
19 
Combining Formal Methods: An Exercise in 
Integration 

J.- Ch. Gregoire and M. Ferguson 
Telecommunications Software Group, INRS- Telecommunications 
{gregoire, mike} @inrs-telecom. uquebec. ca 
Lou Pino1 

Stentor 

Abstract 

Formal methods can rarely capture all the dimensions of a software project. Different 
aspects of a project are thus typically formalized separately, with little or no integration. 
We study here the integration of a formal specification methods and a validation method. 
The methods that we use are LARCH and PROMELA/SPIN. LARCH is an algebraic 
specification method, specialized in the specification of abstract data types and their 
properties. PROMELA/SPIN is a modeling and verification package for concurrent sys­
tems, based on a process/communication channel abstraction. 
We show how LARCH provides a natural integration path for the two methods, describe 
the features of an integration language, and discuss the problems we have encountered. 

Keywords 

SPIN, LARCH, integration of formal methods. 

1 Introduction 

Formal methods are mathematical languages with proof systems and associated tools. 
They are used in software projects to bring precision, not only in the expression of the 
requirements, but also at the design level in the expression and the verification of the 
analytical properties that the system is supposed to present [Cooke92). 

We describe the integration of two formal methods to specify and validate a distributed 
application. Indeed, formal methods tend to excel in a specific dimension of software, 
e.g. data or functions, but seldom across all dimensions. It is thus interesting to try to 
combine different methods to take advantage of their strong points. 

We are interested in formalizing the properties of distributed administration appli­
cations, such as those encountered in a workstation environment. In a related activ­
ity [Gregoire93), we have developed an implementation tool based on a remote program­
ming concept to support distributed administration. Our goal is to develop formal tools 
to help with the conceptual development and verification of applications in this context. 

We have integrated a formal method based on algebraic specification of abstract data 

1work done while this author was a student at INRS-Telecommunications. 

G. V. Bochmann et al. (eds.), Formal Description Techniques VIII
© IFIP International Federation for Information Processing 1996



296 Part Six Applying Formal Methods 

types together with another focusing on expressions and verification of concurrency. In 
this integration process, the prime focus is given to data abstractions. As these abstrac­
tions are refined, interactions are identified and formalized in the other formalism. 

In the following sections, we present the benefits of using formal methods and introduce 
the two we have selected, LARCH and PROMELA/SPIN. We then describe how the 
integration is realized and illustrate the result with an example. We then discuss our 
achievement and draw some conclusions. 

At this stage, we should stress the pragmatic nature of this work. We have not tried to 
introduce a new formal method, but rather to study the problem of integrating two well 
supported methods with the long term view of the development of a methodology. 

2 Formal Methods 
Formal methods are used to capture abstractions in a precise mathematical language, 
express their properties, and verify them. They can also be used to validate an imple­
mentation with regard to a formal description. 

Formal methods bring precision to a specification. This means not only a clear, un­
ambiguous terminology, but also verification of the desired properties of the system. It is 
thus possible to relate directly design decisions to their intent. 

We focus here on the formalization of functional, data and control specifications. In an 
object-oriented, or rather object-based framework, such as the one provided by abstract 
data types, data and functions are encapsulated together. Control is defined as patterns of 
methods (functions) invocation, depending on the internal states of the objects. Reasoning 
on the control part requires breaking up the encapsulation and a different verification 
framework. 

We therefore require here two formal methods. The first one, LARCH, deals with 
encapsulated abstractions, while the other one, PROMELA/SPIN focuses on control. 

2.1 LARCH 

LARCH (Guttag et al.93] is a definitional specification method that formalizes abstract 
data type (ADT)-like abstractions. LARCH has a two-tiered approach to specification 
where, on the one hand, one captures the state-independent properties of program ab­
stractions in the LARCH SHARED LANGUAGE (LSL), and, on the other hand, a LARCH 
INTERFACE LANGUAGE (LIL) captures the implications of the operations on the ADT 
in terms of the state model of some implementation language. 

In LARCH, an ADT is defined in a trait, consisting of sorts, signatures for a set of 
operators and axioms. These latter define equalities between terms composed of the 
operators. A trait also defines derived axioms, which should be a logical consequence of 
the axioms. A LARCH trait forms a theory in equational logic. Extensions and refinements 
are done simply by adding new axioms, with the only condition that the set must remain 
consistent. This is known as the loose semantics model, as opposed to initial algebra 
semantics used in languages such as ACT-ONE (Ehrig et al.85]. A trait is written in the 
LSL. 



Combining formal methods: an exercise in integration 297 

Traits form theories which should ideally be consistent, contained and complete. Con­
sistency, means that is is not possible to derive the equation true == false from the 
theories; in LARCH, this can be checked with the help of a proof assistant. Containment 
is the property that the invariants can be derived from the theories. Completeness means 
that an operator is fully defined by the theory and the invariant. In LARCH, for practical 
purposes, this is not explicitly required of a trait. It thus becomes possible to support 
incremental refinement of specifications and the formalization of reusable, incomplete 
abstractions, such as generic components. 

The other tier is an interface, expressed in a LIL, that describes state-dependent effects 
of the program abstractions, in terms of features of a programming language [Chen89]. 
Such "effects" can be state transformation, exceptions, iterators or also concurrency. 
Interfaces are explicitly related to LSL traits. Each procedure of the interface is charac­
terized by the requirements on the state space before it is invoked, which variables may 
be modified and what must be changed when the procedure returns 2. 

LARCH supports notions of reuse through parameterized abstract data types. It is 
also constructive, since ADT can be built up from other ADTs through an inclusion 
mechanism, and inherit their theories. Since theories do not have to be complete, they 
can simply capture assumptions or implications, or general mathematical properties (e.g. 
monoid, group). 

2.2 PROMELA/SPIN 

PROMELA [Holzmann91] is an operational specification language, tailored to the ex­
pression and analysis of control behaviour as communicating finite-state machines. The 
finite-state machines are executed by processes, which exchange information over bounded 
communication channels, either synchronously or asynchronously. 

Processes and channels are reusable abstractions. The language also provides other 
elements useful to express control, namely, boolean and integer variables, and array struc­
tures. There is however no other form of data structure, nor a procedure abstraction. It 
is thus rather difficult, and inadequate, to express data transformation. The language 
also has nondeterministic selection and iteration control statement, modeled as guarded 
commands analogous to CSP's [Hoare85]. 

A PROMELA program is semantically equivalent to the traces of all possible execu­
tions. SPIN, an associated verification tool computes the traces and checks that they verify 
properties such as reachability, local or global assertions, some temporal logic claims, ab­
sence of deadlocks and livelocks. 

2.3 Justification 

LARCH and PROMELA/SPIN are complementary. The first one focuses on the descrip­
tion of abstract properties of system components, while the other allows the expression 
and analysis of the behaviour of interactions in their operations. 

Both LARCH and PROMELA have associated tools, such as syntax checkers, proof 

2the notions are analogous to pre- and post-conditions, and invariants 



298 Part Six Applying Fo171Ull Methods 

assistants and property checkers. The existence of tools differentiates formal methods 
from formal languages, and really makes their use attractive. Rather than being simply 
a precise way to express requirements, they become a practical mean to verify them. 

There are alternatives to either of them. However, both LARCH and PROMELA/SPIN 
have the advantage of having well-documented, although still evolving, methodological 
steps governing their use, as well as more robust tools. 

3 Integration 

Combining different formal methods into a single framework is not an easy task. They 
usually have different semantic models which cannot be integrated. One can only hope 
to separate orthogonal concerns and treat each of them with an appropriate tool. When 
the orthogonality hypothesis is not entirely valid, interactions" must be formalized and 
analyzed. 

LARCH's two-tiered model gives us an interesting framework to work with. Whereas 
the shared language describes the operators and the abstract properties of the data, an 
interface language formalizes the effects of the operations on the variables of the target 
language. In the interface language, we find the operators of the trait in a more concrete 
(i.e. implementation language dependent) form, with a formalization of their behaviour 
in terms of the state model of a specific programming language. This formalization 
typically takes the form of an axiomatization describing pre and postconditions, as well 
as invariants. 

It thus seems natural to integrate PROMELA/SPIN as an interface language where 
not only sequential, but also concurrent aspects of interaction are formalized 3 . 

3.1 LA/PRO: the LARCH/PROMELA interface language 

One of the key notions of an interface language is the state space. States are mappings 
from a memory location to an object. The kind of objects we have here are: 

• 1, 8, 16 or 32 bits integer values, where boolean and character values are coerced to 1 
and 8 bits integer values, respectively; 

• sized memory locations locs for integer values; 
• arrays; 
• communication channels, which are buffers of fixed size for tuples of data values, used 

for synchronous and asynchronous communications; 
• container values, typeless and of any size, only assignable and comparable; 
• memory locations locCs for those containers, with a type related to a trait; 
• procedure declarations related to trait operators, with their associated pre and post­

conditions, and invariants; 
• procedure definitions. 

3It is interesting to note here that, akin to imperative languages, PRO MELA is a pragmatic language, 
rather than a formal language. Its semantics are however completely described in terms of finite transition 
systems, on which verification methods can be applied. 



Combining fonnal methods: an exercise in integration 299 

The state space of LA/PRO consists of 2 parts: native PROMELA types, and ADT 
containers. 

Native PROMELA types are integer values defined over several finite domains, and 
array structures. Integer values behave like their C counterparts. Arrays correspond to 
PASCAL-style arrays. This language has no notion of pointer. It basically takes the 
PROMELA language and expands it with a couple of structures to relate operations on 
sorts to control. For convenience in the formulation of some expressions, we also extend 
the PROMELA language with set operators, including iterators. Sets are interpreted 
over integer values. 

The LIL's purpose is relate operations in the implementation language to formally 
defined operations on sorts, and describe the effects of the latters on the state model. 
The state model is therefore extended to abstract types, not directly supported by the 
language, at least at the level of abstraction we are dealing with. Abstract types are 
represented by containers in our model. 

The LIL will also capture restrictions on the use of ADT and operators. Since LARCH's 
philosophy is to be general and to underspecify at the LSL level, domain restrictions (i.e. 
partial functions) will be captured in the LIL. 

The extension of LA/PRO to a typical LIL is the communication structure. The 
communication structure serves two purposes: synchronization of operations and data 
transfer. We use them to express when the sequencing can occur, and to invoke operations 
remotely through message passing and data transfer. The synchronization part is where 
the encapsulation of state may be broken, albeit in a controlled way: the state information 
of different ADT's must be exchanged for the proper behaviour to be decided. This also 
means that verification can no longer be purely local, unlike the more usual pre and 
postcondition model. 

A LA/PRO specification serves two purposes: the first one is to formalize the imple­
mentation of an ADT in terms of lower level operations, especially when cooperation is 
involved. The other is to relate the high level operations of the system to ADTs. Unless 
we have distributed data structures, the communication structure appears only in the this 
latter case. It is then straightforward to validate the communication model on its own. 
When we do have distributed data structures though, communications can be embedded 
within the operator implementation hierarchy and the interactions become hidden. 

LA/PRO statically verifies the well-formedness of expressions involving sorts, that is, 
the existence of operators and the compatibility of the types. 

3.2 Domain Integration 

The integration problem in this context is the relation between the semantic model of 
ADT's and that of PROMELA/SPIN. It is directly related to interactions between 
the container and control state spaces, such as, for example, the use of a "contained" 
value to make a decision on the flow of control. There are different ways to exploit 
PROMELA/SPIN's modeling concepts depending on the nature of the interaction we 
want to verify. 

The major problem we are confronted with is the cardinality of the domain of the ADT, 
and its contribution to the explosion of the state space. Domains of ADT's need not be 



300 Part Six Applying Formal Methods 

explicitly defined. When they are, for example when we manipulate naturals, they cannot 
be directly integrated into a finite-state model. We use several techniques to alleviate this 
problem. 

The first technique is a non-deterministic selection. When a branching structure is 
affected by the result of an ADT operation, we can simply consider the alternatives inde­
pendently of the values directing them. The most simple example is a boolean operation: 
we have two branches depending on the value of the expression (true or false). We will 
simply explore both branches independently of their likelihood. 

This is a simple and effective technique as long as values are not carried along the 
branches. If this is the case, then we must restrict ourselves to a bounded domain, or 
rather, a small bounded domain for these values, to contain state-space explosion. This 
presents several difficulties. The ADT may not have a domain explicitly defined, or it 
may be unbounded. This means that, for the purpose of the verification only, we must 
define a characterization of the domain compact enough to prevent the explosion of the 
state space. We must also introduce variables of a suitable type to hold the values. 

Once we propagate values across communication links, we can use the verification engine 
to validate also preconditions and invariants of operations, to the extend where all sorts 
involved have a well defined domain and we have variables to use in lieu of the formal 
parameters. A postcondition would in turn be used to update the value of the variable. 

Let us note that the full validation of preconditions and invariants would require a 
symbolic evaluation: the state encoding is not always feasible, or practical 4 . 

In a constraint-oriented perspective, we could also consider the propagation not of 
values but of subdomains. This could reduce the branching structure since we would not 
have to consider all values of the domain individually. It requires however an engine that 
we do not have in PROMELA/SPIN and that is seldom found in verification tools in 
general. 

3.3 Verification 

Verification in a LA/PRO model involves several steps. First, the interface language itself 
can be sort-checked, as in any LIL. Second, we can extract a pure PROMELA model for 
finite-state verification. This model may in turn be further refined in the following steps. 

We need to define a mapping of some ADT's into a finite domain, and provide an 
evaluation for the operations that manipulate and produce values, when they cannot be 
abstracted away and replaced by a non-deterministic behaviour. 

We must also identify an encapsulation of ADT's into processes. Each process will have 
a channel dedicated to operation requests, and another for answers. 

We need a general "main" programme to drive the verification, that is, which invokes 
or interacts (through channels) with the high level operations. 

Where there are interactions at the implementation level for distributed ADT's, we 
have two alternatives: either to recursively expand the operations invoked to expose the 
levels where the interaction occur, or to isolate the operations involved and verify them 
with a separate, dedicated, "main". This latter method allows keeping the verification 

4mainly because predicates can include any operators on defined sorts. 



Combining formal methods: an exm:ise in integration 301 

model small, at the cost of some extra work. In the first case, the operations may be 
verified in a more precise context. 

Further properties to verify in the PROMELA model, such as temporal properties, 
must be explicitly coded in that language. 

At the LSL level, verification is conducted as usual, first syntactically checking the 
definition of the traits, and then using the larch proof assistant to check the consistency 
of the axioms. 

3.4 Integration tool 

We have shown that the verification process is not straightforward, although some of its 
aspects can be automated with adequate tools. So far, we have performed our translations 
in an ad-hoc basis. We can however sketch some of the features. we would hope to find in 
such a tool. 

Syntax and type checking are the typical tasks that any LIL-checker must perform. 
Types must be related to sorts and all operations must be compatible with the trait. 
To perform these checks, we would require a LSL abstraction for PROMELA control 
structures. However, PROMELA's type definitions can easily be derived from the types 
of other existing LILs. 

The mapping of ADT's to a finite domain is done manually, as well as the implementa­
tion of their operations over the finite domain. Of course, this does not need to be done 
for all the ADT's, but only those interacting with the communication structure. They 
can be identified mechanically. 

The generation of the main programme is also a manual process, as we need to define 
how the main level operators interact. The refinement process, where required, is also 
manual. 

4 Experimentation 

These concepts have been developed on the basis of an informal integration of LARCH and 
PROMELA studied as part of Pino's thesis (Pino93]. In that work, variable declaration 
tables defined an equivalence between the sorts of the relevant traits and PROMELA 
builtin types, i.e. the domain mapping. Operators were transformed into messages types 
exchanged by processes, or simply flagged as comments. Assertions were inserted in the 
code where specific checks need to be made, to validate the requirements. Verifications 
were performed completely separately in the LARCH and the PROMELA/SPIN universe. 

This experimental work has been done in a narrower focus with regard to integration 
than has been described. Its purpose was the capture and validation of customer re­
quirements. Nevertheless, it has given us quite valuable insight on the problem of formal 
integration of the two languages, and the issues of the simplification (i.e. size reduction} 
of the PROMELA model, to make it amenable to automatic verification using SPIN. 



302 Part Six Applying Formal Methods 

5 Conclusions 

We have described the integration of two different formal methods in a unified framework. 
We have also sketched how it can be used in a practical setting. We have found the 
integrating two well established formal methods gave us a more comfortable environment 
then using similar dual modeling languages such as SDL or LOTOS. 

We have not yet developed the tools necessary to support the integration, creating 
interfaces in an ad-hoc basis. Nevertheless, we are studying the verifications and trans­
formation that such a tool should make, with a critical eye on the abstractions which can 
simplify the PROMELA model. There is also a need for a methodology to use the tools 
and conduct the integration. This is a general problem for formal methods. 

We have found so far the LARCH-PROMELA combination to be quite adequate for our 
purposes. We have used these tools to validate the requirements of a more sophisticated 
telco security problem [Pino93]. We are pursuing our investigation of their use in the 
formalization of delegation activities. 
Acknowledgments 
Parts of the problem of integrating LARCH and PROMELA/SPIN have been studied by 
Pino as part of his master's thesis research. The notion of integrating promela as a larch 
interface language was suggested by J. Wing. 

References 

[Chen89] Chen (Jolly). - The Larch/Generic interface language. - 1989. S. B. 
Thesis, Department of Electrical Engineering and Computer Science, 
MIT. 

[Cooke92] Cooke (J.).- Editorial- Formal Methods: What?, Why? and When? 
The Computer Journal, vol. 35 {5), 1992, pp. 417-418. 

[Ehrig et al.85] Ehrig (H.) et Mahr (B.). - Fundamentals of Algebraic Specifications I 
- Equations and Initial Semantics. - Springer-Verlag, 1985. 

[Gregoire93] Gregoire (J-Ch.).- Management with Delegation. In: IFIP'g3, AlPs 
Techniques for LAN and MAN Management, Paris, France, pp. II/13-
II/21. 

[Guttag et al.93] Guttag (John V.) et Horning (James J.), editors. - Larch: Languages 
and Tools for Formal Specification.- Springer-Verlag, 1993, Texts and 
Monographs in Computer Science. With Stephen J. Garland, Kevin D. 
Jones, Andres Modet, and Jeannette M. Wing. 

[Hoare85] Hoare (C.A.R.). - Communicating Sequencial Processes. - Prentice 
Hall, 1985. 

[Holzmann91] Holzmann (G.). - Design and validation of computer protocols.- Pren­
tice Hall Software Series, 1991. 

[Pino93] Pino (L.). - A Formal Method for Modeling and Analysis of Require­
ments for Software. - Master's thesis, INRS-Telecommunications, April 
1993. 


