
35

A Framework for QoS Updates
N etwor king Environment

Burkhard Stiller *
University 0/ Cambridge, Computer Laboratory
New Museums Site, Pembroke Street
Cambridge, CB2 9QR, England, U.K.
Phone: +44 +1229994476, FAX: +44 +1229994678
E-Mail: Burkhard.Stiller@cl.cam.ac. uk

• In a

* The author has been on leave at the time of writing from Universittit Karlsruhe, Institut fUr

Telematik, D - 76128 Karlsruhe, Germany, and has been sponsored by the Commission of the

European Communities as a Research Fellow under the Human Capital and Mobility Scheme

(RG 19327), now to be contacted by E-Mail at:stiller@telematik.informatik.uni-karlsruhe.de.

Abstract
The support of sufficient Quality-of-Service (QoS) for applications residing in a distributed
environment and running on top of high performance networks is a demanding issue.
Currently, the areas to provide this support adequately include communication protocols,
operating systems support, and offered network services. A configurable approach of com­
munication protocols offers the needed protocol flexibility to react accordingly on various
different requirements.

Protocol and operating system internal parameters (such as window sizes, retry coun­
ters, or scheduling mechanisms) rely very closely on requested application-oriented or
network-dependent QoS. Therefore, these parameters have to be updated due to network
changes, such as congestion, to adjust a temporary or semi-permanent "out-of-tune" ser­
vice behavior. The framework offers a feasible approach of dealing with these updates.

1 INTRODUCTION
As the variety of application requirements - often expressed in terms of Quality-of-Service
(QoS) parameters - increases, the need for efficient end-system architectures becomes
clear, since QoS requirements have to be supported efficiently. Traditional end-system
architectures followed well-defined models (e.g., the ISO/OSI Basic Reference Model [1]
or the Department of Defense Model [2]) and offered quite static services. Furthermore,
corresponding service interfaces included only a very limited set of QoS parameters, which
are not extensive, compared to currently required services. As an example, an isochronous
service (such as audio or video) may be described by a delay jitter parameter, which is
missing from the specification of the Transport Protocol Number 4 (TP4) [3], [4], while
the Transmission Control Protocol (TCP) [5] does not support specific QoS parameters.

Traditional protocols are not well suited for appropriate use on gigabit networks [6].
Since established applications did not require various different services, former end-system
architectures did and still do not offer the required service /lexibilities, necessary for
modern applications (such as tele-conferencing, tele-Iearning, virtual reality, or in gen­
eral multimedia applications) and supported by configurable communication protocols. A

A. Schill et al. (eds.), Distributed Platforms
© Springer Science+Business Media Dordrecht 1996

A framework for QoS updates in a networking environment 479

real-time video application requires different protocol functionality, e.g., jitter control and
synchronization, than a reliable file-transfer, e.g., acknowledgements and checksumming,
besides common functionality for both. Therefore, a suitable configuration of a commu­
nication protocol can be determined by QoS parameters specified by an application [7] .
However in general, other areas of QoS-oriented work (such as modern protocols [8], new
architectures [9], enhanced service interfaces [7], [10], and operating system support [11],
[12]), which are taken up within Section 2, have to be regarded in an integrated manner,
providing a suitable solution to QoS guarantees within a networking environment .

Supposing that these approaches solve the lack of service flexibility (an "off-line" prob­
lem) and offer solutions for guaranteeing QoS in the end-system and network, the "on-line"
situation of adapting configuration parameters sufficiently according to newly arising en­
vironmental behaviors still remains open. That is in particular the adaptaion of services
during run-time of a communication protocol. In fact, any of these alterations can be
made explicitly visible (e.g., by newly issued application requests) or are implicitly de­
tected within the end-system by a monitor, which monitors end-system visible states of
the network, such as a link congestion - resulting in a dropping of throughput and in­
creased delay - or increased bit error rates on the links. An appropriate reaction to
this detrimental behavior and specific solution for some cases is to keep the requested
level of QoS parameter values in the end-system by applying a QoS-driven update of
parameters. These configuration (eF) parameters are an inherent constituent of commu­
nication protocols and stimulate the increase or decrease of certain transport-related and
network-dependent QoS parameter values, finally, adjusting the communication subsys­
tem's behavior according to initial application-requested QoS.

The remainder of this work is organized as follows. Section 2 introduces related work
and provides a discussion of the taxonomy applied. A clear definition of the "on-line"
update problem, its prerequisites and consequences, the design of the architectural frame­
work, and an example are elaborated in Section 3. The prototype implementation and its
performance evaluations are presented in Section 4 afterwards. Finally, conclusions are
drawn in Section 5.

2 RELATED WORK AND TAXONOMY
Certain environmental issues are important to define an appropriate taxonomy for this
framework. On the one hand, applications have to specify their requirements to request a
special communication service. On the other hand, network features and services have to
be characterized to be of any use for applications. Therefore, QoS - either for application,
protocol, or network features - is expressed within a set of QoS parameters. This leads
to the discussion of related work on service interfaces before the taxonomy is extended.

2.1 Service Interfaces
In communication protocols or telecommunication systems QoS parameters differ heavily.!
In the ATM environment parameters such as "cell delay variation", "cell loss rate", or

ITo be more precise, network characteristics are summarized in a set of so· called network performance
parameters [13], that are in terms of the parameter- value concept not distinctive from QoS parameters
except for their area of application.

480 Part Twelve Quality of Service

"peak cell rate" have been defined [14], [15]. Transport protocols use different parameters,
e.g., "throughput", "delay", "residual error rate", or "priority" in TP 4 [3], [4] .

In the Function-based Communication Subsystem [7] the definition of quantitative
(e.g., "jitter", "data loss", "data replication") and qualitative (e.g., "ordered delivery",
or "intra-stream synchronization") QoS parameters has been proposed. Three different
types of QoS values per quantitative QoS parameter are specified. The threshold value
defines a mandatory requirement for a QoS parameter with the semantics related to that
specific parameter (e.g., minimal needed throughput or maximal tolerable delay). The
second value applies to the specific parameter over an amount of time, defining an aver­
age value. Finally, the useful value depicts a limit that bounds the usefulness of the QoS
parameter for a specific application (e.g., minimal usable delay or maximum processable
throughput). Each of these values may be utilized for different QoS enforcement strategies
[16], [17].

Within the OSI'95 project [10] new QoS parameter definitions are included, e.g., for
"transit delay" and "transit delay jitter". Furthermore, two types of QoS negotiations are
proposed. Various types of services, such as "best-effort" and "guaranteed", are extended
by the definition of a "compulsory value" for QoS parameters to allow for the applicability
of QoS enforcement strategies. A compulsory QoS parameter value is regarded as to be
monitored and if the limit - negotiated in advance - is exceeded, the requested service
has to be aborted. Further approaches comprise a system model providing an application
programming interface [18]. A transport system including protocols, resource reservation
schemes, and scheduling approaches, has been developed in [19]. Finally, the multimedia
communication system BERKOM contains an application-oriented service interface [20].

2.2 Service and Resource Management
A flowing transition into the area of service management can be observed, since certain
QoS architectures and QoS management schemes inherently rely on well-defined service
interfaces and QoS parameters. Therefore, still ongoing work can be found in, e.g., [21],
defining a QoS architecture (QoS structures and QoS mapping on scheduling schemes)
or as a QoS Management approach in [22]. Furthermore, QoS management has been
dealt with in networked multimedia systems [23], where features of QoS negotiation,
translation, and subsequently resource management are discussed. In [24] a QoS broker
model is proposed that allows for the negotiation of QoS parameter values. Additionally,
mapping functions at least between the application and the communication subsystem are
important to allow for a sufficient support of applications within networks and end-system
architectures. Therefore, mapping, enforcement, and monitoring of QoS parameters are
an important issue of todays research, but they are not in focus here.

2.3 Operating System Support
Additionally, the support of sufficient networking performance relies, as mentioned above,
on the operating system as well. An excellent overview of various projects and scheduling
mechanisms may be found in [25]. Especially, the scheduling schemes applied to network­
ing tasks are crucial for guaranteeing QoS parameter values. In addition, resource models
are developed to allow for the description of schedulable resources that have to be shared
or exclusively used by different users. One approach has been developed to integrate
scheduling mechanisms, resource administration, and QoS parameter mapping [12]. Fur-

Aframeworkfor QoS updates in a networking environment 481

ther operating system support is done for continuous media in a real-time environment
[11] and within the PEGASUS project, to provide a kernel that allows for guarantees of
processing and scheduling times for multimedia application streams [26]. However, the
focus of the work considered here is not on the operating system in particular, but takes
conceptually into account a possible parametrization of scheduling mechanisms within the
operating system. These parameters can be regarded as system resources .

2.4 Applied Terminology
The term of resources is applied in the presented framework of QoS-driven updates. Re­
sources cover three distinctive areas determining a number of related QoS parameters.
Firstly, network resources are used to describe features and characteristics of networks
connected via certain network adapters to an end-system. Relevant parameters for their
characterization vary according to the network. Examples include features, such as "broad­
cast support", "bit corruption rate", or "packet loss rate". Network performance param­
eters, as defined in I.350 [13], may be applied as well. Secondly, system resources define
features of the end-system itself, such as "CPU performance", "net interface bandwidth" ,
"memory", "buffer size", or "scheduling strategy", including operating system aspects.
Thirdly, protocol resources describe atomic building blocks that are utilized to configure a
communication protocol [27]. They are hierarchically structured as protocol functions -
examples include "acknowledgement", "checksumming", or "flow control" - and protocol
mechanisms, such as a "selective acknowledgement" or a "cumulative acknowledgement" ,
a "window-based flow control" or a "rate-based flow control". Concerning the use of the
term QoS parameter, various slightly different definitions exist. Therefore, in the following
it is regarded in particular as a generic term for network and system resource parameters,
protocol-related internal configuration parameters, as well as application-oriented QoS
parameters.

Communication protocols or, more accurate, their atomic building blocks, influence QoS
parameters, network resources, and system resources . For example the window-based flow
control - if it works correctly - is dependent on the number of available buffers in an end­
system; it tries to prevent packet losses within the network; and it has to be parametrized
internally by a window-size parameter. In general, the utilization of protocol resources
stimulates directly or secondhand the increase or decrease of certain QoS parameter values
as such. Additionally, protocol resources may be defined internally by configuration (OF)
parameters, such as the "window size" of the window-based flow control mechanism or
the "retry counter" of an acknowledgement function. These CF parameters do have a
large effect on the process of decreasing or increasing QoS parameter values. Therefore,
CF parameter updates according to certain QoS parameter values in the specific situation
may lead to a sufficient support of application-requested QoS.

Finally, an arithmetical or logical expression, consisting of QoS parameters, may form
a rule that specifies the linkage between parameters and possible impacts on them. E.g.,
an increase of packet errors in an end-system leads to a drop of the application-usable
bandwidth.

Local states within an end-system and global ones of the connected network are mon­
itored by a monitor. This tool is responsible for detecting changes and variations in the
current situation, e.g., load, throughput, delay, jitter, or error rate, and it is responsible for

482 Part Twelve Quality of Service

keeping relevant values in a data base for further investigations, such as for the QoS-driven
update of CF parameters or employing them to various enforcement strategies.

3 DESIGN OF THE QOS-DRIVEN UPDATE FRAMEWORK
The main goals for supporting various communication needs between users or end-systems
within a distributed environment are a sufficient, flexible, and adaptable framework in­
cluding communication protocols, operating system, and network issues . One aspect covers
the adaptivity. This will be extended within this document on issues updating configu­
ration and QoS parameters. Besides, operating system parameters (such as scheduling
mechanisms or memory management schemes) are considered. This becomes especially
relevant in a distributed environment, e.g' l where multiple users participate in a globally
distributed teleconferencing scenario and the network performance degrades from time to
time for various reasons. As pointed out earlier, ongoing work for additional scenario eval­
uations of an integrated handling of relevant QoS parameters occurring in an end-system
are important and for further study. Therefore, this section deals with an experimental
approach of maintaining CF and QoS parameters and their updates in a flexible protocol
configuration environment .

3.1 Discussion of the Problem and Solution Approaches
A communication protocol is used to transfer data between users or applications residing
on top of end-systems. If service requirements of an application can not be met any
more by (1) the currently applied protocol, (2) the underlying communication subsystem,
and/or (3) the network2 , in principle seven different choices of handling the situation are
possible:

1. The values of initially application-requested QoS parameters will be changed.
2. The primary values of CF parameters will be updated without altering application-re­

quested QoS, but stimulating changes of the transport-related QoS for getting adjusted
to the application-requested QoS. The protocol's functionality remains unchanged.

3. The communication protocol will be reconfigured, while changing the protocol's func­
tionality, e.g' l taking functions in or out, for getting adjusted to the initially applica­
tion-requested QoS.

4. The entire communication prptocol in use will be exchanged with a different one to
provide the application-requested QoS.

5. The end-system may offer a certain degree of QoS, which will be only available at this
stage, and the application accepts this proposal, while using the old protocol.

6. The data transfer will be kept as before without any changes of the protocol, but with
a changed service.

7. The data transfer will be aborted.

Solution 1 suffers from the problem that application-specific QoS have been set initially
according to certain application demands and, therefore, alterations are not helpful. They
result in the change of application requirements instead of changes within the support­
ing system, if feasible at all. For that reason, simple changes in the protocol should be
taken into account first, such as in solution 2. Any protocol related CF parameter may be

2This may be detected by a monitor, after a comparison of measured values with certain bounding values
has been carried out.

Aframeworkfor QoS updates in a networking environment 483

changed, if a number of previously defined rules is abided by. E.g. , the window-size of a
flow control mechanism may be increased, if sufficient memory is available and a constant
throughput has to be maintained. This update stimulates the change of transport-related
QoS, which in turn adjusts the overall behavior to the application-requested QoS if pos­
sible. If changes of these CF parameters do not achieve a proper behavior of the overall
system, solution 3 may solve the problem, if (re-)configuration tools are available [27],
[28], [29], such as encountering a retransmission function, if the requested reliability drops
below a defined limit . Otherwise solution 4 can be regarded as a coarse-grained reconfig­
uration task, e.g., exchanging TCP for UDP. Solution 5 deals with a rather end-system­
oriented view, which proposes service only that currently available [30]. Finally, if neither
previously discussed solution succeeds, the service of the protocol and the data transfer
may be kept as before (solution 6) or will be completely aborted (solution 7) . Obviously,
this decision depends on tolerance features of the considered application.

As solution 1, 6, and 7 can be implemented quite easily and solution 3, 4, and 5 are
discussed elsewhere [27], [28], [26], [29], the remainder is focussed on the pertinent frame­
work to solution 2, the update of CF parameters. This approach is reasonable in various
cases, where the service offered to the application has to be changed, but reconfigurations
of the protocol's functionality are considered as too complex.

3.2 Definitions of CF Parameters
First of ali, several examples of configuration (CF) parameters are listed in Table 1 to
motivate their beneficial definition. CF parameters are collected from various, e.g., trans­
port protocols, and each of them is defined by three components: a unique identifier, its
type of value, and its unit of observation. The considered protocol resource (column 1
of Table 1), in particular a protocol mechanism (cf. Subsection 2.4) belongs to a certain
protocol function (depicted in italics) . Each protocol mechanism has an unlimited, but
fixed number of CF parameters .3

The identifier of a CF parameter is a specification as an ASCII-readable string format ,
such as SR_iS or CRC...POL YNOM. The type of value may belong to one of the following
categories:

(1) natural (nat)
(2) integer (int)
(3) continuous (cont)

(4) exponential to the power of y (exp-y), while y E nat .
(5) boolean (bool), where two discrete values exist .
(6) discrete (disc), where multiple discrete values exist.

Any numerical value of the types "nat", "int", "cont", or "exp-x" may be additionally
bounded by certain emphasized values. For that reason, an interval definition, such as
"[0 .. 1]" may be specified. Values of the "disc" type have to be specified by enumerating
the appropriate set of values . Relevant units per CF parameter, such as milliseconds (ms),
bytes, protocol data units (PDU), or none (-) are valid. Further explanations identify CF
parameters' principal effects on system resources, which includes CPU (Central Processing
Unit) performance for processing protocol-relevant information and memory needed to
store data units or intermediate results.

3If a protocol function includes a CF parameter that is similar for every possible mechanism of the
considered function, it is listed in the corresponding table's line of the function 's name. E.g., every
single mechanism for the function "acknowledgement" includes the CF parameter ACKJ\ETRY besides the
mechanism-specific ones.

484 Part Twelve Quality of Service

Protocol Resource cr Parameter CI' Identifier Type or Value Uni t EfI'ect

Rdrdn,mi •• ion

Go-back-N Window size RTILGBI-1IS exp-2 Byte Memory

Selective repeat Window size RTII~R-1IS exp-2 Byte Memory

Forward error correction 1 Redundancy factor FECLlIED-F1C oat[0 .. 5] Memory
Forward error correction 2 Redundancy factor FEC2-BED-F1C oat[6 .. 999] CPU

CAecJ:.umming

Cyclic redundancy check Polynom caC.POL TIOII oat CPU
Range caC~COPE disc CPU

Flow control

Window-based Window size FC_VS oat Byte Memory

Rate-based Inter-packet distance FC~PD cont ms CPU
Timer-driven counter FC_COUITER cont CPU

Table 1 Examples of Configuration Parameters.

3.3 Definitions and Examples of Rules
The semantics concerned with a single QoS parameter or CF parameter have to be well­
defined to be usefull on their own. Additionally, various linkages between these parameters
define impacts on themselves or others. As an example the increase of the redundancy
factor leads to higher throughput or a highly initialized retry counter may lead to lower
user accessible throughput in an unreliable environment. Furthermore, the importance of
these impacts can be distinguished as a certain weight. Any of these linkages that can
be expressed in form of a precondition (IF), an impact (THEN), and a weight (WEIGHT), is
called a rule.

IF A = <value_l> THEN B : = <value..2> WEIGHT <value3>

In any case, where the contents of the QoS or CF parameter identifier A equals some type
of value_l, another identifier B will be assigned to value..2 and the result is weighted by
value3. In a more general form, any arithmetical or logical expression 4 can be used to
specify a precondition or an impact, even consisting of multiple assignments. Therefore,
the following example encompasses the above stated one in a formal manner:

IF FEC1JtEDJrAC = 2 THEN THRPUT := THRPUT * 1.5 WEIGHT 0.9

It is a major task of the system's designer to identify valid and important rules within
an arbitrary, but fixed environment. Most of the rules are based on observations of the
communication system, others are the result of logical derivations. Additionally, a rule
shall be made as simple as possible, which is in particular only a single precondition
and a single impact, presenting some comparison of a parameter value with a certain
bound and its impacts on one or two others. Additionally, the focus of a rule should be
clear in terms of its main intention, which is represented by assigned weights to define an
impact according to a special CF and QoS parameter or system resource. For example, one

4The developer has to take care of a correct handling of the units of observation for each applied parameter,
since a multiplication of a disc-type parameter with an int-type parameter is not defined.

Aframeworkfor QoS updates in a networking environment

Application·denned QoS Range

~
Average

Threshold Value Useful
Value v. Value

v,

Measured
Value

QoSValue. !>:::>',im:::::H (2)

(3)

485

Figure 1 Information (I), (2), and (3) Contained in the QoS Deviation Vector.

main implication of a rule is an extensive impact on the user-applicable throughput (e.g.,
weighted 1.0) and a minimal impact on delay issues (e.g., weighted 0.1). Complicated
rules may be used as well, but the applicability of these rules to more general scenarios
might be negatively affected. Any contradictions or incompleteness between rules will be
dealt with within the rulework (cf. Subsection 3.6) as far as useful and possible. Finally,
a single rule will be an inherent part of a special agent (cf. Subsection 3.5).

3.4 Principal Considerations
Depending on the fact that only certain CF parameter values may be changed and that
the update has to take place within certain well-defined circumstances, the process of
selecting an updated CF parameter value relies on three different factors :

1. Proportion of Difference - The proportion of difference for a specific QoS param­
eter value is defined as the difference between an originally specified QoS parameter
value and the measured value. Any deviation is depicted on a per QoS parameter basis
in a vectorized manner (QoS Deviation Vector) presenting the deviation of the average
and threshold/useful value.5 Therefore, each QoS deviation vector contains following
information (cf. Figure 1):

(1) the measured value Vm of the QoS parameter in absolute numbers,
(2) the deviation Slim of Vm from a threshold value \it or the useful value Vu - depending

on the closest distance - in a relative percentage (± X%), and
(3) the deviation Sap! of Vm from the average value Va in a relative percentage (± X%).

The average value of a QoS parameter acts as the target value for the update process.
Concerning agents (cf. Subsection 3.5), percentages are very helpful for defining relative
distances between measured values and targeted numbers. The absolute number of Vm
will be used for final decisions in agents. An example of a QoS deviation vector can be
found in Subsection 3.7.

2. Set of Considered QoS Parameter - Since some protocol mechanisms are depen­
dent on others, the relevant QoS parameters are dependent as well. Additionally, QoS
parameters are considered for the update process only, if increasing or decreasing ef­
fects of them can be achieved within the currently configured communication protocol.

5Either the threshold or the useful value may have fallen short of/exceeded, dependin g- on the measured
value. Therefore, only one single deviation value is useful as specifi ed wi thin the QoS deviation vector.

486 Part Twelve Quality of Service

etwork

Ru/ework

(Defined by Multiple Agents)

Figure 2 Principle of Updating CF Parameter Values (Closed-Loop System).

Therefore, certain CF parameters as defined in Table 1 may not be relevant as well
and do not need to be updated.

3. Current Situation of Resources - If an update of a CF parameter value occurs, the
updated demand on system resources have to be checked. Therefore, each CF parameter
specification contains an additional arithmetical expression that defines dependencies
on system resources. The expression - called CF parameter specific information -
determines, for example the increase or decrease of memory or CPU performance.

The Closed-Loop System for Calculating Updates - Figure 2 depicts the entire princi­
ple of updating CF parameter values. Application-requested QoS parameter values and
measured QoS parameter values are used to calculate the QoS deviation vector. This vec­
tor in addition to system resource information is fed into the rulework, which is defined
internally by multiple agents. The rulework is responsible for calculating the updated
values for relevant CF parameters, which are currently used in the communication pro­
tocol. Besides system resource specifications, the resource data base includes for each CF
parameter the currently valid value as well. The monitor monitors application-specific,
network-dependent, and protocol-related QoS parameter values and issues, if violation
conditions apply, newly measured QoS parameter values.

As it can be seen, a closed-loop system is necessary, instead of an open-loop system to
allow for feedback signals taken from protocols. Obviously, the decision "when to start
the described process again" effects the stability of the protocol's behavior. The tradeoff
between timeliness and stability is for further detailed study, while keeping in mind that
certain boundaries and thresholds for parameters will be considered with high priority, be­
fore any update procedure is due to start . The exploitation of QoS guidelines as proposed
within the QoS basic framework is intended [16].

Aframeworkfor QoS updates in a networking environment 487

~ I Agent Legend:

0 SubHc or Old QoS and cr P.ram~cers

A SubHt of QoS ik.-laUon Veoclor
Input ,;.;,.Prwcssing I~ Check Unit . In~ .. Il'tp!.ll .C'hrd: fl,ln(:lion

-.JL . ~(n,A) 1:
L (¢I (il, ~))

~ Wf:lahUna runcUaI'l
~(O)

Q cr Update Proposal Rult-

Figure 3 The Structure of an Agent.

3.5 Internal Design of Agents
The calculation of a proposed CF parameter value update is done by an agent. Based on
an agent's specific subset of CF parameters 0' of the entire set of CF parameters available
o and on the QoS deviation vector Ll, a weighted proposal ~ of CF parameters w E 0'
has to be calculated. Therefore, every agent consists of three different components:

1. Input Check (- This input check decides, whether the agent is activated and if all
agent specific CF parameters form a subset of the entirely available and to be updated
CF parameters: 0' C O.

2. Processing Unit ¢ - The processing unit calculates for each CF parameter w in the
subset 0' (w EO') a separate CF parameter value update proposal.

3. Weighting Function ~ - The weighting function weights each calculated CF pa­
rameter update proposal Vupd resulting in the agent's output.

The internal behavior of the processing unit is statically pre-defined at definition time of
the agent, while implementing exactly one defined rule. Agents may be specified indepen­
dently of another and may operate on an arbitrary, but fixed number of CF parameters.
The interaction of multiple agents is defined within the rule-based framework using the
filter as defined in the next Subsection.

3.6 Design of the Rulework
The basic element of the rulework is an agent. Generally, each agent handles a certain
subset of CF and QoS parameters, its deviations, and its interdependencies (agent input).
As it has been explained, the result of an agent (agent output) is a weighted proposal of
one or multiple CF parameter value updates, while applying the agent's internal rules.
Figure 4 presents the designed rulework, which calculates, due to the currently valid QoS
derivation vector, for each regarded CF parameter the resulting CF parameter value or
detects incompatibilities and contradictions.

An important precondition is the fact that any weighted CF parameter value update (an
agent's output) has to be a subset of the currently regarded CF parameters (input to all
agents) and being part of the communication protocol itself. Also important to recognize
is a possible overlapping of input and output sets of CF parameter values for multiple
agents. Since the rules are defined from a single agent's perspective only, contradictions
in the separately proposed updates of CF parameter values by multiple agents are likely
to occur. Therefore, the filter is responsible for synthesizing all separate outputs of active

488 Part Twelve Quality of Service

Legend:

--+- Inpal

..... Outpul

Agent n

Agent 1

Figure 4 The Rulework in Detail.

agents6 to one single final result. In this case three steps of the filter have to be processed
for every available CF parameter z:

1. Check for normalized weights:

(a) Calculate with all n available CF parameter value update proposals Vupd and the
corresponding CF parameter weights of the agents 8 a normalized weight 8' = 1
based on all n proposal's weights.

(b) Apply the normalized weight 8' to calculate the average weight 8'(z) for each CF
parameter z separately.

(c) Check for contradictions between possibly different proposals for one CF parameter. 7

2. Check for necessary system resources .
3. Check for admissibility of the updated and finally average weighted proposal examining

types of value and bounding intervals.

For each step defined above, certain conditions to reject a proposed value have been
defined, which is being detected by the filter . The reject conditions encompass:

1. Highly weighted, but contradictory agent outputs for a CF parameter z indicate a low
stabilized result, since a normalized average weight 8'(z) would result in a value next
to zero and prevents any intended change of the CF parameter z value.

2. A request for additional system resources could not be met.
3. The calculated resulting CF parameter value is placed out of valid intervals or does

not belong to the correct type of value.

In each case of rejection, the initially requested QoS parameter values of the application
can not be guaranteed within the currently available configuration (protocol functionality

6The conditions for an activation of agents are examined by the input check (cf. Subsection 3.5).
7 Contradictions occur, if at least two CF parameter value update proposals for a single CF parameter
show opposite signs (+/-). Proposals are considered as neutral, if the value update proposal equals zero.

Aframeworkfor QoS updafes in a networking environment 489

and CF parameters as well). Therefore, the update of CF parameters is not possible
and a reconfiguration of the complete communication protocol may be stimulated (cf.
Subsection 3.1, 3rd item).

3.7 Examples
In this Subsection several examples of existing CF parameters, the calculation of a QoS
deviation vector, and of prototyped agents are presented. A quite huge number of CF and
QoS parameters is necessary to implement a realistic scenario including valid parameters
and values. Therefore, the important prerequisites and steps are discussed, but simple
arithmetical operations, such as averaging or weighting, are omitted for simplicity. The
following presentation with tables and explaining text appears advisable to clearly divide
numerical facts from commentary notes.

CF Parameters - The rate-based flow control mechanism includes two CF parameters
(cf. Table 1) . Both of them are marked by a "cont" type of value, where the unit for the
inter-packet distance (FC_IPD) is defined as milliseconds and the time-driven counter has
no unit . Their main influences on system resources effect the CPU performance of the
end-system. Another interesting CF parameter is CRC_SCOPE. The type of value is "disc",
which is specified as a set of three discrete values: {Header, Data, both}. In turn, they
define the scope of the "cyclic redundancy check" mechanism to be used for a protocol
data unit .

QoS Deviation Vector Calculation - Table 2 depicts a short example for the calculation
of a QoS deviation vector of the dimension 4. An application defined the QoS parameters
throughput, delay, jitter, and bit error rate according to column 2, 3, and 4, while the
monitor allowed for the measurement of the current valid values according to column
5. The calculated QoS deviation vector dimensions bop! and b'im for these numbers are
included in columns 6 and 7, additionally, according to Subsection 3.4, 1st item. b'im for
the bit error rate has been set to ±O.O, because the measured value of 14 [-10910] is
located within the permitted bit error rate's interval of 10 and 20 [- loqlO] and, therefore,
no violation of these limits has occured.

Preset CF Values and Agents - An example for two different QoS deviation vectors of
dimension 4 and 5 - four and five QoS parameters are considered, respectively - and
two different measured values (M) for request 1 (Rl) and request 2 (R2) is presented in
columns 1 to 7 in Table 3. Additionally, the preset values of ten relevant CF parameters
are specified in two different ways in columns 2 and 3 of Table 4. These CF parameters are
considered exemplarily for a transport-related communication protocol that offers a non
real-time and reliable type of service, since the protocol functions acknowledgement, flow
control, and checksumming are considered. Further operating system-related resources
may be utilized as well, but do not form a part of this, already quite complex example.

Furthermore, prototyped agents AI, A2, and A3 operate on certain CF parameters
(depicted in column 4, 5, and 6 of Table 4 by an "x"). These agents consider certain
QoS parameters differently weighted as important (weight 1.0), as of interest (weight 0.5),
or as not important (weight 0.0) marked as "- " (cf. columns 8, 9, and 10 in Table 3),
depicting the main focus of the specified rule within an agent. 8 For example, agent Al

SFor simplicity reasons only these three categories of weights have been used' wit.hin this example. In
general , all different weights in the numerical interval of 0.0 and 1.0 may be utili z<'d .

490 Part Twelve Quality of Service

QoS Parameter Unit Threahold Average U.efld Measured 6.,. 6,.",

Throughput [Mbit/.) 600 800 1000 570 - 28.75 % - 5.0 %

Delay [ms) 40 30 20 40 +46.67 % + 10.0%

Jitter [m.) 7.5 10.0 12.5 15 +50.00 % +20.0 %

Bit Error Rate [- 10910) 10 15 20 14 -6.67 % ±o.o %

Table 2 Examples of Parameters and Values.

QoS M 6.,. 6'im. M 6.,. Olin& Agent I Agent l Agent II
Parameter (Rl) (Rl) (Rl) (Rl) (Rl) (Rl) (AI) (Al) (All)

Throughput 500 -10% 0% 670 -3% 0% of interest

Delay 105 + 30% +1 % 25 -5% 0% of interest important

Jitter 15 -65% -1% 85 +80% +20% important

Bit Error Rate 6 -80% -10% 12 +20% 0% important of interest important

Bit Loss Rate 10 -1 % 0% important

Table 3 Test Requests for an Example Scenario.

focusses mainly on the bit error rate, since it is responsible for the CF parameters of
the acknowledgement and checksumming mechanisms. Therefore, the impact on the bit
error rate is weighted by "important" . However, processing acknowledgement and check­
summing has smaller impacts on throughput and delay of data units. Therefore, these
impacts are marked by the weight "of interest". The specification of impacts and weights
is quite tricky, but not impossible. A careful analysis of impacts and consequences of ei­
ther rule leads to a usable data base for agents. In turn, agent A2 focusses on delay and
jitter issues (weighted as "important"), while maintaining acknowledgement and conges­
tion control parameters, mainly. The bit error rate is considered as "of interest", since
acknowledgement mechanisms - and the retransmission of course - allow for an im­
provement. Finally, agent A3 focusses on the bit error and loss rate, since CF parameters
of the time-driven acknowledgement mechanism and the forward error correction scheme
are maintained.

For the scenario R2 all three agents and for Rl agents Al and A2 will be activated, since
for Rl no bit loss rate QoS parameter has been specified (cf. Table 3, column 2) . Therefore,
two CF parameter value update proposals will be generated for ACK_CJlP, ACK_TIME, and
ACK...RETRY (cf. Table 4 columns 4 and 5). The CF parameters FC_iS and FECLRed...FAC
will not be used for scenario Rl, since no agent operates on it . These examples will be
used in Subsection 4.2 to evaluate the performance behavior of the rulework.

Finally, applying all steps as defined in previous Subsections 3.5 and 3.6, the proposed
update for the CF parameters in scenario R2 is presented in Table 4 column 7. As it can
be seen, while examining the units of observation of CF parameters in Table 1, the results
match and are sufficient for the considered scenario. The results for scenario Rl are not
shown, since a contradiction - the proposed new values for CF parameter ACK_CJlP have
been calculated to -15 and 16 - occured within the proposed results, which is for that
reason abandoned.

Aframeworkfor QoS updates in a networking environment 491

CF Identifier Prelet CF Prelet CF Agent 1 Agent 2 Agent 3 Proposed
Value (RI) Value (R2) (AI) (A2) (A3) Update (R2)

lCLC-1IP 16 x x 3

lCI_TIIIE 0.5 0.1 x x x 0.13

lCIJlETRY 3 X x x

FC _VS 32 32 32

CC-SRUE 0.25 0.25 x 0.24

CCJlVS 16 32 x 16

CRC-SCOPE 2.00 1.00 x

CRCJ>OLYIOIl 16 16 x 16

FECIJ1ED-F1C x

Table 4 CF Parameter Values and Agent's Responsibilities for an Example.

4 IMPLEMENTATION AND PERFORMANCE
This Section focusses on internals ofthe prototype implementation of the rulework/agents
and subsequently on their performance evaluations. Issues, regarding the communication
with the monitor, receiving application QoS, and finally transmitting the updated CF
parameter values to the protocol function or mechanism may be found in [31]. Processing
times for reserving system and network resources, changing scheduling mechanism param­
eters, or other operating system dependent issues are not taken into account . However,
the developed solution of QoS updates provides an experimental framework that allows
for the processing of well-defined updates in a networking environment . Additionally, the
impacts of the update proposal calculation time on different, already active tasks within
the end-system has to be studied. Any type of interference between them has to be avoided
according to a guaranteed service behavior of the end-system.

4.1 Implementation Issues
Since the rulework may consist of multiple agents that operate on the same input data, a
process concept has been applied. Every agent will run as a subprocess (thread)9 of the
rulework. Furthermore, the agent and framework interfaces are defined and implemented
in C++ to allow for an easy addition of supplementary agents into any existing rulework.

The rulework acts as a distributer of incoming QoS and CF parameter values to multiple
agents. Afterwards, the results of each agent is used to feed the filter for calculating the
final CF parameter values. The internal flow of data is similar to the modelling as described
in Figure 2. All incoming QoS and CF parameter values (0) are stored in tables and are
handed to the agents (1) . The agents apply their internal rules and propose a local result.
Any proposed value is registered in the "proposal table" (2), while the CF parameter
identifier operates as an appropriate table index. Now the filter operates on currently valid
parameter values (3), CF parameter specific information (4), e.g., increasing or decreasing
effects on system resources, and proposed values (5). Immediately, according to the steps
defined in Subsection 3.6, the check for normalized weights is processed, a system resource

9The prototype implementation of the rulework has been done on Transputers .

492 Part Twelve Quality of Service

Requeeta a Agento [PO] a Agento [1'8] Filter [1'8] Filter [PO] Sum u.] Sum [1']
No.: m, p, q T. meuured T. derived TJ mealured Tf derived meuured derived

Rl: 2.5,8, 10 1170 1162 684 5295 1875 6457

R2: 3, 9, 12 1381 1395 5062 6015 6443 7410

Table 5 Performance Results of the Example Scenario.

request will be issued (6), and the admissibility check will be done. Finally, the resulting
set of CF parameter value updates will be written into the "update table" (7) and handed
out to the communication protocol and the resource data base afterwards (8).

An agent operates as a single thread on a number of QoS and CF parameters. According
to their relevance (needed versus not needed), an agent initializes its input with the current
values for each required parameter, while a copy ofthese values into local variables takes
place. The processing of these agent rules and the weighting function will follow only, if the
input check of the agent succeeded. The prototype implementation of agents integrated
the processing unit and the weighting function into one single code segment and their
results will be written into the "proposal table". The processing unit of an agent has
access to the table of current valid QoS and CF parameter values (9) as well as to CF
parameter specific information (10).

Since a potential huge number of QoS deviations may occur, a global CF parameter­
based table would need a large number of entries, which is a consequence of the number of
possible numerical combinations. Hence, a considered communication protocol does not
offer every single QoS parameter, which is generally available. Therefore, only a small sub­
set of combinations of CF parameters are useful in a specific circumstance. Additionally,
a fairly huge number of similar entries in the global table would be due to the fact that
some combinations of QoS parameters are completely independent of another. Therefore,
the mentioned smaller tables as well as the rules on the per-agent bases have been im­
plemented to reduce the complexity of a global, almost empty table. Furthermore, the
required flexibility in terms of adding or withdrawing agents in the rulework has been
achieved easily.

4.2 Performance Evaluations
The prototypical implementation has been evaluated feeding several scenarios into the
rulework and some agents. Two example scenarios, as they have been described in Subsec­
tion 3.7, are considered for performance measurements. The framework and three agents
are activated with data according to Table 3 and 4. First of all, the evaluation of a correct
filter behavior has been done, since request 1 (Rl) did not allow for an update of CF
parameter values and request (R2) proposed certain updated values. The values of the
QoS deviation vector and "measured" values lO are included in Table 3. Finally, Table 4
includes for both requests previously initialized parameter values.

Agents and the filter have been performance evaluated. The resulting processing times
of the implementation consist of two distinct portions: static and variable portions. Static
portions of time are unavoidable, since they are the result of the framework itself. Variable

10These values have been assumed to be measured values, since no running monitor was available at the
time of evaluation.

Aframeworkfor QoS updates in a networking environmenr 493

portions depend on the input check, the processing unit, and the weighting function of
agents and on the weight checks of the filter . Table 5 presents the performance evaluated
and analytically derived performance results according to the example in Subsection 3.7,
where m denotes the number of active agents, p the number of considered CF parame­
ters, and q the number of proposed value updates. The analytical model is quite simple
(worst case) and assumes that in average the processing times for agents (Ta) are similar.
Therefore, the overall derived processing time for the framework (Tderived) corresponds to
the following equation , while m agents are active and TJ depicts the processing time of
the filter :

Tderived = m * Ta + 7,
In request Rl agent A3 will not be activated after the input check has been done. There­

fore, the processing time for m = 2.5 agents is used in the analytical model. Additionally,
in this specific situation p = 8 CF parameters have been considered and q = 10 update
proposals have been calculated, where two of them resulted in the above mentioned con­
tradiction. As the numbers for the agents show, the difference between measured and
calculated numbers is marginally. Concerning the filter, the differences are quite huge.
The reason can be found in the detection of a contradiction between two proposals and
its subsequent abort of processing, while the modelling allows for the calculation of the
worst case without any knowledge on possible contradictions.

In summary, for request Rl about 1.9 ms are used to calculate the contradiction, while
R2 takes about 6.5 ms for proposing a set of new CF parameter update values (cf. Table 4,
column 7). Further evaluated examples show different final sums for processing times, but
the range of absolute numbers is quite similar for a given number of alike agents.

5 CONCLUSIONS
The discussion of updating CF parameters according to QoS parameter values led to the
design of the rule-based framework including independent agents. They form the basic
components to calculate CF parameter value update proposals, that will be accumulated
in a filter for the final update value. Depending on certain input values - old QoS and
CF parameter values as well -, an appropriate result of the rule-based framework in a
networking environment is :

(a) a final decision to update certain CF parameter values,
while presenting a list of updated CF parameter values, or

(b) initiate an entire new reconfiguration.

Advantages of the rulework are the flexible architecture, where adding or removing
of agents is simple. Additionally, the portability of the entire framework is important,
since it does not include any system specific prerequisites. Basic requirements include the
possibility to specify intervals and average values for QoS parameters as well as measured
values.

Finally, the update decision will be calculated in a reasonable amount of time (less than
10 ms in the examples) ll , as the performance evaluations present . Therefore, the use of

11 Approximations of these numbers for a SUN Spare 10 will probably result in a speed-up of about 5.

494 Part Twelve Quality of Service

an agent-based closed-loop system to evaluate update conditions in a high-performance
environment is feasible, except for very short-termed real-time applications.

Acknowledgements:
Many thanks go to Wolfgang Janzen, who implemented prototypically the rule-based framework and

some agents. Additionally, I am indebted to Kobus van der Merwe, who discussed and proofread previous

versions of this document.

REFERENCES

ISO Standard, IS 7498, Information processing systems - Open Systems Interconnection
- Basic Reference Model, 1985.

D. Comer, Internetworking with TCP/IP Vol I: Principles, Protocols, and Architecture,
2nd edition. Englewood Cliffs, New Jersey, U.S.A.: Prentice Hall, 1991.

ISO Standard, IS 8072, Information processing systems - Open Systems Interconnection
- Transport Service Definition, 1986.

ISO Standard IS 8073, Information processing systems - Open Systems Interconnection
- Transport Protocol Definition, 1988.

DARPA, Transmission Control Protocol- DARPA Internet Protocol Specification, RFC
791, September 1981.

T. LaPorta and M. Schwartz, "Architectures, Features, and Implementation of High-Speed
Transport Protocols," IEEE Network Magazine, vol. 5, pp. 14-22, May 1991.

M. Zitterbart, B. Stiller, and A. Tantawy, "A Model for High-Performance Communication
Subsystems," IEEE Journal on Selected Areas in Communication, vol. 11, pp. 507-518,
May 1993.

W. T . Strayer, B. J. Dempsey, and A. C. Weaver, XTP: The Xpress Transfer Protocol.
Reading, Massachusetts, U.S.A.: Addison Wesley, 1992.

M. Zitterbart, "High-Speed Transport Components," IEEE Network Magazine, vol. 5,
pp. 54- 63, January 1991.

A. Danthine, The OSI'95 Transport Service with Multimedia Support - Research Reports
ESPRIT, Project 5941, Volume No . 1. Berlin, Germany: Springer, 1994.

E. A. Hyden, "Operating System Support for Quality-of-Service," Tech. Rep. 94-340,
University of Cambridge, Computer Laboratory, Cambridge, England, U.K., June 1994.

R. Gopalakrishna and G. Parulkar, "Efficient Quality of Service Support in Multimedia
Computer Operating Systems," Tech. Rep. WUCS-94-26, Department of Computer
Science, Washington University, St. Louis, Missouri, U.S.A., 3. November 1994.

ITU-T Recommendation 1.350, General aspects of quality of service and network perfor­
mance in digital networks, including ISDN. Geneva, Switzerland, 6. April 1994.

ITU-T Draft Recommendation Q.2931, Edinburgh TD 155, Broadband Integrated Services
Digital Network (B-ISDN), Digital Subscriber Signalling System No.2, User Network
Interface Layer 9 Specification for Basic Call/Connection Control. Geneva, Switzerland,
13. - 21. June 1994.

ATM-Forum, ATM User Network Interface Specification, Version 9.0. Englewood Cliffs,
New Jersey, U.S.A. : Prentice Hall, 1993.

International Organization for Standardization, "Quality-of-Service - Basic Framework
- CD Text," Tech. Rep. ISO/IEC JTCl/SC21 N9309, ISO, 9. - 13. January 1995.

B. Stiller, Flexible Protokollkonfiguration zur Unterstiitzung eines diensteintegrierenden

Aframewol'kfol' QoS updates in a networking environment 495

Kommunikationssubsystems, vol. 10, no. 306, (Fortschrittberichte) . Diisseldorf, Ger­
many: VDI, 16. February 1994.

T. Hutschenreuther, O. Kiese, J. Kretschmar, S. Kiihn, and A. Schill, "Modell zur quali­
tiitsgerechten Ubertragung von Medienstromen," in Anwendungsunterstiitzung for het­
erogene Rechnernetze, (Freiberg/Sachsen, Germany), pp. 69-78, 30. - 31. March 1995.

C. Vogt, R. Herrtwich, and R. Nagarajan, "HeiRAT: The Heidelberg Resource and Ad­
ministration Technique, Design Philosophy and Goals," Tech. Rep . IBM-ENC 43.9213,
IBM European Networking Center, Heidelberg, Germany, 1992.

M. Hofmann and C. Schmidt, "Das BerKom-II-Projekt MMT," No. 22/95 in Interner
Bericht der Universitiit Karlsruhe, Fakultiit fiir Informatik, pp. 105-108, 11. - 13. April
1995.

A. Campbell, G. Coulson, and D. Hutchison, "A Quality-of-Service Architecture," ACM
Computer Communications Review, vol. 24, pp. 6-27, April 1994.

C. Schmidt and M. Zitterbart, "Towards Integrated QoS Management," in First In­
ternational Workshop on High Performance Protocol Architectures, (Sophia-Antipolis,
France), pp. Session 5, Paper 14, 15.-16. December 1994.

K. Nahrstedt and R. Steinmetz, "Resource Management in Networked Multimedia Sys­
tems," IEEE Computer, vol. 29, pp. 52-63, May 1995.

K. Nahrstedt and J. Smith, "An Application-driven Approach to Networked Multime­
dia Systems," in 18th Conference on Local Computer Networks (LCN), (Minneapolis,
Minnesota, U.S.A.), pp. 361-367, 19. - 22. September 1993.

T . Burkow, "Operating System Support for Distributed Multimedia Applications; A Sur­
vey of Current Research," Tech. Rep. Memoranda Informatica 94-57, University of
Twente, Faculty of Computer Science, Twente, Netherlands, June 1994.

1. Leslie, D. McAuley, and S. Mullender, "Pegasus - Operating Support for Distributed
Multimedia Systems," Tech. Rep. TR 282/Pegagus-92-2, University of Cambridge, Com­
puter Laboratory, Cambridge, England, U.K. , December 1992.

B. Stiller, "PROCOM: A Protocol Configuration Manager in the Function-based Commu­
nication Subsystem," in First International Workshop on High Performance Protocol
Architectures, (Sophia-Antipolis, France), pp. Session 3, Paper 9, 15.-16. December 1994.

T . Plagemann, B. Plattner, M. Vogt, and T . Walter, "A Model for Dynamic Configuration
of Light-Weight Protocols," in IEEE 3rd Workshop on Future Trends of Distributed
Systems, (Taipeh, Taiwan), pp. 100-106, 14. - 16. April 1992.

D. F . Box, D. C. Schmidt, and T. Suda, "ADAPTIVE: An Object-Oriented Framework
for Flexible and Adaptive Communication Protocols," in High Performance Networking,
IV, (Amsterdam, Netherlands), pp. 367-382, IFIP Transactions C-14, North Holland,
1993.

T . Roscoe, The Structure of a Multi-Service Operating System. Cambridge, England,
U.K., April 1995.

W. Janzen, "Entwurf und Realisierung dynamischer Eigenschaften von FuKSS zur Ver­
waltung von Protokollmaschinen," in Diplomarbeit: Universitiit Karlsruhe, Institut for
Telematik, Germany, November 1994.

