ... " and so on. Here the actions verification - which is a special
case of assessment - and infonnation gathering are each used several times, with verifica­
tion being applied and composed with itself at different levels of granularity. Both interact
with module patterns related to ownership. The phrases written in brackets could have been
omitted to present a high-level view of the overall verification action.

Let us describe the invariant for a general (business) pattern.

238 Implementing Systems for Supporting Management Decisions

Pattern

This picture is a graphical representation of the invariant of a pattern (in other words, it
represents a substantial part of the precise specification of a pattern). It uses the composition
pattern described above, as well as reference - another generic relationship pattern. It shows
that any pattern is composed of the pattern's invariant and a composition of operations. Every
operation, in tum, is composed of its signature, precondition, postcondition, triggering condi­
tion, and the operation's invariant. This composition is a list (Kilov, Ross, 1994), meaning
that neither the composite, nor the components may exist independently of the composition.
An invariant is composed of things and relationships, and predicates (about these things and
relationships). The reference relationships show that some properties of "maintained" things
- such as Operations in the Pattern's Invariant - Operations relationship, or
Pattern's Invariant in the Environment - Pattern's Invariant relationship­
are determined by the properties of their "reference" things - such as Pattern's Invariant in
the former, or Environment in the latter relationship.

Obviously, this specification may be considered partial. It does not include, for example,
such informal but useful pattern components as the description of the goal, the name of the
author, etc. Also, we may refine this specification and show, for example, that there are two
different subtypes of an operation - one that does not change the environment, and another
that does (eg an operation in an open system may change the pattern's invariant, see below).
There are other, equally interesting and important, ways to refine this specification.

For an action pattern (that defines an interesting and potentially reusable operation ap­
plied to a collection of things), the composition of operations ("subactions") shown in the
picture above will be partially ordered (some operations may be executed in parallel). For a
particular kind of action you may reuse many typical subactions (eg "assessment" typically
involves "information gathering" subactions).

For a module pattern, usually no ordering of operations is defined. Also, new operations
may be typically added (especially for modules); and operations themselves may be consid­
ered as parameters.

Business patterns 239

6. CHANGES

6.1 Inevitability
Business pattern instantiations are often interactive. In other words, they exist in an open
world which permits unpredictable inputs during the "lifetime" of an instantiation of the pat­
tern. As a result of these inputs, the environment of the pattern instantiation may change, re­
sulting in changes of its invariant, as well as pre- and postconditions of its operations. Usu­
ally only fragments of a pattern may be considered "closed" and "atomic" and so considered
to have an unchanging environment as in conventional "short" transactions (Wegner, 1995).

We have seen that these considerations apply to a module pattern, such as a marriage
contract. The same, however, is true for an action pattern, for example, a mortgage repayment
contract. In the United States (an environment), a mortgage repayment contract includes in its
invariant the existence and properties of an escrow account held by the mortgage company to
settle possible changes in taxes and insurance. When the laws and regulations about the
maximum possible amount of the escrow account changed (thus providing some help to
mortgage holders who did not want to have excessive amounts of money on their escrow ac­
counts), new operations were added to the business pattern (eg "credit" - another business
pattern of a particular action). Some old, existing, operations in the business pattern for a
mortgage repayment contract were also changed as a result in this change of laws and regula­
tions.

6.2 Changes to invariants
A pattern's invariant is relatively stable, but can change, especially when laws and regula­
tions change. We have seen a marriage contract example above. As another example, ')oint
ownership" - perhaps of shares - may have tax consequences. When tax laws change, the
invariants that model the laws - and the concepts in terms of which they are expressed -
will change. Again, for example, there is currently a notion of "capital gains tax" in the US; if
a proposal to restructure the tax system as a "flat tax" were adopted then the notion of
"capital gains tax" may disappear completely, leading to changes to (fragments of) the invari­
ants modeling taxation and joint ownership. These changes will imply appropriate changes to
operation definitions: some operations will become unavailable because their preconditions
will not be satisfiable (they even may refer to concepts no longer available!), and some other
operations will have to change their pre- or postconditions.

Why will operations have to be changed? As shown above, an invariant of a pattern is
referenced by (in a reference relationship (Kilov, Ross, 1994) with) all operations of that
pattern. The invariant of a generic reference relationship states that some properties of the
maintained object (in this case, the pre- and postconditions of the module's operations) are
determined by some of the properties of the referenced object (the module's invariant). As
such, when the invariant changes, all operations of that pattern must be reassessed because
the precondition for each operation assumes that the invariant is also satisfied, as does its
postcondition.

An example of an invariant that is, at the time of writing, changing for many businesses
is: actual year=1900+systern year. where O:'>systern year:'>99, be it within
the business's information systems or preprinted forms (including cheques). This invariant

240 Implementing Systems for Supporting Management Decisions

will soon be invalidated, at which point many operations will be invalidated and will need to
be changed to satisfy the new invariant (stating how "century" will be captured and affect the
outcome of operations). As the pre- and postconditions of most of these operations are at best
implicit in the code of some system, many billions of dollars may be spent in more or less
successful attempts to resolve this problem, either in advance or as part of a cleanup.

Note that when such changes to invariants occur, they are first formulated as a change
proposal before being adopted, and on adoption both old and new formulations must be
maintained, at least for some time. In particular, this allows processing errors to be corrected
when, for example, a letter containing a cheque arrived but "fell behind the back of a filing
cabinet". In such a situation a correction must be calculated in terms of the rules in effect at
each point in time between error occurrence (losing the letter) and error discovery and cor­
rection, implying the availability of each version of the rules. It is obviously essential to have
an explicit and precise specification of the operations to be executed in such erroneous situa­
tions.

6.3 Changes to pre- and postconditions of operations
As for invariants, in most cases we assume that the pre- and postcondition stated when an
operation "starts" do not change during the operation. For atomic, short-lived, non-interacting
operations this is true, because there is simply no opportunity for the postcondition and in­
variants to change. However, for prolonged business operations - for example, some kinds
of assessment such as the underwriting of a nonstandard insurance application, or selection of
an appropriate treatment for a medical condition - obviously the definition of an operation
(including the pre- and postcondition as well as the invariant) may change.

Once an operation has started, we lose all interest in its triggering condition and whether
or not it continues to be satisfied. However, we are interested in the pre- and postcondition
and the invariant until the operation is concluded, and should not (and cannot) assume that
they remain constant throughout the operation.

We have already seen examples of changes to operation specifications triggered by
changes in invariants (new laws and regulations about mortgage escrow accounts; or eventual
changes in capital gains tax laws). Examples of changed pre- and postconditions for a (long)
operation are common in a bureaucracy (an organization that tries to make the lives of its
"subjects" more difficult). If a subject needs to obtain a permission from the bureaucracy and
satisfies the preconditions for doing so at the moment of requesting the permission, and if the
process (operation) of obtaining this permission is lengthy, then it is quite possible for the
bureaucracy to change - "on the fly" - the pre- and postconditions of "obtaining permis­
sion" in such a way that the new preconditions would be more difficult to satisfy. As another
example, in the midst of underwriting a particular application for health insurance, new
regulations may appear stating that an underwriter must approve health insurance for persons
with some specific preexisting conditions.

7. EXAMPLE OF AN ACTION PATTERN: INFORMATION GATHERING
This and the following section present examples of second-level business patterns. These ex­
amples show both the content (semantics) of the patterns, and illustrate how patterns might
be presented for reuse. The language and layout used for presenting the patterns are perhaps
nearer to those suitable for inclusion in a patterns catalogue (Alexander et al., 1977) than in a

Business patterns 241

general introductory text about (business) patterns (Alexander, 1979). We tried to be as pre­
cise as possible, and already see some ways of improving the presented patterns.

7.1 Informal introduction
Information gathering is an action to obtain some information using some environment (eg an
applicant for insurance seeks to determine whether his application will be approved, declined,
postponed, approved with substandard conditions; or a bureaucracy wishes to determine a
person's birthdate supported by acceptable evidence).

The pattern recognizes that requested and obtained information are often different
(indeed, are of different types; in the birthdate example above, it may be impossible to pro­
vide any birth certificate for an immigrant, and other supporting evidence could be used). An
operation to obtain information of a particular type may retrieve less rich information (a su­
pertype) or, conceivably, better information (a subtype). In cases where less good than re­
quested information is received, the obtained value should be of a supertype of the requested
type of the requested value.

Also, as the action proceeds there may be a change in expectations on what results can be
retrieved at a reasonable cost to the requestor. Consequently, a gathering action may consist
of one or more operations that request information, together with operations for making de­
cisions to obtain more information or to change expectations for the gathering action. The
pattern's invariants refer to expectations (sufficiency criteria) and types of resulting (ie re­
quested and obtained) values.

7.2 Invariant

7.3 Operation: request for information
Signature
The signature of this operation consists of the things highlighted in its pre- and postcondi­
tions, together with the things referred to in the pattern's invariant above (which is this op­
eration's invariant).

242 Implementing Systems for Supporting Management Decisions

Precondition
• source information exists
• requested type of resul ting value exists
• envi ronmen t (element of the set of environments) together with corresponding suf f i -
ciency criteria exists.

Postcondition
• resul ting value exists and satisfies one of the sufficiency criteria for the

environment
• the type of resulting value is one of the supertypes of resulting
value

.cost of obtaining resulting valueisknown
Note: sufficiency criteria may be changed between the start and the end of the operation.

7.4 Sub-operation: obtain better information ("further request")
Precondition
The following exist:
·source information
• old resulting value
• old type of resul ting value
• requested type of resulting value
• old environment with corresponding suff iciency criteria one of which has

been satisfied by the old resul ting value
• sum of old costs of obtaining resulting value
• environment to be used to obtain better information.
Postcondition
• new resul ting value exists and satisfies one of the sufficiency criteria for

the new environment which is a sufficiency criterion, better than the
old one

• new type of resulting value is a subtype of the old type of resulting
val ue and a supertype of the requested type of resul ting value

• new cos t of obtaining resul ting value is known.

7.5 Sub-operation: change sufficiency criteria
Precondition
• old suff iciency criteria for the environment exist.
Postcondition
• new sufficiency criteria for the environment exist and are different from the
old sufficiency criteria.

7.6 Sub-operation: change relation "is better than" for sufficiency criteria
Precondition
• old relation is better than exists.

Business patterns 243

Postcondition
• new relation is better than exists for the same set of sufficiency criteria

and is different from the old is better than.

7.7 Sub-operation: decide need for better information

Precondition
The following exist:
• source information
• old resulting value
• old environment with its sufficiency criteria one of which has been satisfied

by the old resul ting value
• sum of old cos ts of obtaining resul ting value
• new sufficiency criteria.
Postcondition
For the given sum of old costs of obtaining resulting value and old envi­
ronment' one of the following:
• resul ting value satisfies new suff iciency criteria (information has been

obtained)
• resul ting value does not satisfy new suff iciency cri teria (triggers "obtain

better information")
Note: this assessment may be done by a human; and may include "override criteria" (compare
with the considerations below).

7.8 Possible extension
We may also consider the nonmonotonic case where it will be discovered that something that
you thought was true is in contradiction with the newly established information - in other
words, that the "current" state ofthe system is about to become inconsistent. This situation is
analogous to the one with mutually inconsistent obligations, or with mutually inconsistent
viewpoints that nevertheless need to be composed (Harrison et aI., 1996). One way of dealing
with these problems is provided by explicit partial ordering of the importance of information
(obligations, viewpoints), so that the "less important" information will be overridden by
"more important" one.

7.9 Informal guidelines on how to instantiate
Information to be gathered - and the procedure for gathering it - may be arbitrarily simple
or complicated. For example, a telephone number is relatively simple while a medical history
of a candidate for health insurance (and her ancestors) may be extremely complex. Some
businesses (such as a credit bureau) may exist simply to gather and supply information.

We suggest that the pattern is instantiated in roughly the following order:
• types of gathered (requested and obtained) values
• source information and environment(s}
• relative acceptability of gathered values in different circumstances
• sub-operations for obtaining better information
• sub-operations for deciding need for better information

244 Implementing Systems for Supporting Management Decisions

• other sub-operations
• costs associated with obtaining a resulting value

The values to be gathered should be specified first since it is difficult to understand how
to gather something that is itself not understood. Likewise, it is useful to understand the envi­
ronment from which the information is being gathered sooner rather than later. Since it is of­
ten the case that the value actually obtained in an initial attempt may not be the value re­
quested (perhaps the requested value is simply unobtainable as in the birthdate example
above), it is important to specify all possible sources of information and the different kinds of
information obtainable from each source.

We specify relative "quality" of value types in terms of subtyping relationships:
• a value is strictly "richer" than another value if it contains more information
• that is, it has all of the properties of the "less rich" value plus some additional properties

(which is precisely the definition ofa sUbtyping relationship)
In general, an operation to obtain information of a particular type may retrieve less rich in­
formation (a supertype) or, conceivably, better information (a subtype). In defining the post­
condition of a specialized "obtain better information" operation, you must state what types of
resulting value the operation must recognize, perhaps including a value of "unacceptable". In
cases where less good than requested information is received, the obtained value should be of
a supertype of the requested type of the resulting value.

For example, instead of obtaining a birth certificate for a person, it may be possible just to
establish a date (or even the year) of birth from some other documental sources: thus,
"obtaining a birth certificate" will have a type "establish a birthdate using the best possible
document", and its supertype will be "establish some birthdate information using a documen­
tal source". The invariant includes a (partial) ordering of acceptability criteria, with a relation
"better than", and a way to decide when to "stop" in requesting more and more acceptable
information should be provided.

Additional details, such as job roles, precise ordering of requests, and what types of gath­
ering to outsource, are considered to be beyond business specification and best handled dur­
ing business design.

8. FRAGMENTS OF A MODULE PATTERN-JOINT OWNERSHIP

8.1 Informal introduction
The joint ownership pattern is about most kinds of property ownership. It deals with several
owners of a property, leaving the property itself atomic (ie ignoring its composition). It is
applicable in many cases, including situations when a property typically has only one owner,
but may conceivably have several.

Examples are well-known: joint ownership of a company (shareholding), of a house, of a
car (by the bank and the owner), of a racehorse (by the members of a syndicate), and so on.
Another interesting example is "joint tenancy", which happens when the composition in the
invariant is fixed, and can be changed only with the death of a co-owner.

At least two specializations of joint ownership exist (but will not be considered here): one
in which a co-owner can dispose of his share in the property without consulting other co-own­
ers, and the other in which this is not allowed.

Business patterns 245

We have not included all possible operations. For example, in addition to the operations
presented below, there are also such operations as "redistribute the shares of interest in prop­
erty" (with the operation invariant ''the collection of owners is unchanged"), "transfer share
of interest in property to a new party", and so on. The specification of these operations is
probably straightforward.

8.2 Invariant
The property belongs to a non-empty collection of owners; and a share of
interest in property for each owner has been established. (A composition of
symmetric relationships, a generic molecular pattern described in (Kilov, Ross, 1994a), can
be used to rigorously formulate this invariant}.
Note: If the share of interest has not been established (ie it is not yet known to the business),
in most cases the only operation that can be applied for this pattern is "establish the share of
interest"; this operation involves information the pattern of which was presented above.

8.3 Acquire interest in property
Invariant
Property exists
Precondition
·joint ownershipisnotajoint tenancy
• the (old) collection of owners has been established
• it has been established that co-owners of the old collection of owners agree to

the acquiring interest in property by the collection of parties to ac­
qurreinterest in property

• the collection of parties to acqurre interest in property has been es­
tablished.

Postcondition
• the collection of owners is equal to the union ofthe old collection of

owners and the collection of parties to acqurre interest in property
• the new share of in teres t in property for each co -owner has been estab­

lished.

8.4 Lose interest in property
Invariant
Property exists
Precondition
• the (old) collection of owners has been established
• the party to lose in teres t in property has been established.
Postcondition
• the collection of owners is equal to the difference between the old collection
of owners and the owner to lose its share of interest in property

• the new share of interest in property for each co-owner has been estab­
lished

246 Implementing Systems for Supporting Management Decisions

• the share of interest in property of the owner to lose interest in
property has been extinguished.

9. CONCLUSION AND FUTURE RESEARCH
The existence of many business patterns can be inferred from the language of business. Ge­
neric business concepts - "negotiation", "ownership", "receipt" and so on - are a rich
source of relatively abstract patterns. However, to be of value, these patterns have to
be(come) precisely specified. Some of them probably are precise - in economics and other
professional texts such as (Alexander et aI., 1977) - but are perhaps incomplete. Require­
ments for specification completeness are quite different for different audiences: business
analysts and developers of information systems are not experts in the subject matter of the
business they will partially automate, and thus require explicit specification of all "common
knowledge" of subject matter experts. As this common knowledge may (and usually does)
rely upon quite different default assumptions for different subject matter experts, the value
(and understandability) of business patterns can be substantially improved by specifying these
common-knowledge assumptions explicitly. Indeed, often a pattern can only be used once
these assumptions have been made explicit. Such specifications will also lead to the discov­
ery of different specializations (subtypes) of these patterns, and of additional parameters es­
sential for successful pattern reuse and instantiation.

More specific language - "term life insurance policy" - will lead to more concrete, al­
though still generic, business patterns of more focused reuse value. Given this assertion, we
expect there to be considerable reuse value in action patterns that capture common business
actions such as "negotiation", "assessment", "information receipt", "information recording -
solicited" and "information recording - unsolicited", and module patterns such as
"ownership", '~oint ownership", "liability", and so on. Having said this, we intend to con­
struct and refine a catalogue of patterns as they are encountered and reused - by us and oth­
ers - during business analysis.

Note that we (almost) did not use the buzzword "Object-Orientation"in this paper. The
most important of the concepts we use are abstraction and precision (leading, for example,
to understanding and reuse), which have been around a lot longer than 00, and were warmly
embraced and emphasized by the best 00 advocates. These concepts may be used both for
understanding the business and for providing technical solutions based on this understanding.
Moreover, our approach yields business specifications that can form the basis for system de­
velopment in a variety of paradigms including both 00 and the more "traditional" ones.

An interesting test of the validity of patterns with common language roots is whether their
"natural" value appears to be preserved when their documentation is (carefully!) translated
into languages and cultures other than, for example, American English. It may even be that
some patterns have limited applicability, being tied to specific cultures.

10. REFERENCES
Alencar, AJ., and Goguen, lA. (1992) OOZE. In: Object orientation in Z (Workshops in

Computing), ed. by S.Stepney, R.Barden and D.Cooper. Springer Verlag, 79-94.
Alexander, C., Ishikawa, S., Silverstein,M., Jacobson, M., Fiksdahl-King, I., Angel, S. (1977)

A pattern language. Oxford University Press.
Alexander, C. (1979) The timeless way of building. Oxford University Press.

Business patterns 247

Ayers, M. (1996) Book review of "Information modeling - An object-oriented approach" by
Haim Kilov and James Ross. Software Engineering Notes, Vol. 21, No.2, 91-92.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995) Design patterns: elements of reusable
object-oriented software, Addison-Wesley.

Harrison, W., Kilov, H., Ossher, H., and Simmonds, I. (1996) From dynamic supertypes to
subjects: a natural way to specify and develop systems, IBM Systems Journal, Volume 35,
Number 2, to appear.

ISO (1995a) ISOIlEC JTClISC21, Information Technology - Open Systems Interconnection­
Management Information Systems - Structure of Management Information - Part 7: Gen­
eral Relationship Model, ISO/IEC 10 165-7.

ISO (1995b) ISO/IEC JTClISC21IWG7, Open Distributed Processing - Reference Model:
Part 2: Foundations (IS 10746-2/ ITU-T Recommendation X.902, February 1995).

Kilov, H. (1993) Information modeling and Object Z. In: Proceedings of the Conference on
Next Generation Computer Technology and Systems, Haifa, Israel (June 1993), 182-191.

Kilov, H., Johnson, D.R. (1996) Can a flat notation be used to specify an 00 system: using Z
to describe some RM-ODP constructs. In: Proceedings of FMOODS'96: IFIP WG 6.1
Conference on Formal Methods in Open Object-based Distributed Systems, Paris, March
1996,407-418.

Kilov, H., Mogill, H., Simmonds, I. (1996) Invariants in the trenches. In: Object-oriented be­
havioral specifications, ed. by H.Kilov and W.Harvey, Kluwer Publishers, to appear.

Kilov, H., Ross, J. (1994) Information Modeling: an Object-oriented Approach. Prentice­
Hall, Englewood Cliffs, NJ.

Kilov, H., Ross, J. (1994a) Generic concepts for specifying relationships. In: Proceedings of
NOMS'94 (IEEE), Orlando, 207-217.

Mac an Airchinnigh, M., Belsnes, D., and O'Regan, G. (1994) Formal methods & Service
specification. In: Towards a Pan-European Telecommunication Service Infrastructure
(Lecture Notes in Computer Science, Vol. 851). Ed. by H.-J.Kugler, A.Mullery, N.Niebert,
Springer Verlag, 563-572.

Meyer, B. (1988) Object-oriented software construction. Prentice-Hall.
Meyer, J.-J.Ch., Wieringa, R.J. (1993) Deontic logic in computer science. John Wiley &

Sons.
Nicholls, J., ed., (1995) Z Notation, Version 1.2, The University of Oxford, September 1995.
Parnas, D.L. (1995) Teaching programming as engineering. In: ZUM '95: The Z Formal

Specification Notation (Lecture Notes in Computer Science, Vol. 967). Ed. by J.Bowen
and M.Hinchey, Springer Verlag, 1995,471-481.

Parnas, D.L. (I 995a). Language-free mathematical methods for software design. In: ZUM
'95: The Z Formal Specification Notation (Lecture Notes in Computer Science, Vol. 967).
Ed. by J.Bowen and M.Hinchey, Springer Verlag, 1995,3-4.

Parnas, D.L., Madey, J. (1995) Functional Documents for Computer Systems, Science of
Computer Programming, Volume 25, 1995,41-61.

Proposals of the Massachusetts Hospital Life Insurance Company, to make insurance on
lives, to grant annuities on lives and in trust, and endowments for children (1835), James
Loring printer, Boston.

248 Implementing Systems for Supporting Management Decisions

Redberg, D. (1996) The search for the linking invariant: behavioral modeling versus model­
ing behavior. In: Object-oriented behavioral specifications, ed. by H.Kilov and W.Harvey,
Kluwer Publishers, to appear.

Swatrnan, P. (1994) Management ofInfonnation Systems Acquisition Projects, in Proceed­
ings of OzMISD '94, First Australian Conference on Modelling and Improving Systems
Development, Lilydale, Victoria, 3-4 February 1994, 115-131.

Wand, Y. (1989) A proposal for a fonnal model of objects, in Object-oriented concepts, da­
tabases and applications, edited by W. Kim and F. Lochovsky, Addison-Wesley, 537-559.

Wegner, P. (1995) Models and paradigms of interaction. ECOOP'95 Tutorial Notes, July
1995, Aarhus, Denmark (Brown University Department of Computer Science Report CS-
95-21).

11. BIOGRAPHIES

Haim Kilov has been involved with all stages of infonnation management system specifica­
tion, design, and development. His approach to infonnation modeling, widely used in tele­
communications, financial, document management, and insurance areas, has contributed
clarity and understandability to enterprise and application modeling, leading to specifications
that are demonstrably better than "traditional" ones. It has been described in "Infonnation
modeling: an object-oriented approach" (Prentice-Hall, 1994). Haim Kilov is using and ex­
tending his approach in customer engagements. He is a member of and active contributor to
several international standardization technical committees. He has been a speaker and a pro­
gram committee member at numerous national and international conferences. His interests
are in the areas of infonnation modeling, business specifications, and fonnal methods.
Ian Simmonds has worked on techniques and tools for developing systems. He was a leading
participant in the PACT and ATMOSPHERE ESPRIT projects and the EAST EUREKA
project. In these and other projects his work focussed on the specification and systematic use
of technical frameworks for CASE tools and integrated software engineering infrastructures.
In particular, he was an active participant in the international (ISO) standardization of the
Portable Common Tool Environment (PCTE). Since joining IBM's Insurance Research Cen­
ter, he has been studying the application of object-oriented techniques to the development of
business systems for the insurance industry, with an emphasis on reuse of both techniques
and content. His interests include rigorous specification of business requirements, the use of
these as a basis for systematic development of business systems, and the transfer of these
techniques for use by IBM's customers and consultants.

