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Abstract 
Stream ciphers usually employ some sort of pseudo-randomly generated bit strings 
to be added to the plaintext. The cryptographic properties of such binary se
quences can be stated in terms of the so-called linear complexity profile. This 
paper shows that the set of all sequences with an almost perfect linear complexity 
profile maps onto a fractal subset of [0, 1]. 

The space JF~ of all infinite binary sequences can be mapped onto [0, 1] by 
£ : ( a;)~1 >-+ L:~1 a;2-i. Any such sequence admits a linear complexity profile 
(l.c.p.) (Li)~1 , stating for each n that the initial string (a1, ... , an) can be pro
duced by an LFSR of length Ln (but not Ln- 1). Usually Ln R: n/2, and so 
m(n) := 2 · Ln- n should vary around zero. 

Let Ad be the set of those sequences from JF~ whose l.c.p. is almost perfect in 
the sense of lm(n)l :S d, \:In (Niederreiter, 1988a). The subset of [0, 1] obtained 
as t(Ad) is fractal and its Hausdorff dimension is bounded from above by 

D ( (A )) < 1 + log2 'Pd HL d _ 2 , 

where 'Pd is the positive real root of xd = L:f,;;~ xi, e.g. 'Pl = 1, 'P2 = 1.618 ... 
(Fibonacci's golden ratio). Thus, although all the Ad have Haar measure zero in 
JF~, a sharper distinction can be made by looking at their Hausdorff dimension. 
As a by-product the paper gives explicit formulae for the number of sequences 
of length n in Ad, for all n and d. 
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1 INTRODUCTION 

In the space Fr of all infinite binary sequences, to each sequence can be assigned 
a linear complexity profile (Rueppel, 1986), Fr 3 (a;)f:1 >-+ (L;)f:1 E N000 • 

The number Ln is the length of a shortest linear feedback shift register that 
produces the initial string (at, ... , an)· Generally 0 ~ Ln ~nand Ln ~ Ln+b 1:/n. 
As typically Ln is close to n/2, it has merits to introduce the following concept. 

DEFINITION 1. Let 5J. = (a;)f:u N EN U {oo }, be a given binary sequence, 
(L;)f:1 its linear complexity profile (l.c.p.), then the linear complexity deviation 
of 5J. at n is defined as 

m~_(n) := 2 · Ln- n. 

The l.c.p. can be computed by the Berlekamp-Massey algorithm (Lidl and 
Niederreiter, 1994). The following result describes the dynamic behaviour of Ln 
and m!!.(n). 

PROPOSITION 1. 

1. If Ln > n/2, then Ln+l = Ln. 
2. If Ln ~ n/2, then 

:lta E f'z: Ln+t(at, ... , an, a)= Ln, 
Vb"la: Ln+t(at, ... ,an,b)=n+1-Ln. 

3. Ifm!!.(n) > 0, then m!!.(n + 1) = m!!.(n) -1. 
4. Ifm!!.(n) ~ 0, then 

:lta E f'z : ffi(a1, ••• ,a,.,a)(n + 1) = ffi(a1, ••• ,a,.)(n)- 1, 
Vb -1 a: m(a,, ... ,a,.,bJ(n + 1) = 1- m(.,, ... ,.,.J(n). 

PROOF. 

1., 2. See Rueppel (1986, p.34). 

3. m!!.(n + 1) = 2 · Ln+t - n- 1 = (2 · Ln- n)- 1 = m!!.(n)- 1 by 1. 

4. :lta: see 3. 
1:/b "I a: m!!.(n + 1) = 2 · Ln+t- n- 1 = 2 · (n + 1- Ln)- n -1 

= 1- m!!.(n) by 2. 0 

Niederreiter (1988a) and Dai (1989) have shown the intimate connection be
tween the l.c.p. of ( a;)f:1 and the continued fraction expansion of 2::~1 a; x-i in 
the field of formal Laurent series. Thus, a jump by kin the l.c.p. is equivalent to 
a partial quotient of degree k in the continued fraction expansion. 
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Rueppel (1986, p.45) introduced the notion of a perfect linear complexity pro
file, given when the l.c.p. always jumps by 1 only or, stated in continued fraction 
terms, when the partial quotients all have degree 1. Niederreiter extended this 
to almost perfect linear complexity profiles: given a fixed number d E N, every 
jump must have height ::; d. He showed in (Niederreiter, 1988b) that for any d 
the set of sequences with partial quotients whose degrees do not exceed d has 
Haar measure 0. 

DEFINITION 2. Let Ad C F:;" be the set of all sequences Q with lmBc(n)l::; d 
for all n. 

2 TRANSLATION THEOREM 

As a simple consequence of Proposition 1 we obtain the following translation 
theorem. 

THEOREM 1. Let Q = ( a 1 , ... , ak) and f3 = ((31, ... , f3t) be given binary strings 
with mg_(k) = m13(l). For any length t an[deviation d, we have 

#{gE .n.c;+tl a;= a;, i::; k, m!!c(k + t)= d} = 
#{!J.E F~+t I b;= (3;, i::; I, m£.(1 + t) = d}. 

In other words: the distribution of I.e. deviations m on all suffixes of a given finite 
initial string depends only on m at the end of that string, but not on the length 
or the elements of the initial string. 

PROOF. Induction on t starts for t = 0 with both cardinalities being 1 for 
d = mg_( k) and 0 otherwise by assumption. The step t ---* t + 1 follows by Propo
sition 1(3,4). D 

3 SOME COUNTING FORMULAE 

DEFINITION 3. For t E No, d E N, m E 'Z define A~1d as the number of 
sequences Q of length t with m!!c(t) = m and lmBc( T) I ::; d for 1 ::; T ::; t. Fort = 0 

set A~~l = 1 (the empty sequence c:) and A~~d = 0 form# 0. 
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THEOREM 2. 
1 A(t+1) 

· mid 
-A<tJ 

. ::-. m+1ld for-d~ m < 0 . 

2 A(t+1J 
' Old 

A(t) 
= 2. lid' 

3 A(t+I) (t) (t) for 0 < m ~ d - 1. · mid = 2 . Am+IId + A-m+IId 
4 A(t+1) . did 

-A(t) 
- -d+lld' 

5 A(t) 
· mid =0 for imi >d. 

(t) 
6. Amid =0 form:/= t(2). 

PROOF. 

1., 2. and 3. follow by Proposition 1. 
4. By Proposition 1, considering A~~1 ld = 0. 

5. By the definition of A~Jd. 
6. By the definition of m!!(t). D 

THEOREM 3. Every A~Jd can be expressed in terms of A~i;r) as follows: 

1. A~\d = A~i1m) for -d ~ m ~ 0. 

2. A~i~ = A~i;dJ 

3. A~\d =I:%;;;;;' 2k · A~i;m-2k) for 1 ~ m ~ d -1. 

PROOF. 

1. This follows by induction from Theorem 2(1). 

2. From 1. and A~i~ = A~~ld' Vt (by Theorem 2(1,4)). 

3 A (t) 
· mid 

A (t-1) A(t-1) 
= 2 · m+lld + -m+1ld' 1 ~ m ~ d- 1, by 

Theorem 2(3), 

_ 2k A(t-k) "k 2i-1 A(t-i) 
- · m+kld + L..i=l · -m-i+2ld holds for k = 1, ... , d- m 

by induction and Theo-
rem 2(3), 

= 2d-m . A~i;d+m) + I:f;;;-1 2i . A~i;m-2i) by part 1, 

= I;f;;J: 2i · A~i;m-2i) by part 2. D 

DEFINITION 4. For d E Nand t E Z we define generalized Fibonacci numbers 
by 

{ 
0, t < 0, 

Fibd(t) = 1, t = 0, 
2::%=1 Fibd(t- k ), t > 0. 

DEFINITION 5. Let O~t) := 2 ·A~~~) = 2 · A~i;d- 1 ) be the number of sequences 
leaving the bound lml ~ d at timet by leading to m( t) = d + 1 or m( t) = -d -1. 
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THEOREM 4. 

d 
1 A (t) - "2; . A(t-2i) t t ::;, 2d. 

• Ojd - L..t Ojd JO'l' -
i=l 

2. A~~~l = 2t · Fibd(t). 

O(t)- { 0, 
3· d - 2'-;*' . Fibde-~-1 ), 

PROOF. 

1. A~~~ = 2 · A~~; 1 l 
_ 2 . "d-1 2; . A(t-1-1-2i) 
- L-i=O Ojd 

_ "d 2; A (t-2i) 
- L-i=1 • Ojd • 

t = d(2), 
t t= d(2). 

by Theorem 2(2), 

by Theorem 3(2,3), 

2. By induction on t: A~~~ = 1 by definition, and for 1 ::::; k ::::; d one has 

A~f;) =A~~~ (the bound d has no effect for 2k :S 2d), 
= 22k-1 (by the counting result of Rueppel (1986, p.36)), 
= 2k · Fibd(k). 

Fork::;> d: 
A(2k) 

Ojd 
_ "d 2; A(2k-2i) 
- L-i=1 . Ojd 

= Ef=1 2; · 2k-i · Fibd(k- i) 

= 2k · Ef=1 Fibd( k - i) 

= 2k · Fibd(k). 

3. Apply part 2 to the definition. 

by part 1, 

by the induction hypothesis, 

D 

The combination of Theorems 3 and 4 leads to the following general formula 
£ A(t) 
!Of mjd· 

THEOREM 5. 

0, lml > d or t ¢. m(2), 

A(t) - { 2¥ · Fibd(.t:lf-), -d:Sm:SO, t = m(2), 
mjd-

2'-;m · E%:;;' Fibdc-;- k), 1::; m::; d, t = m(2). 
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Example. Let d = 3, then we get as A~d: 

m i=O 1 2 3 4 5 6 7 8 9 10 11 12 13 

3 1 2 8 32 112 416 
2 1 4 12 48 176 640 
1 1 4 16 56 208 768 2816 
0 1 2 8 32 112 416 1536 

-1 1 2 8 32 112 416 1536 
-2 1 2 8 32 112 416 
-3 1 2 8 32 112 416 

DEFINITION 6. Let A~j~ := I:~=-d A~1d be the overall number of d-bound 
sequences of length t. 
THEOREM 6. 

A~j~ = 2L(t-dl/2J+1 . Fibd(L(t + d + 1)/2J). 

PROOF. i=O, ... ,d: 

= 2t 
= 2L(t-d)/2J+1 . 2L(t+d+l)/2J-1 

= 2L(t-dl/2J+1 . Fibd(L(t + d + 1)/2J). 

t---+ t + 1: 

a) t = d(2): 

Then O~t+1 l = 2'-~+2 • Fibde;d) by Theorem 4(3), and thus 

A~Wl = 2. A~t~- o~~+1 l 
= 2(t-d))2+2 . Fibdetd) - 2(t-d)/2+1 . Fibde;d) 
= 2(t-d)/2+1 · (Fibd(E¥) + 2::1=1 Fibdetd- i)- Fibde;d)) 
= 2(t-dl/2+1 · 2::1=1 Fibd(E¥ + 1 - i) 
= 2(t-d)/2+1 · Fibd(E¥ + 1). 

b) t =I= d(2): 

Then O~t+1 l = 0 by Theorem 4(3), and thus 

-2 A(t) - . •ld 
= 2L(t-d)/2J+2. Fibd( L(t + d + 1 )/2J) 
= 2L(t+1-d)/2J+1 . Fibd( L(t + d + 2)/2J ).0 

PROPOSITION 2. Let '{Jd be the positive real root of xd = I:1,;;-~ xi. Then 

PROOF. 

This is shown by induction on t, with the case t S 0 being trivial. 0 
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It is clear that we always have 1 ~ 'Pd < 2. Typical values are 'Pl = 1 and 
'P2 = (1 + v'5)/2 = 1.618 ... (Fibonacci's golden ratio). 

4 HAUSDORFF DIMENSION 

We follow the introduction of the Hausdorff dimension given by Peitgen et al. 
(1992) for a subset A of the reals. 

Set h!(A) = inf{l:~l diam(U;)• I u = {Ul, u2, ... }, diam(U;) < c:} for s 2: 0, 
c: > 0, where the infimum runs over all open covers U of A, and letting c: ---+ 0: 

h'(A) := lirn.:-o h!(A). 

Then h•(A) = { ~' : ~ ~=~~j for a certain real number DH(A). 

DEFINITION 7. The Hausdorff dimension of a set A is defined as 
DH(A) = inf {slh•(A) = 0} 

=sup { slh'(A) = oo }. 

(hDH(.A)(A) may assume any value in [0, oo).) 

5 THE MAIN RESULT 

The space lFr of all infinite binary sequences can be mapped onto the inter
val [0, 1) by L: (a;)~1 1--+ 2::~1 a;2-i. If Ad C lFr is the set in Definition 2, then 
we study the subset Bd := L(Ad) of [0, 1). 

THEOREM 7. 

D (B ) < 1 + log2 'Pd. H d _ 2 

PROOF. 

For fixed t 2: 1, consider the set of all initial strings g_ of length t with 1m!!.( n) I ~ d 
for 1 ~ n ~ t. The cardinality of this set is A~j~. By Theorem 6 and Proposition 
2 we have 

A(t) < 2(t-d)/2+1. "' L(t+d+l)/2J <c. (2. Ill )~ •ld- rd - rd 

with a constant C > 0 depending only on d. 
Each initial string g_ of length t defines a cylinder set in lFr consisting of all 

infinite continuations of this string. The image of each such cylinder set under 
the function Lis a closed interval of length 2-t in [0, 1). Thus, Bd can be covered 
by A~j~ open intervals of length less than 2-t+l. With C:t = 2-t+l it follows that 

h8 (B ) < A(t) · 2(-t+l)s < 2•c · (yffcpd) 1
• 

et d - •ld - 2• 
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For any s > ~(1 + log2 ipd) we have 2• > ~- Thus, letting t ---+ oo (hence 
C:t ---+ 0), we get 

By the definition of DH(Bd) it follows that DH(Bd) < s. Since s > ~(1 + log2 ipd) 
is arbitrary, we obtain 

D 
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