
29 

Using OMG IDL to write OODCE 
applications 

John Dilley <jad@hpl.hp.com> 
Hewlett-Packard Laboratories 
1501 Page Mill Road, Palo Alto, CA 94304, USA 

Abstract 
The Object Management Group's Interface Definition Language (OMG IDL) provides a 
standard for specifying object-oriented interfaces for distributed applications. This paper 
describes a compiler that allows specification of object interfaces using OMG IDL and 
implementation using the Open Software Foundation's Distributed Computing Environment 
(OSF DCE). Using this approach application developers are able to use OMG IDL to define their 
distributed object interfaces while using the facilities of OSF DCE for remote communications, 
including the DCE Security Service and DCE's object location service (CDS). This provides a 
very low-cost infrastructure for the development and deployment of (COREA-based) object­
oriented distributed applications. 

Keywords 
DistributedComputing(C.2.4);NetworkProtocols(C.2.2);Object-OrientedProgramming(D.l .5) 

1. INTRODUCTION 

OMG IDL is an object-oriented interface specification language which is rapidly becoming the 
industry standard for distributed object definition. An IDL interface identifies a set of types and 
operations that define a contract between a client and server, similar to how a C++ class defines 
types and methods for local object-oriented application developers to use. IDL interfaces can 
use the data types and operations from one or more other interfaces through (interface) inherit­
ance. Once an interface is defined, clients communicate with object implementations using a 
remote method invocation (effectively a remote procedure call) protocol. 

OMG IDL is one component of the Common Object Request Broker Architecture (COREA) 
Object Management Architecture (OMA) [OMG91-12-IJ . COREA and the OMA also specify 
an architecture for how an Object Request Broker facilitates communication between client and 
server, and the interfaces for a set offacilities (Object Services) required to make the distributed 
environment viable. 

A. Schill et al. (eds.), Distributed Platforms
© Springer Science+Business Media Dordrecht 1996



Using OMG IDL to write OODCE applications 387 

The Open Software Foundation's Distributed Computing Environment (OSF DCE) [OSF92] 
provides a distributed computing platform with a core set of services that supports a Remote 
Procedure Call (RPC) model for client/server communication. The RPC mechanism has been 
developed and improved over a span of more than 15 years (since NCS RPC. the progenitor of 
DCE RPC was released), and today provides a robust platform for distributed application devel­
opment. DCE also contains a set of services, built using RPC, to provide global object location 
(the Cell Directory Service), secure communications providing authentication of the client and 
server as well as client access control on a per-object basis (the Security Service), a global Dis­
tributed File System (DFS), and a Distributed Time (synchronization) Service (DTS). 

DCE provides essential components for building and deploying enterprise-wide distributed 
applications. The intent of our work is to leverage and reuse the DCE components as efficiently 
and naturally as possible to support CORBA-based application development. 

1.1. CORBA and DCE - similarities and differences 

The basic model for communication between entities in both the CORBA and DCE distributed 
environments is one of remote procedure calls: the caller locates a remote object instance it 
wishes to communicate with, sets up an association with that object (binds to the object), and 
makes a procedure or method call to a local proxy object, which transmits zero or more input 
parameters to the remote process, causes the remote procedure to execute given those parame­
ters, and when it completes retums the results to the user in output parameters and a return value. 
The intent behind the RPC paradigm is to provide the developer with the same model for com­
municating with local and remote procedures or object instances. Since both CORBA and DCE 
are based upon a synchronous RPC model, supporting one atop the other seems natural. 

One difference between the environments is evident when one examines the product defini­
tion and deployment models of the OMG and the OSF. The OMG provides the specifications of 
an object-oriented distributed software system architecture, and defines standard interfaces for 
the distributed services in that environment. This allows for flexibility in implementation, and 
for the CORBA architecture to be applied at various levels and types of (distributed and even 
non-distributed) systems. By contrast, the OSF defines a set of services and provides a software 
reference implementation; OSF DeE defines interfaces as well as a default implementation. 
(Other DCE implementations exist, most notably the independently developed MS-RPC from 
Microsoft which follows the DCE specification but does not use OSP's code base). The differ­
ence in models leads to a greater diversity among CORBA offerings, and a more homogeneous 
DCE offering. 

OMG also has focused more on the object-oriented quality of application development, 
where OSF has focused more on providing facilities for application distribution. The focus on 
object-orientation is evidenced in the Object Management Architecture, and by OMG lOL's 
inclusion of interface inheritance, and its syntactic similarity to C++. By contrast, DCE's focus 
on distribution is evidenced by its required use of global unique identifiers for all interfaces and 
objects, interface versions, control over operation semantics and data marshaling in IDL, and 
data types and marshaling facilities tuned for distribution (e.g., pipes, control over transmit for­
mat from the IDL). 



388 Part Ten Interoperability Solutions 

1.2. OODCE 

OODCE [Di1l95] is a C++ programming environment for DCE that provides greatly enhanced 
ease of use through encapsulation of DCE's programming complexity, and provision of a set of 
pre-packaged capabilities. It supports the existing DCE object model, rather than adding a new 
notion of object-based computation to DCE. To use CORBA terminology, OODCE essentially 
provides a C++ language binding for OSF DCE. The OODCE object interaction model is very 
similar to that of CORBA-where clients make local method calls on proxy objects in order to 
invoke a remote implementation. 

OODCE provides the structure for DCE-based distributed applications in C++. The OODCE 
framework defines a common interface and default methods for binding and object location, 
specification of security preferences, registration of implementation objects with the environ­
ment, etc. These are some of the same tasks an Object Request Broker (the ORB in CORBA) 
and Object Adaptor must provide. The framework classes interact with DCE facilities such as 
the Security Service or Cell Directory Service in order to register objects in the environment, 
allow location and binding, specify security preferences, and so on. OODCE does not provide 
any of its own distribution services, rather it makes full use of the services DCE provides. 
OODCE does augment the DCE object model in the area of object references, by defining a 
location independent object reference format, and by specifying a protocol for object activation 
and deactivation. The activation protocol allows server developers control over the lifetime of 
the (memory for) C++ objects that implement the behavior of DCE objects, independent of the 
client's view of the object's lifetime. OODCE also provides an object factory interface, which 
gives clients direct control over the lifetime of the DCE objects they wish to access. 

2. THE OMG·OODCE COMPILER 

The OMG-OODCE compiler translates an OMG IDL interface definition into a set of corre­
sponding DCE IDL interface definitions and C++ classes. The DCE interfaces allow the DCE 
IDL compiler to generate the communication stubs (client and server) for the application. Com­
munication stubs provide distribution transparency for distributed environments (CORBA and 
DCE). Distribution transparency gives application developers a higher-level view of distributed 
computing; communication stubs provide for low-level communication fault handling, hide 
potentially different internal data formats on the communicating hosts, and support object bind­
ing (object location and relocation). The C++ classes provide the developer with convenient 
access to the objects defined in OMG IDL. These generated classes inherit some of their inter­
face and behavior from OODCE framework classes. 

One promise of object technology is software reuse. This effort attempts to deliver on that 
promise by reusing a full-service distributed computing environment to provide a CORBA­
based environment. The philosophy behind this work has been to create an OMG IDL compiler 
as efficiently as possible through software reuse. As a result the compiler relies heavily upon the 
facilities of DCE and OODCE, rather than defining and building a separate (and quite likely 
non-interoperable) set of distributed services. Our approach provides CORBA compliance by 
using OMG IDL to define application interfaces, while making very direct and efficient use of 
the underlying distributed communication platform. 



Using OMG lDL to write OODCE applications 389 

2.1. Advantages of this approach 

Use of OMG IDL has some benefits over DCE IDL: OMG IDL is a more object-oriented inter­
face specification language, providing the ability to express interface inheritance, define param­
eterized exceptions, and to pass objects by reference in RPCs more conveniently. However, 
OMG IDL does not fully address the distribution of objects. For instance, OMG IDL does not 
provide a standard way to identify interfaces or interface versions; nor does it provide a way to 
provide for context between a client and server. While some of these issues are being addressed 
in the CORBA 2.0 specifications, using OSF DCE as the communication substrate can compen­
sate for these shortcomings today. 

Furthermore, every distributed environment requires some (coordinated) administrative and 
management services. Developing these distributed operational services is expensive and non­
trivial to say the least. By using DCE directly only one set of administrative and management 
tools will needed to maintain the entire distributed environment. The alternative in a mixed 
DCElCORBA environment would be to have a separate set of DCE and CORBA tools which 
administrators must learn and use. Equally significant, only one global directory name space, 
and one security registry database are needed. Having multiple disjoint directory services and 
security databases would cause obvious problems for application developers, administrators, 
and end users. 

Finally, OODCE is a second-generation DCE technology, which provides a high productivity 
development environment. The first release of DCE, like the first release of most powerful new 
technologies, was difficult to learn and use. With the OODCE framework, many of the tasks in 
developing a distributed application are supplied by the default behavior, simplifying the task 
of application development. 

2.2. Interoperability 

Applications developed using the OMG-OODCE compiler will be able to act as servers for stan­
dard DCE or OODCE applications, since all objects use the same underlying (DCE) communi­
cation infrastructure. An object specified using OMG IDL can be accessed via either its OMG­
OODCE generated stubs, or the corresponding DCE IDL communication stubs. This allows 
DCE-only platforms (such as the PC or MVS) to access OMG IDL-defined applications built 
using this compiler. 

However, it is not possible in general to write an OMG IDL definition such that the compiler­
generated DCE IOL file will be compatible with a preexisting DCE lOL description, since the 
preexisting DCE lOL may have used language facilities that are not accessible through this 
compiler, such as pointers, pipes, context handles, or the transmit_as attribute. 

Interoperation with CORBA 2.0 applications using a protocol called Universal Networked 
Objects (UNO) [OMG94-9-32] should be possible using a half-bridge (protocol translator, or 
gateway) from the UNO protocol to the DCE protocol (we have not verified this, however). 

2.3. Application portability to a CORDA environment 

Applications built using OMG lOL and employing this compiler will be able to migrate to other 
CORBA environments much more easily than regular DCE applications for a number of rea­
sons. 



390 Part Ten Interoperability Solutions 

• These applications will already be using OMG IDL to specify their interfaces, so there is no 
IDL port required. Since IDL expresses the application design at a high level, this reduces 
the likelihood of an expensive redesign phase during porting. 

• Applications will be designed and written using object-oriented techniques, which means the 
programming model will not have to change from procedure-oriented to object-oriented. 
This again reduces the likelihood of application redesign. 

• Application objects will already have C++ implementations. There would be little reason to 
modify them (other than altering the API to accommodate possibly different data types). 

• Finally, an OODCE language binding will provide ease of use for developers (and the com­
piler writer!) by supplying a class library encapsulating the interface with DCE. 

These factors increase the portability of applications using this approach to a CORBA platform, 
but let there be no question: the migration will not be trivial. In particular, use of DCE facilities 
such as naming or security will have to be modified to use the equivalent CORBA object service 
(if available). Any code interacting directly with the RPC runtime facilities (such as for object 
registration) must change; and since the C++ language mapping is different there will be some 
issues regarding parameter structure in the different C++ implementations. 

3. TECHNICAL OVERVIEW 

The basic approach of this work has been to implement a backend for the public domain SunSoft 
OMG IDL Compiler FrontEnd (CFE_l.3) [Sun94]. The OMG-OODCE compiler parses OMG 
IDL and creates one or more corresponding DCE IDL files (one per interface defined in the 
OMG IDL file). Each DCE IDL file defines data types and remote operations as necessary to 
support the data types and methods defined in the OMG IDL. The remote operations are gener­
ated as a set of c++ classes. Each interface defines a pure abstract class, a client proxy class, 
and a server implementation skeleton. The pure abstract class defines the signature of the inter­
face in C++-each remote operation defined in IDL becomes a pure virtual member function in 
this class. The client proxy class inherits from the pure abstract class and provides implementa­
tions for accessing the remote operation methods. The implementation provides the distribution 
transparency mentioned earlier: object location and binding, security, and some enhanced fault 
handling. The server implementation skeleton defines a class the server developer can imple­
ment to provide the remote object's behavior for each of the remote operation methods. In addi­
tion to these three classes, a C++ stub is generated to link incoming DCE RPC calls with the 
appropriate C++ implementation. 

3.1. Language mapping 

The creation of the DCE IDL and C++ files necessitates a language mapping from OMG IDL 
to each of the two languages. In most cases the mapping is straightforward, as CORBA and 
DCE specify very similar RPC-based systems. They each define a set of data types similar to 
those found in C or C++, and remote operations (basically procedures) that use those data types. 

The mapping to C++ is currently based upon the OODCE idl++ compiler. DCE defines the 
mapping from its IDL data types to C; idl++ uses this same data type mapping, since C++ is a 
proper superset of C. A future version of this compiler could implement the official OMG IDL 
C++ Language Mapping-but since simplicity in development and use of OMG IDL was a key 



Using OMG lDL to write OODCE applications 391 

goal of this project, that (more complex) standard language mapping has not been implemented 
to date. 

3.1.1 Trivial Data Types 
The basic data types map directly from OMG IDL to DCE IDL and c++: boolean, float, 
double, char, unsigned, short, long. The CORBA octet type maps to the DCE byte 
type. Many of the other data types map obviously and directly. Minor syntactic modifications 
are sometimes required since OMG IDL is slightly different from DCE IDL and C++. The triv­
ial mappings are these: 

• OMG array maps to the DCE and C++ array type. 
• OMG struct maps to the DCE and C++ struct type. 
• OMG typedef maps to the DCE and c++ typedef. 
• OMG const maps to the DCE and C++ const. 
• OMG enum maps to the DCE and C++ enum type. 
• The union type maps to the DCE and C++ discriminated union. There is a slight syntactic 

difference between the two union types so syntactic rearrangement is required. 
• OMG string maps to the DCE [string] char * type and the C++ (null terminated) 

char *. 

3.1.2 Restrictions 
There are some differences between OMG IDL and DCE IDL which require certain restrictions 
in the mapping or in the use of OMG IDL. The restrictions are: 

• OMG allows unlimited length identifiers; DCE identifiers are limited to 31 characters. When 
using our OMG-OODCE compiler identifiers must be limited to 31 characters. 

• OMG identifiers are case insignificant; DCE is case significant. Our compiler requires iden­
tifiers not to differ only in case. 

• An OMG enum allows 2"32 identifiers, while DCE allows only 2" 15. Only 2" 15 identifiers 
are allowed by our compiler. 

• OMG IDL has name space scoping (using the module and interface constructs); DCE has 
none. When using this compiler, OMG identifiers cannot rely on the module scoping, but 
must be unique within the global name space. (Method names from different interfaces can 
be identical, provided there is no inheritance relationship between them.) 

3.1.3 Constructed Data Types 
The mapping for other constructed data types follows . 

3.1.3.1 sequence 
An OMG IDL sequence is mapped to a DCE IDL conformant array. C++ developers access 
sequences using the DCE conformant array directly. A sequence template delivered with the 
compiler provides more convenient access to sequences from C++. 

3.1.3.2 attribute 
An OMG IDLattribute is mapped to aDCE IDL get_ * operation (and a set_ * operation ifnot 
declared readonly) to retrieve (and optionally update) the attribute's value. These operations 
are also present in the corresponding C++ classes. 



392 Part Ten Interoperability Solutions 

3./.3.3 exception 
The OMG parameterized exception data type is mapped to a DCE and C++ struct type (at 
declaration time only; see below for the mapping of raises in operation declarations). Each 
data member of the exception becomes a member of the struct. 

3.1.3.4 any 
The OMG any type is mapped to a conformant array of DCE byte data type. The C++ mapping 
is simply the conformant array. The user is responsible for filling the array with the appropriate 
data (marshaling and unmarshaling). A mapping to TypeCodes, such as is described in 
[OMG94-9-l4] or in [VogeI95] would make any more convenient. However, we feel the over­
use of the any type can be considered harmful, and discourage its abundant use. 

3.1.4 Module 
An OMG IDL module may contain an arbitrary number of OMG IDL interfaces. OMG IDL 
module declarations are allowed but basically ignored since DCE IDL (and many C++ imple­
mentations) do not yet have nested name spaces. 

3.1.5 Inteiface 
An OMG IDL interface maps to a set ofDCE interfaces and C++ classes; this mapping is 
described in detail below. An OMG interface may inherit from any number of other OMG inter­
faces. Interfaces can be declared within the current file or in an included file. 

3.1.5.1 DCE Interface Mapping 
Each OMG interface maps to a single DCE interface. If multiple interfaces are declared 
within a single OMG IDL file, multiple DCE IDL files will be generated (each DCE IDL file 
must contain at most one interface). Each OMG interface definition must specify a #pragma. 
for the DCE interface UUID and may specify the version number of that interface. 

3.1.5.2 C++ Interface Mapping 
In C++ an OMG interface maps to the following set of classes as discussed earlier: 

• A pure abstract class declaring the interface signature in C++. This class is inherited (either 
directly or indirectly) by all other classes corresponding to this OMG interface. 
A client proxy class. This is the class through which users access remote objects. 

• An implementation skeleton class. This class must be implemented by the server developer; 
it provides the behavior of the object defined in IDL. 

3.1.5.3 Interface Inheritance 
If an OMG interface inherits from other OMG interfaces, the corresponding DCE interface 
imports all of its parent interfaces. The interface signature of the new DCE interface consists 
only of the new methods, but has access to all the data types defined in the imported interfaces. 
Note that OMG IDL interfaces cannot redefine (overload) inherited operations. 

In OODCE, interface inheritance is supported through the DCEObj abstraction. An OODCE 
class exporting multiple DCE interfaces contains only a single instance of the DCEObj (virtual) 
base class. It is this class that identifies the C++ instance as a unique DCE object, and contains 
references to the (one or many) DCE interfaces supported by the object. 

To support polymorphism (calling one of the base class operations on a derived class), the 
OODCE implementation registers each DCE interface in the inheritance hierarchy separately, 
but with the same object UUID and object underlying implementation (C++) object. To support 
this the DCE IDL file for derived ihterfaces explicitly contain all of the methods found in the 



Using OMG IDL to write OODCE applications 393 

base (parent) interfaces. When a call comes in for an operation on an object, it is dispatched by 
the server stub to the correct method. 

When an OMG IDL interface inherits from other interfaces, typically only the most derived 
interface is implemented by the developer. In C++, this is the implementation class that inherits 
from the other interface base classes. The OODCE implementation keeps track of which meth­
ods are associated with which interface. 

3.1.6 Remote Operations 
Remote operations in OMG IDL are mapped to remote operations in DCE IDL, and to function 
members in the generated classes. No DCE IDL attributes are attached to the operation (e.g., 
idempotent). Operations that contain raises or context are mapped as follows . 

3.1.6.1 raises 
The raises declaration on a remote operation causes a discriminated (tagged) union to be cre­
ated in the DCE IDL file; the union has a data member for each exception type that can be 
thrown by the operation. The union is added as an extra [out] (full pointer) parameter to the DCE 
operation signature. The parameter is declared as a pointer so that in the normal case only a 
NULL pointer is transmitted. Only when an exception occurs is the union's value non-NULL. 

The server implementation developer can throw any of the C++ structs corresponding to the 
exceptions defined in OMG IDL. The generated server stub does a C++ catch to receive the 
thrown data, and transmits it in the extra [out] union parameter added to the DCE IDL. On the 
client side, if the returned union is non-NULL its discriminant is examined to determine which 
exception was transmitted. The appropriate struct is extracted from the union and thrown as a 
C++ exception. The application developer can thus deal only with C++ exceptions, relying upon 
the underlying middleware to handle the stack cleanup and transmission details. 

3.1.6.2 context 
OMG context is transmitted in DCE RPC as an extra [in] char * parameter. There is no 
standard way yet to retrieve context in the implementation (i.e., the Context class is not sup­
ported). In a future version, the Context class will be added to the DCEClientlnfo which is 
always available to the implementation. 

DCE context handles, which are different from the OMG context type, are not supported 
by this mapping since there is no way to express the notion of context between client and server 
inOMG IDL. 

3.1.7 Inteiface References 
Interfaces can be specified as parameters to remote operations in OMG IDL. Interfaces are 
mapped to DCE object references for transmission (DCEObjRefT*) and to the C++ DCEOb­
jectReference OODCE class. In CORBA all objects are passed by reference. 

When used as an [in] parameter, the object reference is extracted from the C++ object being 
sent (which can be either a proxy object or an implementation object), and transmitted as an 
object reference to the server (callee). On the server side, a client proxy object is constructed in 
the EPV using the binding information from the object reference; a pointer to the proxy object 
is given to the implementation. 

When used as an [out] parameter, the object reference is again extracted from the C++ 
object returned by the implementation to the EPY. On the client (calling) side, a new client 
proxy object is constructed in the EPV using the binding information returned in the object ref­
erence and returned to the caller. 



394 Part Ten lnteroperability Solutions 

Figure 1. OMG CORBA IDL (CIDL) to OODCE compiler file generation 

3.2. Files created by the compiler 

The files created by the compiler are depicted in Figure 1. In the descriptions, ifee refers to the 
name of an interface defined in the IDL file. If multiple interfaces are defined in the OMG IDL 
file, mUltiple sets of these files will be generated. 
• ifce_DCE.idl: specifies the interface to be used by the DCE IDL compiler to construct the 

communication stubs. The OODCE idl++ compiler is then run on this file to create the 
interface header and stubs. 

• ifce_Abs.H: the pure abstract class declaration corresponding to the OMG IDL interface. 
The data types and member functions of this class correspond to the types and remote oper­
ations defined in the OMG IDL file. 

• ifce_Cli.H: the declaration of the proxy class used by clients to access the remote implemen­
tation. A client of a remote object invokes an operation on that object by making a member 
function call on this proxy object. 

• ifce_Proxy.C: the definition (implementation) ofthe proxy object. The compiler generates an 
implementation class that makes an RPC into the DCE runtime to handle remote operation 
requests (member function calls). The proxy object implementation has code for object loca­
tion and binding, setting of security preferences, object activation, and some experimental 
failure management and rebinding code. 

• ifce_Svr.H: the declaration of the server implementation abstract class and of a default 
implementation class. The abstract class provides the linkage with OODCE and has pure vir­
tual members for each of the remote operations. The default implementation class inherits 
from this and provides non-pure declarations for the methods the server developer must 
implement to provide the intended behavior of this interface. Instances of this class are reg­
istered with the DCE runtime to satisfy incoming client requests. 

• ifce_Epv.C: the definition of an Entry Point Vector mapping incoming client call requests to 
the appropriate implementation object and method. Each client call identifies an object 
instance by its DCE object VVID. The functions in the EPV look for that object UUID in the 
OODCE object map, and make a method call on the C++ object pointer returned. The EPV 
supports security (the calling of a security reference monitor) and the OODCE object activa­
tion protocol. 



Using OMG IDL to write OODCE applications 395 

Figure 2. OMG IDL generated file inheritance hierarchy 

3.3. Generated class inheritance hierarchy 

The inheritance relationship among the generated classes described in the list above is shown 
in Figure 2. The classes on the top of the diagram (above the dashed line) are provided in the 
OODCE class library or in the OMG-OODCE extension library delivered with the compiler. 

4. RESULTS AND EXPERIENCES 

Our results from the development of this compiler indicate that it is possible to use the DCE and 
OODCE environment to provide an application development environment for CORBA. While 
the environment does not provide "100% CORBA compliance" (a term which is still not strictly 
defined), it does provide the ability to use OMG IDL in order to develop object-oriented distrib­
uted applications on top of an existing DCE environment. It allows use of the object-oriented 
features of OMG IDL-however it does not allow use of the distribution-oriented features of 
DCE IDL (other than interface and version identification, necessary to provide even a basic 
DCE application). 

Since this work is based upon DCE it reduces the administrative overhead in environments 
where DCE is already deployed, and is a potential benefit where OMG CORBA is being con­
sidered as a future direction or where interface inheritance is beneficial. The platform described 
here reuses in its entirety an already developed, supported, and tested environment providing 
access to RPC, naming, threads, and security for the application developer. This work provides 
distributed application developers with OODCE's ease of use and access to C++. 



396 Part Ten lnteroperability Solutions 

4.1. Code size comparison 

The following table compares code and object sizes for equivalent applications created using 
this compiler and using the base OODCE technology. The first set of values are for the sleeper 
sample application in OODCE, and the corresponding OMG-OODCE application. The second 
set are for the multi_if OODCE sample application, and for the equivalent OMG-OODCE appli­
cation. Note that the OMG-OODCE version is using (multiple) interface inheritance, which the 
OODCE application can only simulate. 

Table 1. Code size for OODCE and OMG-OODCE applications 

CIDL-gen'd IDL-gen'd Application Total object 
OMGIDL DCEIDL file size fiie size code size fiie sizes 

- sleep.idl - 284 32 286Kb 

Sleep.cd] Sleep.idl 129 297 30 339Kb 

Growth (%) nla 5% -6% 19% 

- multi.idl - 1006 82 496Kb 

Multi.cdl Multi.idl 554 1284 98 602Kb 

Growth (%) nla 27% 20% 21 % 

From this we observe the following: 
• The developer-written code size to implement the application is roughly the same. Since both 

applications are developed to the OODCE API this was expected. The difference in the multi 
case is due to multiple interface inheritance; in the OODCE case inheritance is simulated out­
side the IDL file. The OODCE code is smaller, but not as easy to understand. 

• The OMG-OODCE compiler generates a lot of code. Compiling a DCE IDL file generates 
five files for each DCE interface. Compiling an OMG IDL file with one OMG interface sim­
ilarly creates six files, including one DCE IDL file (for a total of II generated files). The size 
of the corresponding DCE IDL-generated code is also somewhat larger. 

• The object files and executables are somewhat larger when using this compiler as well. This 
bloat is due to the extra translation layer. However, in the extra layer we are dealing with 
user-defined exceptions declared in OMG IDL, and have added enhanced failure recovery 
code. 

While these results are mildly interesting they are not necessarily representative of more full­
featured distributed applications. In particular, the equivalent OODCE code required to handle 
interface inheritance or user-defined exceptions provided by the OMG-OODCE compiler would 
likely bring these numbers back to parity. Alternatively, the code to make up for OMG IDL's 
lack of client-server context or bulk data transfer would make the OMG-OODCE case much 
less attractive. As always, experienced application designers will choose the tool best suited to 
the task at hand-be it OMG IDL, DCE IDL, Distributed Smalltalk, or Modula-3. 



Using OMG IDL to write OODCE applications 397 

4.2. Related efforts 

There are a number of commercial and prototype CORBA environments available currently. 
Some ofthe current CORBA implementations use a DCE infrastructure to support inter-ORB, 
communication. However, we are not aware of any implementations that make direct use of the 
DCE development model and services. While reuse of the DCE RPC marshaling engine and 
state machine are valuable, framework-based reuse offers greater cost savings for developers as 
well as for administrators. 

Other efforts have focused on adding more object-oriented concepts directly to DCE IDL, 
most notably Digital's DCE++ [XIDLJ. There are several advantages to this approach; most 
notably it lessens the semantic gap between the application's IDL and the distribution and 
implementation environments. With XIDL, anything expressible in IDL can be more naturally 
implemented, with fewer compile steps; and XIDL preserves application access to all of DCE's 
underlying facilities, including pointers, pipes, and context handles. The XIDL work is still 
under development and undergoing standardization. By contrast, this work uses the existing 
OMG IDL, but is also under development-perhaps "under developed" would be more accurate. 
(There are no plans in place to enhance this prototype technology or release it as a product.) 

Our recommendation for distributed application developers are therefore multiple choice: 
use OMG IDL today with a current CORBA product; use OSF DCE today (with OODCE if pos­
sible) and XIDL tomorrow; use a framework like ACElACX to abstract away programming 
with TCP sockets and message queues; or like Conduits+ for programming atop ATM; or one 
of several products this author is not familiar with. The choice depends upon the project's needs 
and the capabilities provided by the various platforms. There is no one right answer. 

5. FUTURE WORK 

This compiler is currently being used in a project building a global data and service distribution 
application. The purpose of the application is to experiment on a large scale (over 100 sites, with 
several hundred users, worldwide) with system robustness, availability, and application man­
agement. The interfaces for the system are being developed in OMG IDL so that they are "future 
proof'-it is widely believed that OMG IDL will be a customer requirement in the future, so 
using it today allows us to architect and implement object interfaces that wi II be usable in future 
CORBA-based projects. 

This project is experimenting with improving the reliability of distributed client/server sys­
tems through enhancements of the communication stubs. In particular, providing enhanced dis­
tribution transparency in the presence of failures in distributed components. 

6. ACKNOWLEDGMENTS 

This compiler is based upon the OMG lOL CFE (compiler frontend) 1.3, provided in the public 
domain by SunSoft. Suggestions from Jeff Morgan drove the creation of this project, and his 
help in the development of the compiler is greatly appreciated. Assistance and consulting on the 
use of the compiler frontend, as well as source code examples from Steve Vinoski and Keith 
Moore have been greatly appreciated. Thanks also to Bob Fraley, Marta Kosarchyn, and 
Andreas Vogel for their comments, and to Peter deJong for his exuberant critiques of this work. 



398 Part Ten Interoperability Solutions 

7. REFERENCES 

[Dill95] OODCE: A C++ Framework for the OSF Distributed Computing Environment. 
John Dilley, Hewlett-Packard Laboratories. NSA-94-038. Winter '95 USENIX, 
January, 1995. 

[OMG91-12-1]Object Management Group: Common Object Request Broker Architecture and 
Specification. Document Number 91.12.1, Revision 1.1 . 

[OMG94-9-32]Universal Networked Objects. 1. Nichol, D. Curtis, D. Vines, N. Holt, O. 
Hurley, G. Lewis. OMG Document 94-9-32; Object Management Group, Inc. 
September, 1994. 

[OMG94-9-14]IDL C++ Language Mapping. Digital Equipment Corporation, Expersoft 
Corporation, Hewlett-Packard Company, roNA Technologies, Ltd., International 
Business Machines Corporation, Novell Inc., SunSoft, Inc. OMG RFP Submission 
94-9-14. September 12, 1994. 

[OMG94-3-5]10int Submission on Interoperability and Initialization (lSII). Digital Equipment 
Corporation, Hewlett-Packard Company, HyperDesk Corporation, International 
Business Machines Corporation, NEC Corporation, Open Software Foundation. 
OMG TC Document 94-3-5. March, 1994. 

[OSF92] Open Software Foundation: OSF DCE Application Environment Specification. 
Open Software Foundation, 1992. 

[Sun94] README file from the public domain Interface Definition Language Compiler 
Front End. Available via anonymous FTP as /ftp@omg.org:/pub/ 
OMG_IDL_ CFE_l.3/0MG_IDL_CFE_l.3.tar.Z. 

[VogeI95] Overcoming the Heterogeneity of Middleware Platforms. Andreas Vogel, Brett 
Gray, Keith Duddy, CRC for Distributed Systems Technology, DSTC Pty Ltd. 
International Conference for Distributed Processing. February, 1996. (ICDP'96). 

[XIDL] DCE IDL With C++ Support-Functional Specification. R. Viveney. OSF DCE 
RFC 48.2. October 1994. 

8. BIOGRAPHY 

John Dilley is a distributed systems architect with Hewlett-Packard Laboratories. His research 
interests include architecture and design of distributed systems and applications, object location 
(naming) and distributed directory services, and object-oriented design and development. He is 
one of the original architects of the HP OODCE product. Mr. Dilley's current research focuses 
on the construction and deployment of large-scale widely-distributed systems to explore issUt:s 
of application availability and management on a global scale. 

Mr. Dilley received Bachelor of Science degrees in Mathematics and in Computer Science 
from Purdue University in 1984, and a Master of Science degree in Computer Science from Pur­
due University in 1985. 


