
Stabilizing client/server protocols without the tears 

Mohamed G. Gouda 

Department of Computer Sciences 

The University of Texas at Austin 

Austin, Texas 78712-1188 

U.S.A. 

Phone: 512-471-9532 

Fax:512-471-8885 

Email: gouda@cs.utexas.edu 

Abstract 
We identify a rich class of client/server protocols. Each protocol in this class consists of a client 

and a server that engage in an infinite sequence of sessions. Each session consists of a bounded 

number of phases. In each even phase, the client sends a bounded number of messages to the 

server, and in each odd phase, the server sends a bounded number of messages to the client. 

We discuss a simple method for making each protocol in this class stabilizing. The method 

consists of three steps: session identification, session abortion, and session restart. The 

resulting protocols, thanks to their stabilizing properties, possess a high degree of fault 

tolerance. 

Keywords 
Client/server, convergence, fault-tolerance, network protocols, stabilization. 

1 INTRODUCTION 

A network protocol is stabilizing if it satisfies the following two conditions. First, if the 

protocol is in a safe state, then its execution keeps it in safe states. Second, if the protocol ever 

reaches an unsafe state, due to some fault occurrence, then its execution eventually leads it to a 

safe state. Clearly, stabilization provides network protocols, and computing systems in general, 

with a high degree of fault-tolerance. 

G. V. Bochmann et al. (eds.), Formal Description Techniques VIII
© IFIP International Federation for Information Processing 1996



6 Invited Papers 

The theory of system stabilization is outlined in (Gouda, 1995), the relationship 

between stabilization and fault tolerance is examined in (Arora and Gouda, 1994), and a 

comprehensive study of the stabilization of network protocols is reported in (Gouda and 

Multari, 1991). 

In this paper, we identify a class of client/ server protocols and show how to make each 

protocol in this class stabilizing. Our objective of this exercise is three-fold. First, we hope to 

demonstrate to the reader that protocol stabilization is not only an intellectual curiosity but also a 

practical method for achieving fault tolerance. Second, we want to acquaint the reader with the 
method that we used to make our client/server protocols stabilizing. We feel that this method is 

important and can be used to make other protocols stabilizing. Third, we wish to convince the 

reader that his next client/server protocol should be stabilizing as defined in this paper. 

Because protocol defmitions occupy most of this paper, we devote the rest of this 

section to explain our notation for defining client/server protocols. A client/server protocol 

consists of two processes: a client process and a server process. Each process, whether a client 

or a server, is defmed by a set of global constants, a set of local variables, and a set of actions 

as follows. 

process <process name> 

const <declarations of global constants> 

var <declarations of local variables> 

begin 
<action> [] ... [] <action> 

end 

Each action in a process is of the fonn: 
<guard> --> <statement> 

where the guard is either a boolean expression or a receive statement of the form: rev 
<message> from <process name>, and the statement is defined recursively as one of the 
following: skip, assignment, send, sequential composition, and conditional construct. These 

five forms of statements are discussed next 

A skip statement is of the form skip. This statement is executed by doing nothing. 

An assignment statement is of the fonn: 
<variable>, ... , <variable> := <expression>, ... , <expression> 

This statement is executed in two steps. First, the value of each expression on the right-hand 

side is computed. Second, the computed values are assigned in parallel to their corresponding 

variables on the left-hand side. 



Stabilizing client/server protocols without tears 

A send statement is of the fonn: 

send <message> to <proeess name> 

Execution of this statement is discussed below. 

A sequential composition statement is of the fonn: 

<statement> ; ... ; <statement> 

This statement is executed by executing its individual statements in order. 

A conditional construct statement is of the fonn: 

if <condition> --> <statement> [] •.. [] <condition> --> <statement> fi 

7 

This statement is executed in two steps. First, the boolean value of each condition is computed. 

Second, one statement whose condition is true is executed 

There are two one-directional, first-in-first-out channels between the client process and 

server processes. The channel from the client to the server has the sequence of all messages that 

have been sent by the client but not yet received by the server. The sending of a message mg 

from the client to the server is executed by adding mg at the tail of the message sequence in the 

channel from the client to the server. The receiving of a message mg from the client to the server 

is executed by removing mg from the head of the message sequence in the channel from the 

client to the server. Similarly, we can defme the message sequence in the channel from the 

server to the client, and the sending and receiving of a message from the server to the client. 

A protocol state is defined by a value for each local variable in each process in the 

protocol, and a message sequence for each channel in the protocol. 

An action in a process, whether the client or the server, is enabled for execution at a 
protocol state s if the guard of the action is a boolean expression that evaluates to true at s, or if 
the guard is a receive statement whose message is the same as the head message in the incoming 

channel of the process at state s. 
An execution of an enabled action in a process, whether the client or the server, depends 

on whether the guard of the action is a boolean expression or a receive statement If the guard is 

a boolean expression, the action is executed by executing the statement of the action. If the 
guard is a receive statement, then the action is executed by first receiving the head message from 

the incoming channel of the process, then executing the statement of the action. 

An execution of the protocol is a maximal sequence of the fonn: 

State.O ; action.O ; state.l; action.l ; state.2 ; •.. 

where each state.i is a protocol state, and each action.i is an action, in the client or the server, 

that is enabled for execution at state.i. Moreover, executing action.i starting at state.i yields 

state.(i+ 1). The maximality of the sequence means that the sequence is infinite, or it is finite and 

its last state is a deadlock state, i. e. no action is enabled for execution at its last state. 



8 Invited Papers 

2 CLIENT/SERVER PRarocoLS 

Consider a client/server protocol where the client and server engage in an infmite sequence of 

sessions. Each session consists of an even number of phases, and the number of phases in a 

session is at most m+ 1, for some odd integer m. In phase 0, the client sends at most n message 

to the server. In phase 1, the server sends at most n messages to the client In phase 2, the client 

sends at most n messages to the server, and so on. 

In the phase before last in a session, the client sends one message, an mrqst message, to 

the server requesting that the server commits all its work in this session. When the server 
receives the mrqst message, it executes the last phase in the session by committing its work in 

the session then sending one message, an mrply message, to the client When the client receives 

the mrply message, it executes phase 0 in the next session by sending at most n messages to the 

server, and the cycle repeats. 

Each sent message has a boolean field b. Field b in a message msg(b) is true iff msg(b) 

is the last message to be sent in its phase. By definition, the two messages mrqst and mrply are 

the last (and also first) messages to be sent in their phases. Hence, there is no need to include a 

boolean field b (whose value would always be true) in either message. 

The client process has three variables phs, seq, and b. Variable phs stores the current 

phase in the current session, variable seq stores the number of message sent in the current 
phase, and variable b stores the field of the last received message. The client process can be 

defined as follows. 

process client 

const m, n 

var phs 

begin 

seq 

b 

integer 

{m+1 is the max.# of phases in a session} 
{ n is the max. # of messages sent in a phase} 

{m is odd; m 2: 3; n 2: 1} 

O .. m, 

O .. n, 

boolean 

EVEN.phs ,.. phs< m-1 --> 
if seq< n-1 --> send msg(false) to server; 

seq:= seq+ 1 



Stabilizing client/server protocols without tears 

D true 

fi 

--> send msg(true) to server; 

phs:= phs+ 1 

D rev msg(b) from server --> 
if -b --> skip 

D b --> phs, seq := phs + 1, 0 

fi 

0 EVEN.phs --> 
send mrqst to server; phs := m 

D rev mrply from server --> 

end 

{work of current session is committed} 

phs, seq := 0, 0 

9 

The client has four actions. In the first action, it sends a msg(b) message in an even 
phase, and in the second action, it receives a msg(b) message in an odd phase. In the third 
action, the client sends an mrqst message in the phase before last in the current session, and in 
the forth action, it receives an mrply message in the last phase in the current session. The 
server has three variables similar to those in the client. The server process can be defmed as 
follows. 

process server 

const m, n integer 

{ m and n are as defined in process client} 

var phs o .. m, 

begin 

seq o .. n, 

b boolean 

rev msg(b) from client --> 
if -b --> skip 

D b --> phs, seq := phs + 1, 0 

fi 



10 

[] 

Invited Papers 

ODD.phs --> 
if seq< n-1 --> send msg(false) to client; 

seq:= seq+ 1 

[] true 

fi 

--> send msg(true) to client; 

phs :=phs+ 1 

[] rev mrqst from client --> 

end 

{commit work of current session} 

send mrply to client; phs := 0 

In this definition of a client/server protocol, we have abstracted away the lower protocol 

layers (for example socket protocols, TCP, IP, etc.) which transmit the messages between the 

client and the server and ensure that each transmitted message arrives at its destination in the 

same shape and same order in which it was sent Instead of the lower protocol layers, we 

assumed that there are two direct channels between the client and the server, and that each 

message sent over these channels are guaranteed to be received in the same shape and same 

order in which it was sent In other words, the two channels are perfect 

Correctness of the above client/server protocol depends strongly on the assumption that 
the channels between the client and server are perfect Although this assumption is valid most of 

the time, it is possible that that some faults can cause this assumption to be invalid for a short 

time period, and when this happens for a client/server protocol, the protocol may reach and stay 
within unsafe states indefinitely. To overcome this possibility, we need to make the above 
client/server protocol stabilizing so that if it reaches (due to some fault) an unsafe state, the 
protocol is guaranteed to eventually return to safe states. 

The method for making this client/server protocol stabilizing consists of three steps. 

First, assign a unique identifier to each session, and attach to each sent message in a session the 
unique identifier of that session. Second, modify both the client and server processes such that 

if any process receives a message whose attached session identifier is different from the 

identifier of the current session, the process aborts the current session. Thiid, modify the client 

process such that it waits long enough after it aborts a session before it starts the next session. 

These steps are discussed in more detail in the next three sections. 



Stabilizing client/server protocols without tears 11 

3 SESSION IDENTIFICATION 

Each session is uniquely identified by a pair (snc, sns), where snc is the session identifier 

computed by the client and sns is the session identifier computed by the server. The client 

computes snc based on its local clock, and the server computes sns based on its local clock. The 

two clocks need not be synchronized in any way; the only requirement on each clock is that its 

successive readings are monotonically increasing. Thus, the two identifiers snc and sns of a 

session need not be related in any way. 

The first two phases in each session are devoted to computing the identifier (snc, sns) of 

that session as follows. In the fmt phase, the client computes snc as the current value of its 

clock, then sends an srqst(snc) message to the server requesting the start of a new session. 

When the server receives the srqst(snc) message, it executes the second phase by computing 

sns as the current value of its clock then sending an srply(snc, sns) message to the client 

After the identifier (snc, sns) of a session is computed, it is attached to each message 

sent in that session. Thus, the messages sent in a session are of the following five forms: 

srqst(snc), srply(snc, sns), msg(snc, sns, b), ~st(snc, sns), and rmply(snc, sns). 

The new client process is similar to the client process in Section 2 with three exceptions. 

First, four integer variables snc, sns, c, and s are added to the client. Second, two actions are 

added to the client: one action for sending an srqst(snc) message and the other for receiving an 

srply(snc, sns) message. Third, a session identifier is attached to each sent or received 

message. The new client process is defined as follows. 

process client 

const m, n integer 

var snc, c integer, 

sns, s integer, 

phs o .. m, 

seq o .. n, 

b boolean 

begin 

phs= 0 --> 
snc, phs :=clock, 1; send srqst(snc) to server 

D rev srply(c, s) from server --> 
sns, phs, seq := s, 2, 0 



12 

[] 

Invited Papers 

EVEN.phs 11. 0 <phs< m-1 --> 
if seq< n-1 --> send msg(snc, sns, false) to server; 

seq:= seq+ 1 

[] true --> send msg(sns, s, true) to server; 

phs :=phs+ 1 

fi 

[] rev msg(c, s, b) from server --> 

if -b --> skip 

[] b --> phs, seq:= phs+ 1, 0 

fi 

[] EVEN.phs A 0 <phs S m-1 --> 
send mrqst(snc, sns) to server; phs := m 

[] rev mrply(c, s) from server --> 

end 

{work of current session is committed} 

phs :=0 

Modifications similar to those in the client process are made to the server process. The 

new server process is defined as follows. 

process server 

const m, n integer 

var snc, c integer, 

sns, s integer, 

phs O .. m, 

seq O .. n, 

b boolean 

begin 

rev srqst(c) from client --> 
snc, sns, phs := c, clock, 2; send mrply(snc, sns) to client 

[] rev msg(c, s, b) from client --> 
if -b --> skip 



Stabilizing client/server protocols witJwut tears 

D b --> phs, seq := phs + 1, 0 

fi 

0 ODD.phs --> 
if seq< n-1 --> send msg(snc, sns, false) to client; 

seq:= seq+ 1 
D true --> send msg(snc, sns, true) to client; 

phs :=phs+ 1 

fi 

D rev mrqst(c, s) from client --> 

end 

(commit work of CUITent session} 

send mrply(c, s) to client; phs := 0 

4 SESSION ABORTION 

13 

In the last section, we discussed how to identify each session and how to attach to each sent 

message the identifier of the session in which the message is sent When a process, whether the 

client or the server, receives a message, it compares the identifier attached to the message with 

the identifier of the CUITent session. If the two identifiers are equal, the process handles the 

message in the usual way. Otherwise, the process recognizes that a fault has occurred and 

aborts the CUITent session as follows. The client aborts the current session by assigning a new 

value m+ 1 to its phs variable. The server aborts the CUITent session and waits for the start of the 

next session by assigning its phs variable the value 0. 
There are other situations where a process, whether the client or the server, detects a 

fault occurrence. If a process receives a message when its phs variable indicates that it should 

not be receiving this message, the process detects a fault occurrence and aborts the current 

session as discussed above. 

In particular, the client aborts the current session when one of the following three events 

occurs. First, the client receives an srply(snc, sns) message when the value of its phs variable is 

not 1. Second, the client receives a msg(snc, sns) message when the value of its phs variable is 

even. Third, the client receives an mrply(snc, sns) message when the value of its phs variable is 

notm. 

Similarly, the server aborts the current session when one of the following three events 

occurs. First, the server receives an srqst(snc) message when the value of its phs variable is not 



14 Invited Papers 

0. Second, the server receives a msg(snc, sns) message when the value of its phs variable is 

odd or equals 0 or equals m-1. Third, the server receives an mrqst(snc, sns) message when the 

value of its phs variable is odd or equals 0. 

The resulting client and server processes are defined as follows. 

process client 

const m, n integer 

var snc,c integer, 

sns, s integer, 

phs O .. m+1, 

seq O .. n, 

b boolean 

begin 

phs =0 --> 

snc, phs :=clock, 1; send srqst(snc) to server 

0 rev srply(c, s) from server --> 

if snc * c v phs * 1 --> 

[] snc = c " phs = 1 --> 

fi 

phs :=m+1 

sns, phs, seq := s, 2, 0 

[] EVEN.phs " 0 <phs < m-1 --> 

[] 

if seq< n-1 --> send msg(snc, sns, false) to server; 

seq:= seq+ 1 
[] true --> send msg(sns, s, true) to server; 

phs :=phs+ 1 

fi 

rev msg(c, s, b) from server --> 

if (snc * c v sns * s v EVEN.phs) --> phs := m+ 1 

[] (snc = c " sns = s " -EVEN. phs) " -b -->skip 

[] (snc = c " sns = s " -EVEN.phs) " b --> 

phs, seq:= phs+ 1, 0 

fi 



Stabilizing client/server protocols without tears 

0 EVEN.phs " 0 <phs s m-1 --> 
send mrqst(snc, sns) to server; phs := m 

D rev mrply(c, s) from server --> 

end 

if snc -:1- c v sns -:1- s v phs -:1-m --> phs := m+1 

D snc = c " sns = s " phs = m --> phs := 0 

fi 

process server 

const m, n integer 

var snc,c integer, 

begin 

sns, s integer, 

phs O .. m, 

seq O .. n, 

b boolean 

rev srqst(c) from client --> 
if phs -:~- 0 --> phs := 0 

D phs= 0 --> 

15 

snc, sns, phs:= c, clock, 2; send mrply(snc, sns) to client 

fi 

D rev msg(c, s, b) from client --> 
if (snc -:1- c v sns -:1- s v ODD.phs v phs= 0 v phs= m-1) 

--> phs :=0 

D (snc = c " sns = s " -QDD.phs " phs -:1-0 " phs -:1- m-1)" 

-b --> skip 

D (snc = c " sns = s " -QDD.phs " phs -:1-0 " phs -:1- m-1)" 

b --> phs, seq := phs + 1, 0 

fi 

0 ODD.phs --> 
if seq< n-1 --> send msg(snc, sns, false) to client; 

seq:= seq+ 1 

D true --> send msg(snc, sns, true) to client; 



16 Invited Papers 

phs :=phs+ 1 

fi 

[] rev mrqst(c, s) from client --> 

end 

if snc * c v sns * s v ODD.phs v phs = 0 --> phs := 0 

[] snc = c " sns = s " -QDD.phs " phs * 0 --> 
{commit work of current session} 

send mrply(c, s) to client; phs := 0 

fi 

5 SESSION RESTART 

Consider a state of the above protocol where the value of variable phs in the client is odd or 

equals m+ 1, the value of variable phs in th~ server is even, and the two channels between the 

client and the server are empty. This is a deadlock state because no action in the client or the 

server is enabled for execution at such a state. If due to some fault occurrence, the protocol 

reaches such a state, the execution of the protocol comes to a halt and no further progress by the 

client or the server is possible. To overcome this possibility, the following timeout action is 

added to the client 

timeout 
(In the client: ODD.phs I phs = m+ 1) 

(In the server: EVEN.phs) 
" 
" 

(The two channels between the client and server are empty) 

--> phs:= 0 

In this action, variable phs in the client is assigned the value 0. 

The guard of this action consists of three conjuncts. Only the first conjunct can be 

detected directly by the client The other two conjuncts can be detected by the client indirectly. 

In particular, if the client waits for a long time, when the value of its variable phs is odd or 

equals m+ 1, without receiving any message from the server, then the client can deduce correctly 

that the current value of variable phs in the server is even and the two channels between the 

client and the server are currently empty. 

6 PROOF OF STABILIZATION 

In this section, we give a proof sketch of the stabilization property of the client/server protocol 



Stabilizing client/server protocols without tears 17 

in Sections 4 and 5. In particular, we argue that if this protocol starts executing at any state, 

then the protocol eventually reaches a state where the value of variable phs in the client is 0 and 

the two channels between the client and server are empty. (It is straightforwanl to show that any 

execution of the protocol starting from this state is "safe".) 

To prove the stabilization property of this protocol, we need to discuss three other 

properties of the protocol; we refer to these properties as properties i to iii. As shown below, 

property i is needed for proving property ii, property ii is needed for proving property iii, and 

property iii is needed for proving the stabilization property of the protocol. These three 

properties are as follows. 

i. Each execution of the protocol is infinite. 

ii. In each (infinite) execution of the protocol, the client sends infinitely 

many messages. 

iii. In each (infinite) execution of the protocol, the client executes its restart 

action, where it sends an srqst message, infinitely many times. 

To prove property i, let s be an arbitrary state of the protocol. For s to be a deadlock 

state, then neither the client nor the server can send or receive messages at state s. Hence, the 

following predicate holds at s: 

(In the client: ODD.phs I phs= m+ 1) 1\ 

(In the server: EVEN.phs) 1\ 

(The two channels between the client and server are empty) 

However, this predicate is the guard of the timeout action in the client. In other words, the 

timeout action is enabled for execution at s, and s is not a deadlock state. 

To prove property ii, note that executing each action of the server involves sending a 

message to the client or receiving a message from the client. Note also that the server cannot 

send more than n messages to the client without receiving a message from the client. From 

these facts and from property i, we conclude that the client sends infmitely many messages to 

the server in each execution of the protocol. 

To prove property iii, note that the client cannot send more than n messages without 

incrementing its variable phs by at least one. Because the client sends infinitely many messages 

in each execution of the protocol, from property ii, and because variable phs in the client has an 

upper value of m+l, variable phs in the client is decremented infinitely many times in each 

execution of the protocol. Because variable phs in the client is decremented by being assigned 

the value 0, variable phs is assigned 0 infinitely many times in each execution of the protocol. 

One of two events occurs when the value of phs in the client is assigned 0: either the restart 



18 Invited Papers 

action in the client is executed, or the client receives a message causing the value of phs to 

become m+ 1 and the client to execute its timeout action followed by its restart action. In either 

case, the restart action in the client is executed, after variable phs is assigned 0. Therefore, the 
restart action in the client is executed infinitely many times in each (inf'mite) execution of the 

protocol. 
We now tum our attention to the stabilization property of the protocol. When the restart 

action in the client is executed, variable snc in the client is assigned the current value of the 

local clock, whose successive readings are monotonically increasing. From this fact and 

property iii, we conclude that the value of variable snc in the client is incremented infinitely 
many times in each (infinite) execution of the protocol. The protocol eventually reacl)es a state 

in which the value of variable phs in the client is 0 and the value of variable snc in the client is 

larger than or equal the value of variable snc in the server and larger than or equal the value of 

field snc in each message in the two channels between the client and the server. It is 

straightforward to argue that starting from this state, the protocol will reach a state where the 

value of variable phs in the client is 0 and the two channels between the client and the server are 

empty. 
From this proof sketch, the stabilization property of the protocol does not depend on the 

sns variables or the sns message fields. These variables and fields are introduced solely to 

speed up the detection of fault occurrences in some cases. 

Also from this proof sketch, the stabilization property of the protocol holds, if 

successive values of variable snc in the client are monotonically increasing. Thus, the protocol 

is still stabilizing, if the statement snc := clock in the client is replaced by the statement snc := 
snc + 1. 

7 CONCLUDING REMARKS 

In this paper, we identified a class of client/server protocols and discussed a method for 
making each protocol in this class stabilizing. Comparing the original protocol in Section 2 with 

the stabilizing protocol in Sections 4 and 5 should demonstrate that the cost of achieving 

stabilization is moderate. Given the high degree of fault tolerance that comes with stabilization, 

it seems that stabilization is a good bargain. 

Dedication: This paper is dedicated to my daughter Nora on her seventeenth birthday. 



Stabilizing client/server protocols without tears 19 

8 REFERENCES 

Arora, A. and Gouda M. G. (1993) Closure and convergence: A foundation of fault-tolerant 

Computing, IEEE Transactions on Software Engineering, Special Issue on Software 

Reliability, Vol. 19, No.3, 1015-1027. 

Gouda, M. G. (1995) The triumph and tribulation of system stabilization, Invited paper, 

Proceedings of the 9th International Workshop on Distributed Algorithms 1995 

(WDAG'95), to be published by Springer-Verlag, Sept. 1995. 

Gouda, M. G. and Multari, N. (1991) Stabilizing Communication Protocols, IEEE 

Transactions on Computers, Special Issue on Protocol Engineering, Vol. 40, No.4, 

pp. 448-458. 

9 BIOGRAPHY 

Mohamed Gawdat Gouda studied Engineering (B. Sc. in 1968), and Mathematics (B. Sc. in 

1971 and M.A. in 1972), before settling down on Computing Science (M. Math. 1973 and Ph. 

D. in 1977). He lived in Egypt (where he was born), and Canada (where he attended graduate 

schools), before ending up in Texas (where he cams his living). He enjoys working in industry 

(Honeywell, Bell Labs, and MCC), but seems content of his role as a Professor (The 

University of Texas at Austin). He works in a number of areas in computing science: formal 

methods, program verification and design, fault-tolerant computing, system stabilization, and 

network protocols, but the main objective of his work is always intellectual excitement and 
technical beauty. 


