
4

Using PO Methods for Verifying
Behavioural Equivalences

Monica Lara de Souza
Robert de Simone
IN RIA
INRIA, BP 93, 06902 Sophia-Antipolis, FRANCE. Telephone: (33) 93 95 74 92,
Fax: (33) 93 95 74 88. e-mail:
mlsouza@sophia.inria.fr,rs@sophia.inria.fr

Abstract
The modelling of concurrent systems by synchronized distributed automata generates naturally
an independence notion between the events of the global system. The theory of (Mazurkiewicz)
traces suggests that such an independence relation induces a nice equivalence relation over the
sequences of events of the system. Two sequences will be equivalent just in case they constitute
two different interleavings of the same stretch of partially ordered behavior.

We want to use reductions of the interleaved global system by this independence relation
for verification means. The allowed reduction depends on the property to conserve, the prime
condition being to retain at least one representative for each trace. Others recent published works
on these methods (often called Partial-Order methods) have proposed the checking of particul<lf
linear temporal properties on these reduced models. We study it here in the context of equivalence
checking, where a concurrent process description is confronted to a specification by comparing
their labeled transition systems together (relative to bisimulation for instance). We define a
reduced global automaton with predicates on the states where transitions were suppressed, and
conditions for retaining enough information for representing the global system for verification.
The limits of the approach are shown as well as suggestions for practical applications and some
experimental results on classical examples.

Keywords
Verification, Bisimulation, Partial-Order Methods, Automata Network, Reduction

1 INTRODUCTION

Modelling of (finite state) concurrent systems has led in the past to a rich body of automatic
verification techniques. The main problem is generally the potential state explosion of the
underlying global system. Many methods have been proposed to cope with this, each with its
own intrinsic qualities and limitations. In this paper we shall focus on so-called Partial-Order
methods (Wolper and Godefroid 1993), (Peled 1994), (Valmari 1990), where one tries to discard

G. V. Bochmann et al. (eds.), Formal Description Techniques VIII
© IFIP International Federation for Information Processing 1996

76 Patt1Wo Verification I

redundant interleavings of independent behaviours off the global automaton, provided ability
to check some given property is retained. We shall call partial automaton such an incomplete
automaton. The problem lays with confluent diamonds, or how two independent actions can
permute and be performed in any order. The goal is to remove edges from these diamonds -and
then further disconnected vertices-, in a semantically non-destructive fashion; technically, each
remaining trace should in particular have an extension being represented by at least one of its
linearisations.

Most research in partial-order methods has been so far devoted to the verification of linear
temporal specifications, which models the execution of a program as computation sequences.
An extensive bibliographic survey is provided in (Wolper and Godefroid 1993). Here we will
rather focus on general notions of operational equivalences, like bisimulation or yet trace lan­
guage equality. We focus on abstract requirements on partial automata to preserve bisimulation
checking abilities. These requirements characterise the limits of reduction (in transitions and
target states), so that enough information is left for a natural definition of bisimulation relations.

A transition can be discarded for any of two reasons: either as it was already anticipated (in
the course of an alternative path), or as it can be delayed further (down some ongoing path).
This corresponds to dynamic notions of sleep sets and persistent sets in (Wolper and Godefroid
1993). Our axiomatic conditions will rely heavily on explicit Pre/Post predicates on partial
states, which recall 'shadows" of omitted transitions together with the reason why they were
disposed of. This reintroduces only part of the larger automaton, since target states beyond are
still potentially left out as unreachable and therefore unrepresented.

The paper is structured as follows: in section 2, after some basic definitions, we provide the
definition of a complete automaton for a given independence relation. The global automaton
underlying the synchronized vectors of automata is complete for the independence relation
naturally deduced from the distribution.

In section 3 we introduce partial--or incomplete- automata. The definition includes axiomatic
requirements on partial states enforcing "faithfulness", in that reduction should not be excessive.
It refers explicitly to the underlying complete automaton. We show this reference to be necessary
through an example where the same partial automaton can be obtained by reduction of non­
bisimilar complete forms. We describe also a generic counterexample for the completeness of
partialization with respect to bisimulation of the relied complete counterparts. We show two
bisimilar complete automata, one of which allows a partial form which cannot be matched
by the other through reduction. The problem resides in the fact that partial reductions (with
anticipated behaviours) deal with actual states and their identities, while plain bisimulation is
only concerned with equivalent states.

In section 4 we consider behavioural relations amongst partial automata: language contain­
ment and equality, (adapted) simulation refinement and bisimulation equivalence. We show
that language containment (equality) of partial automata imply the corresponding relation on
complete ones. Concerning partial bisimulation of partial automata, we show that it implies
language equivalence of complete forms, and also bisimulation in the case where only deter­
ministic behaviours can be omitted (while preserved parts can be nondetermistic still). At the
end of the section we propose some reductions on T-transitions.

In section 5 we discuss the implementation of the ideas exposed, and show the obtained
results on the classical Milner's scheduler.

Methods for the verification of behavioural equivalences 77

2 COMPLETE AUTOMATA

This section recalls very basic definitions about partially commutative (Mazurkiewicz) traces
and related automata structures. We extend some of their characterisations with confluence
properties on non-deterministic automata, thereby introducing complete automata as a new
model (complete here reads as: relative to a given independence relation).

2.1 Basic definitions

Automata
Notations 1 (Automata) An automaton A is a 4-uple <LA, QA, initA, TA >.with:

• LA a finite set of action labels,
• Q A a finite set of states,
• initA E QA an initial state and
• T A C (Q A x LA x Q A) a behavioural labeled transition relation.

We also note Sort(A) for LA, p ~A q for (p, a, q) E TA, and extend the transitions t9
sequences of actions.

We let Now A= {(p, a)/ 3q, (p, a, q) ETA}·
We drop A subscripts when clear from context.

Synchronised vectors of automata (or: networks)
A specification model often used in verification theory is the Synchronised Vector of Automata.
It consists of a vector of automata, each endowed with a sort describing the actions it is involved
in, so that synchronisation and communication simply consist in that: an action is performed
globally iff it is performed simultaneously by all components which have it in their sorts.

Formally:

Definition 1 Synchronised Vector of Automata A Synchronised Vector of Automata V is
simply an ordered list (A., ... , An) of automata.

Notations 2 Given a E U1:<;:,:<;:n LA, we note Lac(a) (jor "locations of a") the set {i, a E LAJ·

In the sequel an event shall be a set of local transitions which may perform an action together,
disregarding local states at other unconcerned locations. Thus an event is somehow a more
concrete form of action, recalling which actual local transitions were effectively used in it.

Global System derived from the network
There is an obvious definition for the global automaton obtained from a given synchronised
vector of automata, based on cartesian product:

Definition 2 Global expansion of a SVA Given V as above, we note V the automaton defined
by:

78 Part Two Verification I

• Lv = ul<I<n LA,;
• Qv = Q~,-x ... x QA.;
• q~ = (q~,, ... , q~J;
e Tt = {(qAw .. , qAJ, a, (q~ 1 , ••• , q~J)/Vi E Loc(a), (qA,, a, q~,) ETA,, Vi~ Loc(a), QA~ =

q~J.

Such global automata are usually restricted to reachable parts.

Independence
This model generates naturally an independence notion between the actions of the global system.

Two actions a and bare said to be independent if Loc(a) n Loc(b) = 0. We note a'-' b then.
We let '-'V be the whole symmetric relation of independent couples. We extend the notation to
sequences so that s '-'V s' when each individual letter from sis independent from all letters in
s'.

Traces
The theory of Mazurkiewicz (Mazurkiewicz 1986) traces suggests that such an independence
relation induces a nice equivalence relation over the sequences.

Definition 3 Traces Given s E L * a sequence of actions and'-' a symmetric irreflexive relation
(to be thought of as a permutability relation), we note s the equivalence class of s generated by
successive permutations of related actions, and call it the trace associated with s. We note L the
set of traces on L.

2.2 Complete Automaton

Definition 4 Complete Automaton
Let----<:;; LA x LA be a binary symmetric irreflexive relation (representing permutability by

independence). (A, '-') is a -possibly non-deterministic- complete automaton ifV(a, b) E'-':

e Vp,p',q'EQ,(p ~ p' ..!!_. q') => (:l!qEQ,p ..!!_. q ~ q')

e Vp, p', q E Q, (p ~ p' 1\ p ..!!_. q) => (:3 ! q' E Q, p' ..!!_. q' 1\ q ~ q')

• V(a, c) E'-', (p ~ p') => ((:lq, p ..!!_. q 1\ p !:._. q) <=? ((:lq', p' ..!!_. q' 1\ p'
c

--> q'))
Furthermore we shall assume that all states are reachable (from the initial one). Note the
uniqueness requirement on q (resp. q') in the first (resp. second) condition.

The completeness assumptions are depicted graphically in figure 1 and 2. In the deterministit:
case complete automata are also called asynchronous transition systems in (Winskel and Nielsen
1993), following (Bednarczyk 1988) and (Shields 1985).

As recalled in the trivial next lemma, only the first axiom -and even without the unicity
requirement- is strictly needed to ensure existence of all representatives of a given (partially

Figure
Permutation.

Methods for the verification of behavioural equivalences

1
Figure 2 Confluence/independence.

79

commutative) trace, so that -....- is really a permutation relation. Other conditions state that -....- is
an independence relation, by adding confluence requirements on actions with disjoint effects.

Conversely, given any automaton one can easily compute a largest permutation relation it is
complete for, since the union of independence relations shall remain an independence relation.

Lemma 1 Let A be complete with respect to-....-. Suppose p ~ q, s E L*. Then Vs' such that
s' s = S', p --> q.

We note .CA(P) the (partially commutative) language recognized by A rooted in p.

Fact 1 Let F anOut(p, a) be the number of states reached from p through a. Let b -....- a, and

p ~ p'. Then FanOut(p, a)= FanOut(p', a)

Fact 2 Vis complete relative to '--'V·

We can also adapt the definition of Complete Automata to events as labels, instead of mere
action names. Then obviously the transition system becomes deterministic.

3 PARTIAL AUTOMATA

We now consider the problem of omitting some possibly redundant transitions from a complete
automaton. This should produce a partial, incomplete automaton, with far less reachable states

in general.
Our general goal is to verify behavioural equivalences of complete forms on the -smaller­

partial ones. Obviously one must then be guarded against excessive reductions, and ensure that
partial automata remain basically faithful to their complete counterparts. We shall attempt to
propose such criteria on partial automata.

These axiomatic conditions will be phrased using auxiliary predicates Pre and Post, which
provide a record of "shadow" transitions respectively discarded as anticipated or postponed.
Some such conditions are internal in that they deal only with the structure of the partial automa­
ton, and one could compute the largest Pre/ Post predicates satisfying them. Other conditions
are linking behaviours from the "partial states" to those in the underlying complete automaton.
So, a partial automaton is not defined in isolation, irrespective of its underlying complete gen-

80 Part 1Wo Verification I

erator. We shall in fact run into examples where, due to non-determinism, isomorphic partial
automata were obtained from non-bisimilar complete forms.

On the other hand, reduction functions will attempt not to build the global complete au­
tomaton, but rather keep it virtual and find approximation methods that prove sufficient to
enforce our requirements. In this respect new approximation techniques can be tried against
these requirements.

3.1 Common facts on reduction functions

We briefly recall some essential concerns of existing reduction procedures, only to motivate our
introduction of Pre/ Post sets. Let us consider the basic diamond situation of figure 3 (here

rAr!-l 1\,
I \ i=-J;\,
l l i '-"

Figure 3
Simplifications. Figure 4 Wrong choice.

b

{i\ !~.r
v

b /u

Figure 5 Combined
gain_

a '-' b). Trying to discard transitions, one should of course retain at least one for each label.
Then two "obvious" kinds of saving can be considered: keeping states {I, 2, 3} or {I, 2, 4} (or
symmetrically {I, 3, 4}). But:

• keeping { 1, 2, 3} makes unreachable state 4, without means of recovering its following
behaviours. Therefore one must then retain either of the two lower transitions (2 ----> 4 or
3 ----> 4). This reduction saves only one transition, and no state. It should be noted that
the transition is safely omitted because the corresponding behaviour was already performed
earlier at a Previous stage.

• keeping { 1, 2, 4} (or { 1, 3, 4}) will provoke a similar problem if the removed state had
transitions which now become unreachable. But this possibility can be exactly characterised,
so that the reduction rule is used only when sound. Figure 4 gives a generic (minimal) example
of unsound omission, where a third action, enabled as a consequence of b only, can "steal"
a. Effectively deciding soundness of the reduction of course involves reaching parts of the
automaton beyond the omitted, exactly what reduction functions try to avoid. Therefore the
crux of all these techniques lays in the definition of sufficient static approximations avoiding
this search.

It should be noted that in the second type of reduction the early transition can be omitted
because it can be Postponed later.

Figure 5 shows how the two type of reductions can be combined to save as many states as
possible, when the first type allows not to reintroduce states already saved by the second type
of reduction.

Methods for the verification of behavioural equivalences 81

3.2 Faithfulness requirements

As seen in the previous section, a transition can be discarded for any of two reasons: either as
it was already anticipated (in the course of an alternative path), or as it can be delayed further
(down some ongoing path). This corresponds to dynamic notions of sleep sets and persistent
sets in (Wolper and Godefroid 1993).

We now introduce partial automata as deduced from complete ones through transition ornis­
sions, recalled by corresponding predicates (Pre/ Post). Partial automata need to fulfill require­
ments, based on these predicates, to prove relatively faithful to their complete form originators.

Notations 3 Let A and B be two automata. We note A C B when: QA C Q8 , LA =

Ls, initA = inits, TA C Ts.

We shall use the case when B is complete, while not necessarily A.

Definition 5 Let B be a complete automaton w.r.t. an independence relation~. We call par­
tial automaton (associated to (B, ~))a structure (A,~. Pre A, PostA), where A C Band
Pre, Post<::;: (QA X LA) are two predicates (or equivalently two functions QA-+ zLA), satis.­
fying the following requirements:

1. NowA, PreA, PostA are pairwise disjoint, and\fa, (init,a) f/:_ PreA,
2. \fa, b, p, q, r,

(a~ b 1\ (p -'=>A q) 1\ (p ~A r)) =?(bE PreA(q) =? (PreA(r)n ~a) C (PreA(q)n ~b))

3. (p,a) E PreA ~ (vb,q, (q ~A p) =?(a~ bl\ (q,a) E PreA U NowA))

4. (p,a)EPreA~(3s,q, (q~Ap)l\a~sl\(q,a)ENowA)

5. (p,a) E Post~ (vb,q,(p ~A q) =?(a~ bv (q,a) E PostA UNowA))

6. (p,a) E PostA~ (3s,q, (p ~A q) 1\ a~ s 1\ (q,a) E NowA)

7. p ~B q ¢? (p,a) E (PreA U PostA) V p ~A q,
8. (p, a) E PostA, Vb E NowA(p), Vs E L'A,

(3cEL, (a.s)~b 1\ c~b 1\ P~s) ~ ((a.s)~cl\p--=.)

We note Pre~ for {a, (p, a) E PreA} (and likewise for Now and Post).

We now comment on some of these axiomatic requirements.
All first six axioms are technical conditions on well-behaving of predicates:

• they should be disjoint (axiom 1);
• two independent actions should not mutually discharge the requirement of continuation to

one another (axiom 2);
• an anticipated behaviour should indeed be taken into account in all previous states (axiom 3);

similarly a postponed behaviour should be taken into account in all successor states reached
through actions that are independent with the concerned one (axiom 5);

• an anticipated behaviour should always be retrieved in a finite backward run (axiom 4);
• similarly, postponed behaviours should always be retrieved in a finite forward run (axiom 6).

82 Part Two Verification I

The seventh condition simply states that behaviours in B have to be dealt with in A (and
not possibly forgotten). The more complex eighth condition gives full generality to the coun­
terexample in figure 4. It says that, whenever action a is delayed through b, it could not cause
disabling of b in B other than those already present in the current state in A.

So it appears that the last two axioms are in essence different from the six previous ones, as
they link behaviours of automata A and B together. In practice one could construct two "largest"
predicates Pre and Post satisfying the first set of axioms only from the transitions in A, and
then what is really to be verified is that such predicates would validate the two last axioms,
dealing with relations to underlying B.

3.3 Adequacy problems for partial automata

We claim the axioms above to be highly natural for a definition of partial automata. Still it
remains to be seen whether partial automata could be characterised in isolation: is it the case that
all complete automata allowing the same partial form are strongly related? The counterexample
of figure 6 provides a negative answer: the two nets produce nonbisirnilar complete automata,
but which allow the same partial one. It should still be noted that complete forms have here the
same trace language.

r·····y1·····c····~·: c····y1·······c···do···
: J : ::

Figure 6 Nonbisirnilar complete with identical partial automata.

In the next section we shall look for relations on couples of partial automata ensuring that
the underlying complete automata have identical trace languages, or even are strongly bisimilar
(the latter will require "some" determinacy assumptions).

3.4 Completeness problems for partial automata

The previous section dealt with questions of adequacy (for partial bisimulation on partial
automata). Regarding completeness, one can ask whether, given two bisirnilar complete automata
and a partial reduction of one, the other can be reduced so as to be equivalent to it. The answer

Methods for the verification of behavioural equivalences 83

shall be negative. The notion of partial reduction with anticipated (Pre) behaviours is mostly
sensible to state identity, while bisimulation only cares to states up to equivalence.

Figures 7, 8 exemplify this (here upward dashed arrows mark Pre sets, downward dashed
arrows mark Post sets). The only difference in the distributed descriptions is that two (equiva­
lent) states in the middle component are being merged into a single one. As a result the saving
which was possible in global state 2 on the left, and not in state l, is impossible altogether in
state 0 on the right (to get such a gain, one should be able to anticipate a through all incoming
behaviours at 0). It seems hopeless to figure a bisimulation-like notion which would relate state
2 to a state on the right and help prove equivalence of the initial states through action c.

Figure 7 Bisimilar states. Figure 8 Single state.

This problem doesn't appear if omitted transitions correspond only to Postponed behaviours.

4 BEHAVIOURAL RELATIONS AMONGST PARTIAL AUTOMATA

4.1 (Finitary) Language inclusion

What is the exact property of partial automata relative to trace preservation? We state this in the
following lemma, after defining auxiliary notations.

Notations 4 Given (A,.__.,) a partial automaton and D a subset of LA, we introduce the initial
discard operator, noted/. on automata (states):

where Ia ={bE LA, a.__., b}.

p..!!...q , arf.D
PI D ..!!... qj(D n I a)

Initial discards shall be used to neglect the behavioural parts of complete automata which are
declared as Pre anticipated behaviours, because nothing conclusive can be said on partial states

84 Part Two Verification I

at this point (the information will be found in anterior states, on a backward path to the initial
state).

Lemma 2 Let A be a partial automaton, relative to complete (B, ~).Let p E QA and s E L'A.

Suppose 3q E Qn, PI(Pre~) ~B q. Then 3t E L'A, t ~ s, 3p' E QA such that p .B A p' and

q ~np'.

Proof By induction on the length of s.
The cases = E is trivial (take t = E, p' = q).

When lsi > 1, letS= { s; = a;.s; Is;= s}. Obviously Vi, j, i c:fc j, a;~ aj. and { a;}nPre~ =
0 (otherwise we would not have pI (Pre~) ~B). Two cases may arise:

S ct. Post~ : Then one can prove the existence of i such that 3p;, p ~A p; ..1 B q, with
Pre:;_ n { aj} = 0. The last condition is established through axiom 3, and causes p;, s; to
fulfill the proposition by induction. The t transition adopted for s is then the same as the one
for s;.

S C Post~ : Then by a combination of axioms 7 and 8, there exists b, b ~ a; for all i, and

Pb, qb such that p .J A Pb ~ B qb with {a;} n Pre!J = 0 as in the previous case (by axiom 4).
This is the case where an extra behaviour is added to the potential t sequence of interspersed
independent transitions. This step does not decrease the length of s, but as the number of
states is finite, one can prove, using axiom 8, that it is taken a bounded number of times
before a state meeting the first case is reached.

D

Our first main theorem now comes as a corollary of the previous lemma.

Theorem 1 Let B and B1 be two complete automata (with identical independence rela­
tion), and A and At be two partial automata respectively associated to B and Bl. Then
(.C(A) c .C(At)) ===> (.C(B) c .C(B1))

Proof Lets E (.C(B) \ .C(Bt)). Then 3t, t ~ s, 81 E .C(A), and so 81 E .C(At) c .C(Bt).
But then, by permutation properties of .C(Bt), s E .C(Bt). D

This theorem actually holds also for language equivalence, which is inclusion "both ways". It
settles the problem for bisimulation also in the deterministic case, where both notions coincide.

4.2 Simulation refinement and bisimulation equivalence

We provide now definitions for simulation refinement preorder and bisimulation equivalence
for partial automata.

Methods for the verification of behavioural equivalences 85

Definition 6 (Partial Simulation Refinement)
Let A be a partial automaton. A binary relation -<t:;; (A x A) is a P-simulation refinement if
Vp, q E QA, p -< q implies:

Va,q, (P~Aq) => (:Jq's.t. p'~Aq' /\ q-<q')
Va, (Post(p,a)) => (Post(p',a) V Now(p',a))
Va, (Pre(p,a)) => (Pre(p',a) V Now(p',a))

This definition can be applied to a couple of automata with identical independence relations by

forming the disjoint union of states.
Given A, the union of two refinements is again a refinement so that there is a largest refinement

inside A. In general it is a preorder, as for instance all similar complete automata refine one

another. In fact, refinement breaks down on complete automata to plain strong simulation.

Proposition 1

p -<A q (as states of A) => L(p/ Pre~) t:;; L(q/ Pre~) (as states of complete B)

Proof Trivial, since (p-< q) => (L(p) C L(q)). D

4.3 (Partial) bisimulation equivalence

Definition 7 (Partial Bisimulation)
Let (A,~. Pre A, PostA) be a partial automaton. A binary relation ~t:;; (A x A) is a P­
bisimulation if'Vp, q E QA, p ~ q implies:

• Pre~= Pre~
• Post~= Post~
• Va,p', p ~ p' => (:Jq', q ~ q' 1\p' ~ q')

• Va,q', q ~ q' => (:Jp', p ~ p' /\p1 ~ q')

Again there is a largest such relation inside A, which is an equivalence.
Of course in presence of Pre sets states will not be compared according to these anticipated

behaviours, locally undescribed. Actually we could have dropped condition Pre~ = Pre~ (as
well as Pre~ c Pre~ in case of refinement) and got looser relations. Our choice was prompted

by the will to obtain canonical minimisation notions which would preserve the axiomatics of

partial automata.

Proposition 2

p ~A q (as states of A) => L(p/ Pre~)= L(q/ Pre~)

Trivial, since (p ~ q) => (p-< q /\ q -< p).
This result is most intuitive when applied to (couples of) initial states, for which Pre sets are

void.
Next, we introduce sufficient conditions so that P-bisimulation of partial forms induce bisim­

ulation equivalence of corresponding complete forms. They will basically assert that all omitted

86 Part Two Verification I

1 c a c2 1 b 1
: : :
:·qr·-------------------:-A·-----------------:
. . .
1 dl d2 1 c d2 c dl 1 ·---------------------'-------------------·

1 c a c2 1 b 1
:-qr··------------------:-A·-----------------:
. . .
1 dl d2 1 c dl c d21 . . .
: : : ·---------------------'-------------------·

Figure 9 Partial bisimilar nets (with Pre actions) with non-bisimilar complete forms.

transitions should be deterministic in the complete form. The counterexample of figure 9 shows
why we need this restriction on Pre sets also. * Again, the partial automata may look identical
(as is displayed at the bottom of the picture), but the complete systems would not be equivalent,
as dangling parts at states 1 and 2 are actually permuted.

Definition 8 We let DetPre be the predicate on QA x LA defined as:
Pre(p, a)=> (vb, Vp1, (p1 ~ p) => (FanOutA(p1, b)= 1))

The purpose of this definition is to ensure that an omitted Pre action is retrieved back
through deterministic (back)actions, so that resetting actual transitions will be nonambiguous.
Another counterexample, where a deterministic action (b) anticipated through nondeterministic
(a) behaviours lead to bisimulation problems, is to be found in figure 10.

Definition 9 We let DetPost be the predicate on QA x LA defined as:
Post(p, a)=> Vs E Lj., Vb, c E LA,

(:Jq,r, qopr 1\p~Bq 1\p~Br)
1 1 I I b I c I =? (b '/-' a.S v C '/-' a.S) :Jq , r , q op r 1\ p --t A q 1\ p --t A r

Proposition 3 Let ~A be a P-bisimulation amongst states of A and suppose in addition that
Vp E QA, Va E LA, DetPre(p, a) 1\ DetPost(p, a).
Then, Vp, q E QA,

(p ~A q) => ((pjPreA(P)) ~B (qjPreA(P)))

Of course we get our most intuitive result again at initial states, where Pre sets are void.

*The upward dashed arrows represent Pre transitions

Metlwds for the verification of behavioural equivalences 87

r-~-------------------r-----

1
-------------i r-~-------------------r----

1

• I I 1 1 :a : cb:: : cb
: : : : :
! d c! d ! ! d d c! d

1 1 1 : 0 1 ·--------------------- ~--------------- .. -- -· ·-- .. ---------------- --!------- .. -- .. -.. -........

Figure 10 P-bisimilar, non bisimilar nets with detenninistic Pre actions

4.4 Weak behaviours and r-reductions

Realistic process descriptions often include hidden local behaviours, and corresponding weak or
branching bisimulation equivalences. Defining such notions on partial automata is still a topic
of ongoing research. Due to the fact that different local behaviours, sharing the T label, may
recover different independence characteristics, it seems impossible to delay only some of them
without getting in a confused case.

A notable exception is when a process p may perform a single T-action while delaying all
other behaviours. In this case, the T behaviour, independent with all others possible out of p,
can safe! y be omitted. Let's suppose p ..::., q, and that all other transitions from p can be delayed.
In this case, we can collapse p and q in a way that respects branching and weak bisimulations
of the complete forms. This kind of reduction was also independently noticed by Gerth et a! in
(Gerth and Kuiper and Peled and Penczek 1985).

5 PRACTICAL APPLICATIONS

We have implemented these ideas in a prototype system that reduces networks of processes
and apply on-the-fly T-reductions as described above to the partial product. The algorithms,
not described here, implement some of the ideas proposed by (Wolper and Godefroid 1993)
and (Peled 1993). We are also developing on-the-fly comparison, with partial deterministic
specifications for the time being. Our prototype is interfaced to the verification system Auto (de
Simone and Vergamini 1989) through the FC2 format (Bouali and Lara de Souza and Madelaine
and Ressouche and Roy and de Simone 1995), an exchange representation format for automata
and networks. Some of the tests that have been done with the classical example of the Milner's
scheduler (described in (Milner 1989)) are described in table 1. We compare it with the global
automata and its reduction by weak bisimulation. In this example, we can see that the progression
of the number of states of the partial automaton is linear with respect to the number of cyclers
of the scheduler, whereas the number of states of the global product grows exponentially.

88 Part Two Verification I

Table 1 Reductions for Milner's scheduler in the number of states.

cyclers global product minimal weak partial product partial with T reductions

3 49 24 10 6

5 321 160 16 10

8 4,097 2,048 25 16

10 20,480 10,240 31 20

Table 2 Reductions for the "Dining Philosophers" problem.

philos. global product minimal weak partial product partial with T reductions

2 34 13 16 10

3 214 75 49 32

4 1,294 53 121 80

5 7,774 271 183

6 46,654 577 397

7 279,934 1,195 834

Table 2 describes the results obtained for the well known "Dining Philosophers" problem. The
progression in the number of states is exponential for both the partial and the global products.
However, the gain in size is important. More precisely, the total number of states for the global
product is equal to 6n - 2, whereas for the partial product it can be well approximated by
n2·295 (1.454)n (where n is the number of philosophers).

6 CONCLUSION

We described a method for comparing two distributed descriptions by constructing only partial
reductions of their underlying global systems, which under determinacy assumption provides
potential large savings over state spaces. We precisely identified generic counterexamples to the
applicability of the method in more general settings. Our restrictions can be seen as imposing
conditions on "partialization" functions, according to which behavioural equivalence is to be
retained from complete to incomplete automata.

The distributed description formalism we used is still restrictive (no hiding abstraction, no
auto-concurrency, and more generally: fixed location set for each action name). While some of
these restrictions are inherent to the approach, one can attempt to relax others to some extent.

REFERENCES

Bednarczyk, M.A. (1988) Categories of asynchronous systems. U. of Sussex, 1/88.

Methods for the verification of behavioural equivalences 89

Bouali, A. and Lara de Souza, M. and Madelaine, E. and Ressouche, A. and Roy, V. and de
Simone, R. (1995) FC2 transformations for clever verification. Technical report, INRIA.

de Simone, R. and Vergamini, D. (1989) Aboard Auto. Technical report, INRIA.
Mazurkiewicz, A. (1986) Trace Theory. Petri Nets: Applications and Relationships to Other

Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an Advanced
Course.

Milner, R .. (1989) Communication and Concurrency. Prentice Hall, Englewood Cliffs.
Peled, D. (1993) All from One, One for All: On Model Checking Using Representatives.

Proceedings of CAV'93, LNCS 697.
Peled, D. (1994) Combining Partial Order Reductions with On-the-fly Model-Checking. Pro­

ceedings ofCAV'94, LNCS 818.
Gerth, R. and Kuiper, R. and Peled, R. and Penczek, W. (1995) A Partial Order Approach to

Branching Time Model Checking. Proceedings of ISTCS, 330-339.
Shields, M.W. (1985) Concurrent machines. Computer Journal, 28.
Valmari, A. (1990) A Stubborn Attack on State Explosion. Lecture Notes in Computer Science,

Springer-Verlag, 531.
Winskel, G. and Nielsen, M. (1993) Models for Concurrency. TEMPUS Summer School on

Algebraic and Categorical Methods in Computer Science.
Wolper, P. and Godefroid, P. (1993) Partial-Order Methods for Temporal Verification. Proceed­

ings ofConcur'93, 715.

