
8
A Framework for Inter-ORB Request Level Bridge
Construction *

M. Steinder, A. Uszok, K. Zielinski
Institute of Computer Science, University of Mining €3 Metallurgy
AI. Mickiewicza 30, Cracow, Poland
tel: +48 (12) 17 3982, fax: +48 (12) 338907, e-mail: {gosia, uszok, kz}@ics.agh.edu.pl

Abstract
The paper addresses a problem of building a bridge between different CORBA compliant
systems. It presents a framework of the bridge based on the UNO approach whose archi­
tecture is easily extendable to more sophisticated in parallelizing level and functionality
units. A problem of mapping objects defined in CORBA model is described and a few
suggestions to deal with it are presented. As a case study implementation of the bridge
for Orbix and DOME is described.

Keywords
CORBA interoperability, bridge, UNO, framework architecture

1 INTRODUCTION

With t.he increase of distributed objects' applications a requirement for a common plat­
form grows. This tendency should only strengthen in the near future . Of all the platforms
CORBA promoted by OMG seems to gain the greatest interest .

The CORBA Object Model (OMG 93-12-43, 1993) identifies various distribution trans­
parencies which must be supported within each ORB environment . As it has been antici­
pated, none of the ORB implementations is able to address a large variety of user needs.
Existence of many different ORB domains is justified also for performance, security and
management reasons.

A diversity of ORBs - now evident - necessitates introduction of means through which
they could cooperate; see in (OMG 94-3-1,1994), (OMG 94-9-32,1994) and (Uszok, 1994).
Interoperability of different ORBs can be viewed as extending standard transparencies to
span them. This problem was firstly addressed in CORBA 1.2 specification (OMG 93-
12-43, 1993). Later a general architecture for inter-ORB cooperation was put forward in
(OMG 94-9-32, 1994), and a notion of a bridge was introduced as a unit residing at a
boundary between ORBs transparently transforming requests from a source ORB to a
destination ORB.

In this article we aim at presenting a framework for implementing an inter-ORB bridge.

*This work was sponsored by the European Commission under the COPERNICUS project TO­
COOS no. CP940247. (http://galaxy.agh.edu.pl/research/cs/TOCOOS/COPERNICUS.html)

A. Schill et al. (eds.), Distributed Platforms
© Springer Science+Business Media Dordrecht 1996

Inter-ORB request level bridge construction 87

By the framework we mean such a conceptual structure of a unit so that it will enable
possibly the most ORB-independent implementation. Therefore we divide a bridge into
modules according to their ORB dependence. ORB independent parts which access ob­
jects via standardized interfaces are uniform, ORB dependent parts which use internal
capabilities must be implemented for each system separately. A bridge is created by linking
adequate parts.

The framework enables practical evaluation of the UNO approach. It is innately de­
signed for mediated bridges which mediate invocations between domains using a stan­
dardized mechanism. We find it however applicable also to implementation of immediate
bridges. In our approach Internet Inter-ORB Protocol is used as a mediating mechanism.
The framework serves implementing request-level generic bridges whose main function­
ality ~ mapping requests between ORB domains ~ is placed outside ORBs. "Generic"
means that bridges enable mapping requests of arbitrary IDL interfaces using dynamic
invocation support.

The rest of this paper is structured as follows: in the next section basic assumptions for
our design will be presented. Then different half-bridge variants with regard to concurrency
models they support will be proposed. In Section 4 functional model of a bridge will be
described, in Section 5 a framework for implementing bridges will be presented. Finally as
a case study implementations of the half-bridge for Orbix and DOME will be compared.

2 BASIC ASSUMPTIONS

Interoperability may be viewed as extending transparencies to span multiple ORBs. For
interoperability between ORBs, ORB services used in the ORBs and the correspondence
between them must be identified. The abstract architecture describes ORB interoper­
ability in terms of a translation required when a request traverses domain boundaries.
Conceptually, a mapping or bridging mechanism resides at the boundary between do­
mains, transforming requests expressed in terms of one domain 's model into the model of
the destination domain.

In this project mediated bridging technique has been taken. In this approach elements
of the interaction relevant to the domain are transformed at the boundary of each domain
between the internal form of that domain and an agreed, common form . As such a common
form, according to the UNO specification, the lIOP protocol has been chosen and used
by the "backbone ORB".

Adapting a backbone style architecture is a standard administrative technique for man­
aging networks. It has the consequence of minimizing the number of bridges needed , while
making the inter-ORB cooperation match typical network organization.

Construction of a bridge depends on where the bridge components are located: inside
or outside ORB. The second option is termed as request level bridging. Request level
bridges which mediate between distinct execution environments through a common proto­
col involve components, one in each ORB, known as "half-bridges". Mediated request- level
half-bridges can be built by anyone who has access to an ORB, without a need of informa­
tion about the internal construction of that ORB. It is a main reason why that approach
has been adopted to our project .

A general principle of request-level bridging consists in that the original request is
passed in the client ORB to an InterORBJ>roxy object , which translates its contents to

88 Part Three CORBA

a form that will be understood by the server ORB, invokes the required operation on the
apparent server object and passes operation's result back to the client.

Request-level bridges may be: interface-specific or generic. Interface-specific bridges
support predetermined IDL interfaces only, and are built using IDL-compiler generated
stub and skeleton interfaces. Generic bridges are capable of bridging requests to server
objects of arbitrary IDL interfaces using the Interface Repository, Dynamic Invocation
Interface (DII) and Dynamic Skeleton Interface (DSI) .

In this project generic request-level bridge is constructed, so new extensions to CORBA
specification such as DSI, dynamic typing infrastructure and so on are implemented.

Bridges should support an arbitrary number of InterORB...Proxy objects, which may be
created as normal objects using the Basic Object Adapter (BOA) and the DSI. Multiproxy
bridge requires internal concurrency of the server process provided by multithreaded en­
vironment. It imposes additional complexity on the bridge construction. To separate this
factor a single InterORB...Proxy half-bridge has been first designed.

The general architecture of the inter-ORB cooperation is presented in Fig. 1.

Figure 1 Inter-half-bridge communication scheme

Two ORBs are mediated through the third ORB acting as a backbone ORB. IIOP
usage as a mediating protocol implies that a new ORB built around IIOP protocol should
be implemented. The minimum functionality of this new environment is determined by
the requirements of the generic request-level bridge implementation and is as follows:

• ORB pseudo-object should be supported with extensions concerning initialization, and
references comparison,

• Object Adapter functionality for object creation and destruction should be provided,
• DSI and DII interface should be implemented,
• Interface Repository should be available.

Convenient mechanisms for creation and destruction of servers should be also provided.
They may be implemented as general ORB modules used for any server creation or as
specialized half-bridge factories.

This core ORB functionality should be extended with inter-ORB bridges management
layer, that should provide inter-bridge protocol and bootstrapping mechanisms.

Inter-ORB request level bridge construction 89

3 HALF -BRIDG E VARIANTS

A classical model of object oriented processing approved by CORBA 1.2 specification does
not address a problem of internal objects and server parallelism. Its solution is, however,
important for multiproxy half-bridges and when object references are used as operation
parameters. In this section this issue will be studied in more details.

For efficient implementation of inter-ORB half-bridges it is necessary to exploit a paral­
lel execution of inter-ORB service invocations. Most CORBA compliant software provides
multithreading mechanisms as an extension to the basic environment . Its availability de­
pends on an operating system platform. So, the standard solution is in fact single threaded.
Therefore in these investigat ions it was assumed that client and server processes are single
threaded.

It has been also assumed that a server is mapped into an operating system process.
In a single threaded environment parallelism may be envisaged only on the level of

processes. It leads to a half-bridge-per-remote-server concept where each half-bridge is
activated as an unshared server with one active InterORBJ>roxy object . This concur­
rency model will be called Single-threaded InlerORKProxy-Half-br·idge per Server and is
illustrated in Figure 2.

Single-threaded InterORB_Proxy Half-bridge per Server

Multi-threaded InterORB_Proxy Shared Half-bridge

Figure 2 Two different concurrency models opposed

In this model concurrent requests from clients to the same server in the foreign ORB
are blocked in a queue in the first half-bridge. This half-bridge represents the server in
the client ORB. Queuing requests is a normal activity performed by most of the servers
provided in ORB implementations . It is the only way to resolve concurrency problem
when a server processes requests sequentially.

90 Part Three CORRA

In a multithreaded environment three different concurrency models which involve shared
server activation policy are anticipated:

• Multi-threaded InterORB_Proxy-Half-bridge per Server: for each client's invocation of a
service separate thread running through InterORB...Proxy is created. Threads operate
in parallel and forward each request to the same sequential server. Forwarded requests
are queued in the server instead of the half-bridge as it was in the singlt. threaded
model.

• Single-threaded InterORKProxy-Shared Half-bridge. In this model only one half-bridge
server is started in the client and server ORB respectively. For each remote server only
one single threaded InterORB...Proxy is created. Requests for the same sequential server
in the foreign ORB are queued in the first half-bridge as in the single threaded model.
For each server a separate queue that is served by a dedicated InterORB...Proxy must
be organized. Inspite of this forwarding a new request when the previous one has been
finished is delayed in similar way as in the single threaded model.

• Multi-threaded InterORKProxy-Shared Half-bridge. In this approach only one half­
bridge process is started for all services. For each server dedicated multithreaded
InterORB...Proxy is created. This model has similar features to Multi-threaded In­
terORB_Proxy Half-bridge per Server model because requests are queued in the server
but it provides light weight parallelism taking advantage of multithreaded implemen­
tation.

Without detailed study it is difficult to say what kind of parallelism should be exploited. It
will depend on many conditions such as: type of application, availability of multiprocessor
machines and so on.

As a starting point the single threaded model has been taken for implementation. It is
built of the same components as other models but may be implemented using sequential
server supported by most of the commonly available ORBs. It will serve as a basis for
future multithreaded implementations which seem to be more efficient.

4 HALF-BRIDGE FUNCTIONAL MODEL

Half-bridge functional model derives from assumptions taken with regard to its location
in cooperation environment. Its task is to receive request addressed to the remote server
from the I~JCal client, translate it into the server's format and transfer it to the server.

To perform this task half-bridge must possess several capabilities: initializing itself,
understanding client's request, creating server's request, translating objects defined III

CORBA model.

4.1 Half-bridge Initialization

Half-bridge is implemented in a client ORB as a usual server of this environment. It could
be activated using original procedures and an object adapter of this environment. After
being activated it must also install itself in a server ORB using its original ORB object
initialization mechanisms. Then it awaits requests from the client in the client's ORB
format .

Inter-ORB request level bridge construction 91

The proposed architecture of the inter-ORB cooperation assumes existence of the back­
bone ORB which should be always CORBA2 compliant, since it usually will be connected
with not CORBA2 compliant systems. This necessity is fulfilled for instance by the lIOP
domain whose implementation is under control.

4.2 Incoming Request handling

A request to the object in CORBA compliant systems is taken over by an object adapter,
the same as it was used to activate the object. It uses Dynamic Skeleton Interface (DSI)
to pass a request on.

Dynamic Skeleton Interface is a CORBA2 mechanism, therefore currently available
ORB systems do not possess its implementation. This necessitates extension of available
systems with DSI. Here the general view on how this CORBA part should be designed is
presented.

One of the basic DSI objects is Server Request defined in (OMG 94-9-32, 1994), which
via its standardized interface enables access to the name, parameters and other related
data of the requested operation. To build this object client 's request must be recognized
and matched with the definition of the requested operation containing parameters types.
It should be expected that in most ORB systems a request that arrives from a client
does not contain information about parameters types inside. In the CORBA standard
existence of Interface Repository containing definitions of objects ' interfaces has been
foreseen. Interface Repository may be contacted to obtain this data.

Functionality of DSI is embraced by invoke method of the Dynamiclmplementation
object . This function needs an access to operation data including its name, parameters '
types and values as well as its result , which are offered through abstract Server Request
object. Thus the DSI implementor must mostly care how to retrieve CORBA2 typed
data from 'environment specific representation and make it available via thi s interface.
He has also to enable setting values encapsulated inside the object after a can return .
When invoke completes Server Request specified as its argument contains all out and
inout parameters and result updated. It is up to the DSI to write them into ORB speci fic
Request object and return to the client.

4.3 Mapping objects defined in CORBA model

CORBAl standard left some parts of the system undefined because the then state of the
art did not allow standardization or some of the elements were intentionally left opaque
to allow their specialization for different uses. These deficiencies in the CORBA definition
allow vendors of CORBA compliant systems to specify different extensions to the same
interfaces to make them usable, In result interface implementation of one ORB cannot be
directly ported to the other ORB. In order to construct a half-bridge a mapping from one
ORB representation to a representation of the other ORB for all incomplete interfaces
must be foreseen. In general to allow two different ORBs to cooperate a mapping from
one ORB to another and vice versa must be defined for Objects, TypeCodes , Principals,
Contexts and ServiceContext. In the case of a half-bridge built around ORB backbone
only the mapping from cooperating environments to this ORB backbone and vice versa
is needed. Mechanisms responsible for performing this mapping may take necessary infor­
mation from bootstrapping or from external protocols.

92 Part Three CORBA

5 HALF-BRIDGE FRAMEWORK ARCHITECTURE

The aim of this section is to present general approach to constructing half-bridges. An
attempt to design such a uniform unit is justified because the presented in the last section
half-bridge functionality is immutable. It was recognized that due to the large discrepan­
cies between ORB systems it is impossible to implement a half-bridge able to cooperate
with all of them. Instead, a framework is put forward which will serve implementing half­
bridges for particular systems. Inside the framework, ORB dependent and ORB indepen­
dent parts have been distinguished. The former must be implemented for each system
separately because they rely on intra-ORB functionalities. The later use only standard
CORBA interfaces therefore they may be implemented once for all of the systems.

The architecture of the half-bridge framework is presented in Figure 3.

Figure 3 Half-Bridge Framework Architecture

5.1 InterORB~roxy

An InterORB..Proxy object constitutes a core of the half-bridge framework. It is where
the linkage of ORBs with the ORB backbone takes place. The InterORB..Proxy uses
standard CORBA interfaces to translate request from the client's ORB to the server's
ORB. It possesses dynamic implementation which is a part of client's Dynamic Skeleton
Interface. The main InterORB..Proxy's functionality is hidden inside invoke method of the
Dynamiclmplementation class. It creates a new request performing all necessary mappings
and uses server's Dynamic Invocation Interface to forward it.

The InterORB..Proxy is implemented as a template parameterized by names of CORBA
modules belonging to adjacent ORBs (Figure 4). These names are in fact half-bridge
constants whose values are determined at compilation time. To avoid ambivalence of
names for all ORB systems that are to be included in the architecture a new CORBA
module is created with a synonymous name. This may be achieved by including an ORB
vendor name inside. A new CORBA module will inherit from the old one. The resulting
module is extended to be CORBA2 compliant whenever it is reasonable. It contains, for
example, a type definition for Server Request , extensions to TypeCode interface allowing
creating and modifying the object as specified in (OMG 94-11-7, 1994).

It is worth noting that although the InterORB..Proxy possesses some attributes which

Inter-ORB request level bridge construction 93

constitute its state (PeerRef, my...Mapper) they are never modified while invoke{} is being
performed. The InterORR.Proxy does not remember requests passing through it . Thus it
may be considered stateless. Therefore in future multi-threaded version of the half-bridge
many threads will be allowed to run through the same InterORBYroxy simultaneously.

template <class CORBA_client, class CORBA_server>
class InterORKProxy :public virtuaI/NTERORBYROXY_BASKIMP,

public virtual DynamicImplementation {
I I It is a stringified object reference of a partner representing a remote server
char * PeerRef;
II Reference of the Mapper responsible for tmnslating Objects, Typecodes, Principals,
II Contexts and Service Contexts from a CORBA_client to CORBA_server representations
Mapper * my_Mapper;

public:

InterORKProxy (CORBA_client::ORB *, CORBA-server::ORB *,
REF_TYPE ref, Mapper*) :INTERORBYROXLBASKINIT(ref);

~InterORKProxy ();
void invoke (CORBA_client::ServerRequest *&, CORBA_client::Environment &);

};

Figure 4 InterORBYroxy implementation

Although the main InterORBYroxy's functionality is performed by invoke() method,
as the time progress its capabilities will be extended. Firstly the InterORBYroxy will be
equipped with interface enabling monitoring its behavior and management. Then support
for firewall capabilities will be developed. Finally it will be integrated with object services:
persistence, life cycle and fault tolerance.

5.2 Half-bridge Object Adapter

Creation of the InterORBYroxy and handling incoming request before InterORBYroxy's
invokeO function is entered is ORB dependent and is performed by a Half-bridge Object
Adapter (Half-bridge ~Al . This part must be created by a modification of a usual ob­
ject adapter or even built from scratch. When a foreign object reference appears inside
a half-bridge this new object adapter has to enable creation of dynamic object - an In­
terORBYroxy to encapsulate it if such an encapsulating InterORBYroxy does not yet
exist, giving it an appropriate reference. InterORBYroxy creation is performed by call to
its constructor. The constructor invokes an Object Adapter of the client ORB to register
the InterORBYroxy in it . There are several parameters which must be specified at this
time: references to ORB objects of two CORBA systems it connects (the InterORBYroxy
will use some of their functionalities) and reference to an object that will help it to trans­
late certain data eg: object references, contexts etc. (Mapper) .

When the call to the InterORBYroxy is recognized the Server Request is created and

94 Part Three CORBA

InterORB...Proxy's invoke method is activated regardless of what operation was demanded
in the request.

5.3 Mapper

As it was mentioned in the last section apart from forwarding requests mapping objects
defined in CORBA is the main functionality of the half-bridge. This task is entirely ORB
dependent and is performed by a dedicated object - Mapper. The Mapper is equipped with
map() methods - one for each object to be mapped. It reads data from the source object,
creates and fills in a target object. There is one Mapper in the half-bridge associated with
all InterORB...Proxies of this half-bridge.

Generally the Mapper is expected to translate CORBA objects between two arbitrary
ORBs. In the mediated half-bridge only mapping between ORB and ORB backbone and
vice versa is necessary. Since in this project the IIOP protocol is used as an intermediary
in the following subsections mapping between any ORB representation and IIOP protocol
is discussed.

5.4 Reference Translation

A client which invokes object's operation may place object references as its arguments
which denote other objects in the same domain. Such references will not be understandable
outside. Therefore they have to be mapped from their proprietary form to an Interoperable
Object Reference (lOR) for IIOP. In order to do this we have to fill out the ProfileBody
structure (OMG 94-9-32, 1994). The opaque reference form is encapsulated in the ob­
jecLkey field. host and port of this structure are assigned host name and port number of
some IIOP domain object which is able to support this reference in the case of calling it .
There are two solutions for this problem: eager and lazy mapping. Which of them is used
is optional; however, it determines bridge efficiency so it should be tailored to particular
applications.

9-·_· ~ ..
ORB2 ORBl ORB2

T ranslalion of object relerences to lOR Translation of object references from lOR

Figure 5 Eager reference translation on IIOP domain borders

Inter-ORB request level bridge construction 95

Eager reference mapping to nop domain
In this approach a new half-bridge is immediately created that will allow contacting object
pointed by this reference inside client 's ORB (Figure 5). Its lOR including host name and
port number is sent to the half-bridge on the server's side. The recipient creates a half­
bridge for server environment which will contact their partners in the client's domain. A
reference of the InterORB.Proxy inside the newly created half-bridge is sent to the server
in the Request message.

Lazy reference mapping to nop domain
In this approach a special object - a Bridge Factory is introduced in each cooperating envi­
ronment (Figure 6). Its host name and port number are used to fill the Profile Body field of
the lOR. This object will create a half-bridge responsible for processing all requests to the
object whose reference was specified. This action will take place when the LocateRequest
message of the UNO approach is received by the Bridge Factory. The LocateReply will
contain lOR which points to the InterORB.Proxy inside the created half-bridge.

ORBl ORB2 ORBl ORB2

t.oc. teR.:ru • • t

Translation of object relerences 10 lOA Translalion 01 object referencos Irom lOA

Figure 6 Lazy reference translation on lIOP domain borders

Mapping object references from nop domain
A request arriving from IIOP domain to the server ORB may contain lOR references
which have to be mapped to the server's ORB proprietary form. The half-bridge must
create a new half-bridge with InterORB.Proxy inside which encapsulates the reference.
It performs this task using mechanism valid in this ORB. The InterORB.Proxy object
possesses a reference specific for this domain which replace lOR in the request. The
newly created half-bridge can immediately contact reference it encapsulates to establish
a connection or postpone this action until first attempt to use it occurs. When the lazy
approach is used the newly created half-bridge firstly sends a LocateRequest message.
Reference returned in LocateReply is a final reference to be used during a call. In the case
of the eager mapping the original reference is used.

Determining Foreign Object Reference at connection establishment stage
Obtaining foreign references is a quite different problem from that of mapping them.
Client existing in certain domain wants to use a server which interface and functionality

96 Part Three CORBA

it knows but which is implemented in another ORB. In client's domain a half-bridge exists
that is able to contact a server within its domain as far as it possesses its reference. The
problem consists in finding the server object reference and creating its InterORB-Proxy
in client's domain. There are two possibilities to do this:

• bootstrapping
An InterORB-Proxy for given services is created at half-bridge initialization stage.
Information necessary to do that is kept in a persistent database managed by the
system administrator.

• trading
A search for foreign object references and creation of InterORB-Proxies for them is
managed by a special trading protocol implemented in the lIOP domain. This may be
initiated by a client or transparent for him.
This additional protocol enables looking up references of the demanded interface (its
name is available) inside server's domain with the BridgeFactory as an intermediary.
At this stage of the project only a very simple trading mechanism is implemented:
each BridgeFactory possesses a list of references of interfaces it exports, a half-bridge
uses a LocateRequest message embedding the interface name in its objecLkey field to
contact the BridgeFactory, on return it receives a LocateReply message with the object
reference inside.

As for now only a single threaded half-bridge is considered, so it possesses either boot­
strapping or trading mechanism. A future gateway will possess them both.

5.5 Other CORBA Objects Translation

It has already been recognized that there are other objects that will have to be mapped by
the Mapper. These are: TypeCodes, Contexts, Principals and ServiceContexts. Although
interfaces for the TypeCode and Context were specified in the standard a lot of freedom
was left to ORB vendors with regard to their implementation. Corresponding TypeCodes
of different ORBs may not be the same in what information they keep inside. CORBA1
standard does not also specify the interface to allow creation of a new TypeCode. Contexts
do not give access to all information they hide. As for the Principal no interface for it
was specified. The ServiceContext is a CORBA2 notion and is not even mentioned in the
CORBA1 standard.

We assume that in all ORBs which use these objects non-standard interfaces exist that
will give access to all functionalities not specified in the CORBA1 standard. We may
use these mechanisms to retrieve information from them or to write information into
them. This however must not be done by the InterORB-Proxy which uses only standard
interfaces. Hence translation of this objects is performed by the Mapper.

6 CASE STUDY FOR ORBIX AND DOME

The proposed framework has been applied to implementation of half-bridges for two
CORBA compliant systems. One of them is Orbix by IONA Technologies Ltd (Orbix,
1995) . The system is built with a great conformance to the CORBA standard. The sec-

Inter-ORB request level bridge construction 97

ond one is Distributed Object Management Environment - DOME (DOME, 1993). The
system lacks many CORBA features and some of implemented ones do not fully con­
form to the standard. Such different systems have been chosen to stress generality of the
proposed framework .

In this section we present some details of half-bridge implementation in these two
systems.

Half-bridges in Orbix and DOME are the ordinary servers in these domains. They
are launched by means specific for the domain to which they belong. In Orbix the half­
bridge may be activated manually as a persistent server. It may also be installed in
the Implementation Repository and dynamically activated after a bind() from a client. In
DOME there is no Implementation Repository, therefore the half-bridge must be launched
by hand .

Half-bridges implemented for Orbix and DOME use the same InterORB~roxy tem­
plate and they must care how to register its instance as an ordinary Orbix or DOME
object. In Orbix the BOAImpl approach is used to construct an implementation for a
given interface. InterORKProxy_base is an ordinary Orbix interface, therefore Orbix IDL
compiler generates InterORKProxy_baseBOAImpl class for it. The InterORKProxy - a
template inherits from InterORB_Proxy_baseBOAImpl. When calling its base class con­
structor the InterORB_Proxy specifies an interface name of the object it represents. This
way it ensures delivery of all requests directed to the represented object.

In DOME after compiling InterORKProxy_base interface InterORB_Proxy_base and
InterORB_Proxy_base_1 classes exist. InterORKProxy_bascl inherits from InterORB­
_Proxy_base and defines dispatching functions for this interface. The [nterORB~roxy

template inherits from InterORB_Proxy_baseJ In order to initiate itself in the ORB
system the InterORB~roxy must call its base class constructor along with its own. To
create InterORB~roxies InterORKProxyObjectServer is implemented, that inherits from
the DObjectServer class. Its create_object method creates a new InterORB _Proxy for each
object constructor it is called by.

To make it possible to use the InterORB~roxy template the system must possess the
Server Request interface. This interface has been defined for Orbix and DOME according
to the UNO specification. Its implementation requires access to the Int.erface Repository
- a standard CORBA module, which does not exist in DOME. Th is necessitates creation
of this module at least with the minimum functionality. In Orbix In terface Repository
exists, is CORBA compliant and may be used to implement DSI without any extensions.

In order to retrieve data from the incoming request in Orbix as well as in DOME DSI
uses the streamlike interface of the Request object.

Another ORB specific module used by the InterORB~roxy is the Dynamic Invocation
Interface. In Orbix OIl is CORBA compatible and does not require any changes. In
DOME only simple implementation does exist, that must be developed and conformed to
CORBA.

Half-bridges in Orbix and DOME use also ORB specific mechanisms to deal with an
unknown reference. In Orbix when inside a half-bridge a bind to an object for which a
mapping has not been recognized yet appears an Object Fault is rai sed. This activates a
Loader mechanism. This may be used to browse through some external repositories for
this object reference as it was described in the previous section. In DOME when inside the
create_object method a name of an unknown object appears it browses t.hrough external
repositories and causes them to create such an object and return its reference.

98 Part Three CORBA

7 CONCLUSIONS

In this paper a general framework for inter-ORB half-bridge construction has been pre­
sented. The framework was based on the UNO standard and classified as a mediated,
request level, generic bridge according to this approach. As an intermediary protocol nop
was chosen. It constitutes a new backbone domain equipped with all CORBA features
which are necessary for implementation of request level bridge.

Four different half-bridge variants with regard to a parallelism level they support have
been proposed. As the simplest one the sequential half-bridge has been chosen for imple­
mentation. Its architecture has been however designed in such a way so that a progress
to more sophisticated variants will be easy.

It has been recognized that due to the incompleteness of the CORBA standard specifi­
cation and large discrepancies between ORB implementations it is impossible to invent a
general bridge connecting arbitrary ORBs. Its implementation depends on them. There­
fore it has been divided into ORB dependent and ORB independent parts. A core of
the half-bridge - the InterORB-Proxy is ORB independent because it uses only stan­
dard interfaces. To the ORB dependent parts belong: Server Request implementation as
a CORBA2 extension to a client ORB, a Half-bridge OA - a modified or new object
adapter for InterORB-Proxy creation and request handling, and a Mapper responsible for
translation of CORBA objects into nop and vice versa.

As it has been noticed the greatest problem in implementing inter-ORB half-bridges is
mapping. This is why this task was imposed on a separate object - the Mapper. Mapping
is entirely ORB dependent. Only general assumptions may be given as for global solutions.
In this article we have presented how object references should be mapped and obtained.

In the last Section application of the framework to two distinct CORBA standard
implementations: Orbix and DOME was described. Most of this experience will be used
in the future when other systems will be added to the architecture.

8 REFERENCES

CORBA 1.2 Revision Draft (1993) OMG Report 93-12-43, Object Management Group
(OMG) Inc.

W. Harrison, The Importance of Using Object References as Identifiers of Objects - Com­
parison of CORBA Object References (1994) IBM Watson, TR

ORB Interoperability. Joint SunSoft /Iona Submission to the ORB 2.0 Task Force Ini­
tialization & Interoperability Request for Proposals (1994) OMG Inc., TC Document
94-3-1

Universal Networked Objects (1994) OMG Inc., TC Document 94-9-32
Interface Repository (1994) OMG Inc., TC Document 94-11-7
ORB Initialization Specification (1995) OMG Inc., TC Document 94-9-46
A. Uszok, G. Czajkowski, K. Zielinski, Interoperability Gateway Construction for Object

Oriented Distributed Systems, (1994) Proceedings of 6th Nordic Workshop on Program­
ming Environment Research,

Orbix Programmers Guide (1995) IONA Technologies Ltd.,
DOME User Guide (1993) Object-Oriented Technologies Ltd.,

Inter-ORB request level bridge construction 99

9 BIOGRAPHIES

Malgorzata Steinder graduated from the Computer Science Department , Univer­
sity of Mining and Metallurgy in 1994. Her MSc thesis concerned mathematical models
describing performance in the ATM network. Currently, she works as a research and teach­
ing assistant in the Computer Science Department, UMM Cracow. She is interested in
interoperabilityand trading in distributed processing. She is working on her PhD thesis.

Andrzej Uszok graduated from the Computer Science Department , University of
Mining and Metallurgy in 1993. His MSc thesis concerned load-balancing in the ANSA
system. Currently, he works as a research and teaching assistant in the Computer Science
Department, UMM Cracow. He is an author of 11 articles in the area of distributed
systems. He has just finished his PhD thesis: Transparent lnteroperability in Distributed
Processing.

Krzysztof Zielinski is a professor of computer science at the Computer Science De­
partment, University of Mining and Metallurgy. He spent two years in the Cambridge
Olivetti Research Lab in the years 1988-1990, where he worked on the first prototype of
the ATM network . Now, he is the main designer of the Cracow ATM MAN . He is also
the Technical Manager of the Copernicus TOCOOS project . He is an author of about
100 publications.

