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Effect of the on-period distribution on the 
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Abstract 
In this paper, we consider a statistical multiplexer in an A TM network, which is fed by a finite 
number of independent bursty on/off traffic sources. Most of the previous work assumes a 
two-state on/off source rriodel, where both the on-periods and the off-periods are 
geometrically distributed. We assume a general distribution for the on-period lengths, and we 
study the effect of the on-period distribution on the multiplexer performance. Both the 
homogeneous and the heterogeneous traffic case are considered. An analytical method is 
presented to analyze the system, which basically is a generating-functions approach and uses 
an infinite-dimensional state description. Exact closed-form expressions are obtained for the 
mean and the tail distribution of the system contents. The numerical evaluation of the derived 
formulas is simple and not CPU time and/or memory space consuming, whatever the on-period 
distribution is. Numerical results indicate that, for a given fixed on-period length, the 
multiplexer performance strongly depends on the actual distribution of the on-period. 
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1 INTRODUCTION 

The ATM (Asynchronous Transfer Mode) is regarded as the most pronusmg transfer 
technique for various types of information in future broadband integrated services digital 
networks. An A TM network is expected to support various services with widely different 
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34 Part One ATM Multiplexing 

traffic characteristics, such as voice, data, video. Hence, for the design of these networks it is 
essential to assess the impact of the traffic characteristics on the performance. 

In this paper, we consider a statistical multiplexer in an ATM network, which is modeled 
as a discrete-time single-server queueing system with infinite storage capacity. In ATM 
networks, time is divided into fixed-length slots and the transmission time of a cell is one slot. 
The multiplexer supports a finite number N of independent bursty traffic sources. These 
sources belong to T traffic types and for traffic type t, 1 ~ t ~ T, there are Nt sources. Each 
source is modeled as an on/off source, that is, each source alternates between on-periods 
(active) and off-periods (passive). During an on-period, a source generates one cell per slot. 
No cells are generated during an off-period. We assume that for a source of type t, the length 
of the off-period is geometrically distributed with mean value l/(1-~t). Furthermore, the 
lengths of the on-periods are assumed to be i.i.d. random variables with probability generating 
function (pgf) At(z) and probability mass function (pmf) at(i). Finally, it is assumed that the 
lengths of the on-periods and the off-periods are independently distributed. 

The traffic model considered here allows us to study the impact of the on-period 
distribution on the multiplexer performance. Similar discrete-time models have been 
investigated in (Bruneel, 1988), (Steyaert, 1995) and (Xiong, 1992). In these papers 
homogeneous on/off sources (T=l) were considered, and the on-periods were purely 
geometrically distributed, were distributed according to a mixture of 2 geometric distributions, 
or consisted of a geometrically distributed multiple of fixed-length intervals, respectively. The 
present paper can hence be viewed as an extension of these studies, in the sense that the 
distribution of the on-periods is general here. The study in this paper is also related to 
(Sohraby, 1993). However, the analysis presented there only leads to approximate results for 
the tail distribution of the system contents, whereas our analysis is exact and leads to closed­
form expressions for both the mean and the tail distribution (both coefficient and decay rate), 
whose numerical evaluation is not limited by the traffic characteristics. A general on-period 
distribution is also considered in (Elsayed, 1994). The system is analyzed there by numerically 
solving a set of balance equations, and hence the analysis is limited by the huge state space and 
the computational complexity of the algorithms. A heuristic approximation for the distribution 
of the system contents is derived in (Simonian, 1994). 

The remainder of the paper is organized as follows. First, the homogeneous traffic case is 
considered. In Section 2, the analytical model of the multiplexer under study is described, and 
a functional equation is established which characterizes the behavior of the system under study. 
Section 3 concentrates on the steady-state cell arrival process. The mean and the tail 
distribution of the system contents are derived in Sections 4 and 5 respectively. In Section 6, 
the heterogeneous traffic case is considered. Some numerical examples are given in Section 7. 

2 SYSTEM EQUATIONS AND FUNCTIONAL EQUATION 

First, we will present the analysis for the case of a single traffic type (T=l), and for the 
clearness of the explanation, we omit the t-dependence in the above described source model. 

As mentioned before, we assume that each, source will alternately be passive (state 0), or 

active. An active source is in state n, n ~ 1, if it is in the nth slot of an on-period. Hence, each 

source can be characterized by an infinite-dimensional Markov chain with states n, n ~ 0, and 
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transition probabilities as shown in Figure 1, where p(n-l) is the probability of having an on­
period of at least n slots, given that the on-period consists of at least n-l slots, ie., 

( 
n-l ) ( n-2 )-1 

p(n-l)= 1- ~a(i) 1- ~a(i) . 
1=1 1=1 

(1) 

p(l) p(2) p(i-2) p(i-I) p(i) p(i+l) 

Figure 1 State transition diagram of an inlet 

Let us now defme the random variables dn,k (n ~ 1) as the number of sources in the nth slot 
of an on-period during slot k. Then, in view of Figure 1, the following relationships hold: 

00 

N- ~dn,k-l 
n=l 

dl,k = Lbi 
i=l 

dn-l,k-l 
dn,k = LCn-l,i' n > 1 . 

i=l 

Here the bis are iid. random variables with pgf 

For given n, the Cn-l'/S are Li.d. random variables with pgf 

Cn_l(Z)~E[/n-l'i]=l-p(n-l)+p(n-l)Z. n>l. 

(2) 

(3) 

(4) 

Moreover, the bis and the Cn-l'/S are mutually independent. Also, let ek be the total number of 
cell arrivals during slot k. This random variable can be expressed as 

(5) 
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Next, let sk represent the system contents (i.e., the number of cells stored in the multiplexer 
buffer, including tbe potential cell in transmission) at tbe beginning of slot k, i.e., just after slot 
(k -1). Then tbe evolution of tbe system contents is described by the following system equation, 

(6) 

where (.)+ denotes max(., 0). Equations (1)-(6) imply tbat the set {(dn,k-l (n ~ 1), sk)} is a 
Markov chain. If we now define tbe joint pgf of dn,k-l (n ~ 1) and sk as 

(7) 

and if we assume that tbe queueing system can reach a steady state, by using equations (2)-(6), 
in a similar way as described e.g. in (Xiong, 1992), we obtain tbe following functional equation 
for tbe steady-state version P(xl, x2, ... , z) of Pk(Xl, x2, ... , z) : 

(8) 

where tbe quantity Po indicates the probability of having an empty buffer at tbe beginning of an 
arbitrary slot in tbe steady state. 

Next, let S be tbe system contents at tbe beginning of a slot in the steady state. 
Unfortunately, we are not able to derive from (8) an explicit expression for P(xl, x2, ... , z) or 
not even for tbe pgf S(z) of s. However, as shown in the following, it is possible to derive the 
moments and tbe tail distribution of s, if we now consider in (8) only tbose values of xn (n ~ 1) 
and Z for which tbe arguments of tbe P-functions on botb sides of (8) are equal to each otber, 
i.e., xn = Cn(Xn+lz)/B(Xlz) , n ~ 1. From tbis equation, xn (n ~ 1) can be solved in terms of z. It 
turns out tbat for a given value of z, tbere may be more tban one set of solutions. Here, we 
only choose tbe set of solutions which has tbe additional property that xn=l, n ~ 1, for z=l. 
Denoting tbis set of solutions by Xn(z), we get 

f (( ))n-l-ij J 1 )-1 zXn(Z)=l~a(i) BXl;Z)Z ll-~a(i), n~1 . (9) 

Note in particular tbat 

(10) 

By choosing xn = Xn(z), n ~ 1, in (10), we tben obtain tbe function P(Xl(z), X2(z), ... , z) as 
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( ) (z-I)POG(z) 
P Xl(Z),X2(Z), ... ,z = ()' (11) 

z-G z 

where 

(12) 

From the normalization condition P(Xl(z), X2(z), ... , z) I z=l' it follows that Po = I-p, where p is 
the total load into the multiplexer, i.e., 

p=NA'(l)(l-~)/[l+A'(I)(l-~)] . (13) 

In the next sections, we will describe a technique to calculate exactly the moments and the tail 
distribution of the buffer occupancy without having to calculate the whole distribution of s. 

3 THE CELL ARRN AL PROCESS 

In this section, we will derive the steady-state pgf of the cell arrival process. Let dn denote the 
number of sources in the nth slot of an on-period during an arbitrary slot in the steady state. 
The joint pgf D(xl' Xz, ... ) of the random variables dn (n ~ 1) is given by P(xl' x2, ... , 1). 
Putting z=l in the functional equation (8), we get 

(14) 

D(Xl' x2, ... ) is an Nth degree polynomial in xn' n ~ 1, and it can be verified that the above 
equation is satisfied if 

(15) 

where a is the load of one source, i.e., a=p/N. The marginal pgf Dn(z) of dn is then obtained 
by putting xi=l (i ~ 1, i * n) and xn=z in (15). The mean value of dn is given by 

, N(l-~) ( n-l .) 
E[dn1 = Dn(1) = ( ) '() 1- La(1) , 

1+ 1-~ A 1 i=l 
(16) 

i.e., the mean number of sources in the first slot of an on-period during a slot times the 
probability of having an on-period of at least n slots. From (16), the mean number of arrivals 
during a slot is found to be equal to p. Consequently, the equilibrium condition is p < 1. 
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4 MEAN SYSTEM CONTENTS 

In this section, we derive an expression for the mean buffer occupancy E[s]. First, we define 
the burstiness factor K of the source as 

cr 
K=A'(1)(1-cr)=- , 

1-~ 
(17) 

where 1/(1-~) is the mean off-period length and cr is the average load of a source. Note that K 
equals the ratio of the mean on-period length in our model, to the mean length of an on-period 
in case of a Bernoulli arrival process. It is clear that cr describes the ratio of the mean lengths 
of the on/off periods, whereas K is a measure for the absolute lengths of these periods. Also 
we define the variance factor L of the source as the ratio of the variance of the on-period 
length in our model, to the variance of a geometrically distributed on-period with the same 
mean length, i.e., 

A"(1) + A'(1) _[A'(1)]2 
L=--~~~~~~ 

A'(l)[ A'(l) -1] 
(18) 

Next, by evaluating the fIrst derivative of equation (11) with respect to z at z=l, in a similar 
way as explained in (Brunee1, 1988), we get 

E[s] = p+ (N (1)p~ [K +L(K -l)+'£'(L-1)] 
2N 1-p N 

(19) 

It has been checked that the above general result is in agreement with the results obtained in 
(Bruneel, 1988), (Steyaert, 1995) and (Xiong, 1992). The above formula clearly demonstrates 
that the multiplexer performance depends not only on the mean length of the on-period, but 
also strongly on the actual on-period-Iength distribution. First of all, we observe that for a 
given total load, the mean length of the on-period has a substantial influence on E[s]. The 
mean system contents namely linearly increases with the burstiness factor K of the sources. 
Next, for a given load and a given mean length of the on-period (given K), the mean system 
contents E[s] linearly increases with L, i.e., E[s] increases linearly with the variance of the on­
period. Higher-order moments of the on-period distribution have no impact on the mean 
system contents. 

5 TAIL DISTRIBUTION OF THE SYSTEM CONTENTS 

From the inversion formula for z-transforms it follows that the pmf Prob[s=n] of s can be 
expressed as a weighted sum of negative powers of the poles of S(z). Since the modulus of all 
these poles is larger than one, it is obvious that for large n, Prob[s=n] is dominated by the 
contribution of the pole having the smallest modulus. Let us denote this dominating pole by z00 
It is shown in (Bruneel, 1994) that in order to ensure that the tail distribution is nonnegative 
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anywhere, Zo must necessarily be real and positive. Furthermore, we assume here that Zo has 
multiplicity one. Therefore, for n sufficiently large, Prob[s=n] can be approximated as 

e ( 1 )n Prob[s=n]=-- - , 
Zo Zo 

(20) 

where e is the residue of S(z) in the point z=zo. 

5.1 Calculation of Zo 

As in (Xiong, 1992), it can be argued that Zo is also the pole with the smallest modulus of 
P('XI (z), 'X2(z), ... , z). Hence, in view of (11) and (12), Zo is a real root of z - G(z) = 0, or 

(21) 

This can even be proved. As all sources are statistically independent, G(z) is the Perron­
Frobenius eigenvalue related to the aggregated arrival process to the multiplexer (Neuts, 
1989). Hence, the dominant pole Zo of S(z) is determined by z - G(z) = 0 (Sohraby, 1993). It is 
obvious that 'XI(z) > 0 for z> 1. From (10) and (21), we have 

Zl/N -p _A(_z_)=o . 
1-P zl/N 

(22) 

Hence, the pole Zo can be easily calculated exactly from equation (22) by using, for instance, 
the Newton-Raphson algorithm. 

Next, in order to assess the impact of the traffic characteristics on the geometric decay 
rate, we derive 2 approximations for Zo in the heavy traffic case, where the total utilization of 
the multiplexer approaches to one. In case of heavy traffic, it is expected that Zo will be close 
to one. By expanding the equation z = G(z) around z=l, we obtain 

G"(I) G"'(l) 
z = G(I) +G'(I)(z-I)+--(z-1)2 +--(z-I)3 +0(z-I)4 

2 6 
(23) 

By keeping terms up to (z-1)2 in equation (23) and neglecting higher-order terms, we get the 
following approximation for Zo : 

(24) 

A more accurate heavy-traffic approximation for Zo is obtained by keeping terms up to (z-1)3 
in equation (23) and neglecting higher-order (<:: 4) terms. As a result, we find 
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where 

G"(1) = N{N -1)02 + No{1-0)[{L+ 1){K +0-1) -20] 

G'"(1) = N{N -1){N - 2)03 + 3N{N -1)02[(1-0){L+ 1){K +0-1) -20{1-0)] 

+NO{1-0{ -30{L+ 1)2{K + 0-1)2 + 1202{1- 0) -(1-0)2 +(1-0)3 :J 
+No{1-0){L+ 1){K +0-1)3(402 -20-1) , 

(25) 

and M is the third moment of the on-period distribution, i.e., M=A'"(1)+3A"{1)+A'{1). In 
Table 1, we compare the exact value of Zo with the approximations zl and z2, for N=8, a 
negative binomial distribution for the on-period length, i.e., A(z) = (1-y)2z/(l_yz)2 and various 
values of the load p and the burstiness factor K. The results show that both approximations are 
accurate for very high values of p, and behave in the same way as the pole Zo as the source 
characteristics vary. Moreover z2 is also quite accurate for intermediate loads. Expression (24) 
indicates that the variance of the on-period length has a strong influence on the heavy-traffic 
tail behavior of the multiplexer. Furthermore, as the total utilization approaches to one, the 
geometric decay rate l/zo becomes almost independent of higher-order (~ 3) moments of the 
on-period distribution. For intermediate to high values of the load however, an accurate 
performance evaluation can be obtained by taking into account the first 3 moments of the on­
period distribution. Studies based only on the first 2 moments could in this case lead to 
inaccurate results, and should be applied with careful consideration. 

Table 1 Exact and approximate results for the dominant pole zo' for N=8 and a negative 
binomial distribution for the on-period length 

p K Zo zl z2 

0.6 2 1.435059 1.632583 1.463659 
0.7 2 1.305059 1.395415 1.315785 
0.8 2 1.191038 1.224442 1.193924 
0.9 2 1.090056 1.097130 1.090392 
0.6 10 1.067622 1.099755 1.072289 
0.7 10 1.049399 1.064594 1.051180 
0.8 10 1.032153 1.037955 1.032641 
0.9 10 1.015725 1.016992 1.015783 
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5.2 Calculation of 8 

Let us consider the case where the number of cells stored in the multiplexer buffer just after a 
given slot is sufficiently large (» N). Then we may think that the number of cell arrivals 
during this slot (which cannot be larger than N) has almost no impact on the total buffer 
contents. Consequently, if n is sufficiently large (n > n, we may assume that the conditional 
probabilities Prob[dl= iI' d2= i2, ... I s=n] are almost independent of n, and approach to some 
limiting values for n ---+ 00, denoted by ro(i l , i2, ... ), i.e., 

(26) 

with corresponding joint pgf n(Xl, x2, ... ). 
Using equation (26), the joint pgf P(xl, x2, ... , z) can now be approximately expressed as 

Setting xn = Xn(z), we know that Zo is a pole of both the P-function and S(z). As T is finite, 
multiplying both sides of the above equation by (z - zo) and taking the z ---+ Zo limit, we find 

(zo -1)(1- P )zo 
e=r[1--G-'~(zo~)]~n~(X~I~(ZO')'~X2'(-ZO~)'.~") (27) 

In order to derive the pgf n(xl, x2, ... ), we let 1t(il> i2, ... I h ' h, ... ) denote the one-step 
transition probability that there are in (n ~ 1) sources in the nth slot of an on-period, given that 
there were h (l ~ 1) sources in the lth slot of an on-period in the previous slot. From equations 
(20) and (26), we then get 

00 

})k 

Zo ro(il> i2, ... ) = LL ... 1t(h,i2,···lil,jz •... ) ro(jbh, ... ) (zO)k=1 
hh 

Hence, we obtain the following equation for the pgf n(Xl, x2, ... ) : 

(28) 
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As can be expected intuitively, it is possible to show that the solution n(Xl' x2, ... ) of (28) has 
the same fonn of expression as the pgf D(xl' x2' ... ) of the unconditional cell arrival process. 
Specifically, n(xl' x2, ... ) can be expressed as 

(29) 

where (J~ (n ~ 1) is the (conditional) probability of finding a source in the nth slot of an on­
period, when the number of cells in the buffer is extremely large. From equations (9), (21), 
(28) and (29), an expression can be derived for nt~l(zO)' X2(zO), ... ). Also, from equations 
(10) and (12), we obtain an expression for G'(zo). Finally, after some algebra, we fmd 

Consequently, the two parameters zo and 9 of the geometric tail approximation have been 
determined. It is then easy to calculate the probability Prob[s > S] that the buffer contents 
exceeds a certain threshold S, which is often used in practice to approximate the cell loss ratio 
in a finite buffer with a waiting room of size S, i.e., the fraction of the arriving cells that is lost 
upon arrival because of buffer overflow. 

1.0E+OO 10 
1.0E-Ol --=:::::==- --- ---~ 
1.0E-02 '--1.0E-03 

'<:: 
1.0E-04 

en 1.0E-05 ~ 
A 
'" 1.0E-06 " :g-
Il:: 1.0E-07 " 1.0E-08 K=1 " 1.0E-09 " 1.0E-1O "-

1.0E-11 "-
1.0E-12 
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S 

Figure 2 Prob[s > S] versus S : exact results (solid lines) and heavy-traffic approximation 
(dashed lines), for N=8, p=O.9, and a negative binomial distribution for the on-period length. 
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In Figure 2, we compare Prob[s > S] calculated from (22) and (30), with the heavy-traffic 
approximation calculated from (24) and (30), for N=8, p=O.9, a negative binomial distribution 
for the on-period length and various values of K. We see that for p=0.9, the heavy-traffic 
approximation based on the fIrst 2 moments of the on-period distribution is quite accurate, and 
somewhat overestimates Prob[s > S]. Hence, we may conclude, that for very high utilization, 
the "overflow probability" is nearly independent of higher-order (~ 3) moments of the on­
period length. 

6 THE HETEROGENEOUS TRAFFIC CASE 

In this section, we consider the case of heterogeneous traffic sources. We assume that there 
are T traffic types, and for traffIc type t, there are Nt sources. The mean and the tail distribution 
of the system contents can then be derived in a similar way as described above for the 
homogeneous traffic case. SpecifIcally, the mean system contents E[s] is given by 

(31) 

Here p is the total load into the multiplexer and crt' Kt and Lt denote the load, the burstiness 
factor and the variance factor respectively, of a source of traffic type t. The dominant pole Zo 
of S(z) is determined by the set of equations 

T Nt 

z - n[~t +(1- ~t h:1,t(Z)Z] = 0 (32) 

t=1 

and hence Zo can easily be obtained by means of the Newton-Raphson algorithm. The residue 8 
is given by 

where 

7 NUMERICAL EXAMPLES 

We will now illustrate the above analysis by means of some numerical examples. In order to 
show more clearly the influence of various traffic parameters of the sources on the multiplexer 
performance, let us fIrst consider the case of a single traffic type. In Figure 3, we have plotted 
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the mean system contents E[s] in tenns of the total load p=Na, for N=16, K=5, and various 
values of the variance factor L of the sources. The figure shows that for given values of p and 
K, the variance of the on-period lengths strongly influences the mean system contents. The 
figure also indicates a considerable decrease in perfonnance as L increases. 
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~ 
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P 

Figure 3 Mean system contents E[s] versus the load p, for N=16 and K=5. 

Next, we consider the following examples for the pgf A(z) : 

2 
A (z)= (1-1) z 

2 (1-"(2')2 
A ( ) _ (l-a)z 

3 z ---- , 
l-az 

i.e. constant-length on-periods, a negative binomial distribution and a geometric distribution 
respectively. In order to study the impact of the variance of the on-periods on the "overflow 
probability" Prob[s > S], we choose the parameters of these distributions such that the mean 
on-period length A'(l) is equal to m in all cases, which corresponds to choosing 

a=m-l and y=m-l 
m m+l 

The corresponding variances of the on-period lengths are then 

var1 =0; var2 =t(m-l)(m+l); var3 =m(m-l) . 

In Figure 4, Prob[s > S] is plotted versus S, for N=16, p=O.8, K=5 and the above 3 
distributions for the length of the on-period. The corresponding variances of the on-period 
lengths are then varl=O, var2=13.35 and var3=22.44. The variance factors are given by L1=O, 
~=O.595 and L3=1. It is clear that for given values of p and m, the variance of the on-periods 
has a strong impact on the perfonnance. We observe that the perfonnance degrades with 
increasing variance of the on-period lengths. 
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Figure 4 Prob[s > S] versus S, for N=16,p=O,8, K=5, and various on-period distributions, 

Now, we consider a mixture of 2 geometric distributions for the on-period length, Le., 

A(z) = q(l-uI)z + (1-q)(1-u2)z . 
l-ulz l-u2z 

45 

In Figure 5, we have plotted Prob[s>S] in terms of S, for N=8, p=O,8, K=5, L=2 and various 
values of q. We see that in general, Prob[s>S] is not only determined by p, K and L, but also 
depends on higher-order moments of the on-period-Iength distribution. Therefore, as 
mentioned before in Section 5.1, the commonly used assumption that it suffices to take into 
account only the first 2 moments of the on-period distribution should be used with care, 
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Figure 5 Prob[s > S] versus S, for N=8, p=O.8, a mixture of 2 geometric distributions for the 
length of the on-period, K=5, L=2 and various values of q. 
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Figure 6 Mean system contents E[s] versus the load p, for T=2, N1=N2=4, K1=K2=K, a 
geometric distribution for the on-period length, 0"1=a 0"2, K=5, 50, 500 and a=O (dotted lines), 
a=O.2 (dashed lines), a=l (solid lines). 

Finally, we consider a multiplexer fed by 2 types of traffic sources, where N1=N2=4, 
K 1 =K2=K and the on-periods are geometrically distributed. In order to assess the impact of the 
heterogeneity of the loads of these traffic types, we consider the case that 0"1=a 0"2, for various 
values of a. In Figure 6, we have plotted E[s] as a function of p, for various values of K and a. 
First of all, the figure reveals very clearly the strong impact of the burstiness factor K on E[s], 
for all values of p. Hence, the influence of the absolute lengths of the on-periods and the off­
periods on E[s] is far from negligible, even when the ratio of these lengths is fixed. The 
performance deteriorates considerably as K increases. Secondly, for a given value of K, E[s] 
decreases as the difference between 0"1 and 0"2 increases. This is also intuitively clear. The 
extreme cases are a=l, i.e., 8 homogeneous sources each with load p!8, and a=O, i.e., 4 
homogeneous sources each with load p/4. Since for a=1, a maximum number of 8 cells can 
arrive during the same slot, whereas for a=O, this number is limited to 4, it is expected that the 
case a=1 will lead to a higher E[s]. However, the impact of the heterogeneity of the loads is 
limited as compared to the strong influence of the burstiness of the sources. 
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