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Abstract 
We investigate a multiplexing scheme for ATM that statistically multiplexes VCs of the 
same service, but does not statistically multiplex across services. The scheme is imple­
mented by allocating bandwidth to each service. In the static version, the allocations are 
fixed; in the dynamic version, the allocations depend on the numbers of VCs in progress. 
Under minimal assumptions, we show that the distribution of the VC configuration has a 
product form. We use the product-form result to construct an efficient convolution algo­
rithm to calculate VC blocking probabilities. We give a numerical example that demon­
strates the rapidity of the algorithm and the potential efficiency of separable statistical 
multiplexing. 
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1 INTRODUCTION 

It has long been known that statistical multiplexing of cell streams of the same service 
type can be highly cost efficient. This is true for delay-sensitive as well as delay-insensitive 
services. For example, statistical multiplexing of packet streams emanating from voice 
sources has long been used by telephone companies to increase efficiency, particularly on 
overseas links (Sriram, 1993). 
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On the otherhand, statistical multiplexing of VCs across services rarely gives signifi­
cant gains in performance when services have greatly different QoS (Quality of Service) 
requirements or greatly different cell generation properties (Gallassi,1990), (Takagi, 1991), 
(Bonomi, 1993). Indeed, if services with greatly different QoS requirements are statisti­
cally multiplexed, then an overall QoS must realize the most stringent QoS requirement 
; thus some services enjoy an overly generous QoS, leading to inefficient use of resources. 
Similarly, if services with substantially different traffic characteristics are multiplexed, 
then the cell loss probabilities for the various sources can differ by more than one order 
of magnitude; thus the network has to be engineered for a QoS requirement that may be 
overly stringent for a large fraction of the traffic. 

A more serious problem is that with statistical multiplexing across services it is difficult 
to determine the acceptance region for admission control. The analytic models of cell loss 
for multiplexers which integrate multiservice VCs are not always accurate, and they typi­
cally rely on dubious assumptions. Determining the acceptance region with discrete-event 
simulation is also difficult, since the QoS requirements must be verified at each boundary 
point of the multidimensional acceptance region, and because the cell loss probabilities 
are minuscule. 

In this paper we investigate a multiplexing scheme for ATM that statistically multi­
plexes VCs of the same service, but does not statistically multiplex across services. We 
refer to this scheme as separable statistical multiplexing. In many scenarios this scheme is 
almost as efficient as statistical multiplexing across and within services. Moreover, deter­
mining the acceptance region for separable statistical multiplexing is substantially easier, 
whether by analytic models or by discrete-event simulation. 

Although separable statistical multiplexing has been proposed by many authors, under 
different names, analytic models to evaluate its VC-level performance are not available in 
the literature to the best of our knowledge. Explicitly taking into account cell-level QoS 
requirements of the heterogeneous services, we develop an analytic model for estimating 
VC blocking probability for separable statistical multiplexing. We make only two assump­
tions in our model: (1) VC establishment requests arrive according to Poisson processes; 
(2) If a VC establishment request finds insufficient resources available, it is blocked and 
lost. We make no assumptions about the distribution of VC holding times, nor about the 
cell generation processes of the heterogeneous sources. Our analytic model leads to an 
efficient convolution algorithm to calculate VC blocking probabilities. 

In Section 2 we define separable statistical multiplexing. In Section 3 we develop an effi­
cient convolution algorithm to calculate VC blocking probability. In Section 4 we present 
some examples and numerical results. 

2 SEPARABLE STATISTICAL MULTIPLEXING 

Types of services 

Going by different names, separable statistical multiplexing has been proposed for ATM 
by many authors (for example, Gallassi et al (1990), Sriram (1993), Bonomi et al(1993)). 
We describe this scheme with the aid of Figure 1. In Figure 1 there is a multiplexer that 
schedules for transmission on the link the cells that are queued in the buffers. Each buffer 
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aggregates the cell streams from one or more VCs. In Figure 1, the first buffer collects cells 
from VCs emanating from voice sources; the second from Continuous Bit Rate (CBR) 
video sources; the third from Variable Bit Rate (VBR) video sources; the fourth from 
LAN-LAN interconnection sources; and the fifth from delay insensitive sources, such as 
low-speed data, bulk data, and video delivery. Thus we have classified the VCs into four 
real-time services and one non-real-time service. The analytic model that we describe in 
the next section is independent of this classification, however. The number nk next to 
the kth real-time service denotes the number of VCs of this service that are currently 
in progress. Except for the delay-insensitive services, we assume that the VCs belonging 
to the same service have identical cell generation statistics. Thus, if the multiplexer were 
to support two different types of video VBR - say, VHS and HDTV quality - then two 
services would have to be distinguished for video VBR. 

l> ~ Voice VC's 
l> nl 

l> M 
VC's CBR video 

U 
l> n2 L 

T 
l> I link with capacity C VC's VBR video P 
!O 

n3 L 
E 
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VC's interconnection R 

31 
n4 

VC's ~lay-insensitive V l> services 

Figure 1 An ATM multiplexer integrating multiple services. 

We assume throughout this paper that the buffer capacity allocated to each service is 
fixed. If a cell of a specific service arrives to find its buffer full, it is lost. Priority schemes 
for which a high-priority cell pushes out of the buffer a low-priority cell from the same 
service can also modeled. We neglect such priorities, however, in order not to obscure our 
main points about admission control. 

Each service has a QoS requirement, which might be defined in terms of cell loss, cell 
delay, cell jitter, or a combination of these measures. The multiplexer must serve each 
buffer with sufficient frequency in order for the QoS requirements to be met for all VCs in 
progress. Obviously, the frequency with which the kth buffer must be serviced increases 
with nk, the number of service-k VCs in progress. 
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Equivalent capacity 

Before defining separable multiplexing, we digress and consider a link multiplexing n 
permanent service-k VCs, but no VCs from services other than k. This multiplexer's 
buffer is the kth buffer in the original multiplexer. Denote f3k(n) for the minimum amount 
of link capacity needed in order for the QoS requirements to be met for the n service-k 
VCs. We call this function the service-k capacity function. Since f3k(') is a function of 
a single parameter n, it should not be difficult to determine. For a CBR service and for 
peak-rate multiplexing the capacity function takes the form f3k(n) = bkn, where bk is the 
bit rate of a single VC. For bursty sources, the capacity function will reflect the economies 
of scale associated with statistical multiplexing : as n increases, the capacity function will 
increase, but its slope will decrease. 

In particular, since this system involves only one service, it is substantially easier to 
analyze with discrete-event simulation than analytically a multiplexer which integrates 
multiple service types and allows statistical multiplexing across services. Furthermore, 
numerous simple, analytic models are available in the literature for approximating the 
capacity function for multiplexers with homogeneous sources. These models determine 
the equivalent capacity needed by n bursty homogeneous sources for a given QoS. 
(There are also in the literature some analytic models for heterogeneous sources, but 
they are not always accurate and depend on questionable assumptions.) Throughout the 
remainder of this paper we assume that the capacity functions are known. In Section 4, 
as an example we shall use one of the popular anaytical models for homogeneous sources 
to construct capacity functions. 

Static Partitions 

We now define separable statistical multiplexing. There are two versions: static partitions 
and dynamic partitions. 

Consider again the multiplexer in Figure 1 with link capacity C. It is convenient to gen­
eralize the model so that there are K buffers for K delay-sensitive services and another 
buffer (labeled 0) for all the delay-insensitive services. Partition the capacity C into allo­
cations Co, .. . , CK such that Co + ... + CK = C. The K + 1 buffers are served by the link 
in a weighted round-robin fashion, with the weights being proportional to the capacity 
allocations. For example, if K = 2, C = 150, Co = 10, Cl = 40, C2 = 100, then in a cycle 
of fifteen cells, the first buffer is served one time, the second four times, and the third 
ten times. If during the cycle the multiplexer finds one of the buffers empty, it instead 
serves the Oth buffer (delay-insensitive services). There are several specific algorithms in 
the literature for weighted round-robin scheduling; for example see the fluid algorithm of 
Parekh and Gallager (1992,1993-1) or the dynamic-time-slice algorithm of Sriram (1993). 
Instead of this schedule, we could also use the Generalized Processor Sharing (GPS) 
scheduling (Parekh,1993-2) which is generally implemented in ATM multiplexers. In fact, 
the scheduling scheme has no consequence on our call admission technique. 

Separable statistical multiplexing with a static partition admits a newly arriving 
delay-sensitive service-k VC if and only if f3k(nk + 1) :::: Ck when nk service-k VCs are 
already in progress. Thus this scheme statistically multiplexes VCs within the same service 
k, but does not allow service-k VCs to interfere with service-j VCs for all j # k. Note that 
this scheme coupled with the round-robin service mechanism essentially guarantees that 
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the QoS requirements are met for all VC configurations. We write "essentially" because 
the cells from the kth service are not served at a constant rate of Gk , as is required in 
the definition of f3k{n). Instead, due to the round-robin discipline, these cells are served 
at rate G in batches; but the average service rate is Ck and the fluctuation should be 
negligible if the granularity of the round robin discipline is sufficient. 

Dynamic Partitions 

Since VC arrivals are random, there will be time periods when the number of VC es­
tablishment requests for a particular service are unusually large. With static partitions, 
the VC blocking for this service might be excessive during these periods. The following 
multiplexing scheme alleviates this problem by dynamically allocating bandwidth to the 
services. It is similar to the scheme proposed by Gallassi et al (1990) and to the scheme 
proposed by Sriram (1993). Let f30 be a number less than G. 

We again assume that the buffers are served by the link in a weighted round-robin fash­
ion, but now with the weights being proportional to f3o,f31{nl),'" ,(h{nK)' For example, 
suppose K = 2, nl = 4, n2 = 6, f31(4) = 50 Mbps, f32(6) = 80 Mbps, and f30 = 10Mbps. 
Then in a cycle of 15 cells, the first buffer is served 5 times, the second eight times, and 
the third (for time-insensitive services) is served two times (once for its allocation and 
once because there is a free slot in the cycle). Again, if during a cycle the multiplexer finds 
one of the buffers empty, then it instead serves the buffer for delay-insenstive services. 
Thus the round-robin weights dynamically change, but on the relatively slow time scale 
of VC arrivals and departures. 

Separable statistical multiplexing with dynamic partitions admits a newly ar­
riving service-k VC, k = 1, ... ,K, if and only if 

(1) 

This scheme again statistical multiplexes the VCs of the same service, but it does not 
limit a service to a fixed bandwidth allocation. Indeed, anyone delay-sensitive service can 
consume up to G - f30 of the bandwidth over a period of time. This scheme coupled with a 
dynamic round-robin service mechanism essentially guarantees that the QoS requirements 
are met for all VCs. 

3 PERFORMANCE EVALUATION 

In order to simplify the discussion, we henceforth assume that all services are delay­
sensitive. Thus there is no longer a buffer delay-insensitive traffic in our model. We also 
assume that service-k VC establishment requests arrive according to a Poisson process 
with rate ).k. The holding time of a service-k may have an arbitrary distribution; denote 
l/!-Lk for its mean. Also let Pk := ).k/ !-Lk· 

We can easily analyze VC blocking for static partitions. The maximum number of 
service-k VCs that can be present in this system is Lf3;I{ Ck)J. Since there is no interaction 
between services, the probability of blocking a service-k VC is given by the Erlang loss 
formula with offered load Pk and capacity LB;I( Gk)J. 

Each partition (GI , ... , GK ) defines one static partition policy. If we define a revenue 



248 Part Six Traffic Management 1 

rate Tk for each service k, we can employ dynamic programming to find the optimal 
separable multiplexing policy with static partitions; see Ross (1995). 

For the remainder of this paper we focus on separable statistical multiplexing for dy­
namic partitions. The set of all possible VC configurations for this scheme is 

where n:= (nl, ... ,nK) is a VC configuration. Of course AS is a subset of A, the set of 
all possible VC configurations that meet the QoS requirements (including those resulting 
from statistical multiplexing across services). Nevertheless, AS may closely approximate 
A for certain scenarios, in which case little is lost by disallowing statistical multiplexing 
across services. 

We now present a methodology for calculating VC blocking probabilities for separable 
statistical multiplexing with dynamic partitions. Let 1l"(n) , n E AS, be the equilibrium 
probability of being in VC configuration n. 

Theorem 1 The equilibrium probability that the VC configuration is n has the following 
product form: 

1 K pnk • 

() II nEA' 1l"n =-G -I' 
k=l nk· 

(2) 

where 

(3) 

Proof. First assume that the holding times are exponentially distributed and that C = 00. 

Then the stochastic process corresponding to nk is a birth-death process with equilibrium 
probability 

(4) 

Furthermore, the K birth-death processes are independent, and hence the joint stochas­
tic process corresponding to n is reversible. Imposing a finite value for C corresponds to 
truncating the state space of the joint stochastic process. The resulting truncated pro­
cess has the equilibrium probabilities given above (Kelly, 1979). Finally, it follows from 
standard arguments that this result is insensitive to the holding time distributions (Kelly, 
1979). 0 

The set of VC configurations for which a newly arriving service-l VC is accepted is 
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Therefore, from Theorem 1, the probability of blocking a newly arriving service-l VC is 

(5) 

Thus, to obtain the probability that a service-l VC is blocked, it suffices to calculate the 
sums in (11). One possible approach is to use Monte Carlo summation for loss networks 
(Ross and al, 1992) (Ross, 1995). Another way for calculating blocking probabilities is to 
use a recursive algorithm as developed by Kaufman (1981) but it only works when the 
(3k(n) functions are linear; it not the case here (see figures 2 and 3 as examples of (3k(n) 
functions). Below we give alternative approach based on a convolution algorithm. 

Henceforth assume that (3k(n) is integer valued. Consider calculating the sum in de­
nominator of (11): 

(6) 

Note that 

G 
K n. 

a L n e-P'!!.L 
nEA'k=1 nk! 

a L P(Y1=n1, ... ,YK =nK) 
nEA' 

== aP({31(Y1) + ... + (3K(YK) ::; C) 
c 

a L P({J1(l1) + ... + {JK(YK) = c) 
c=o 

where 

(7) 

and the Yk's are independent random variables, with Y" having the Poisson density 

n = 0,1,2, ... (8) 

Let 

(9) 

and 

(10) 
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Then 

c 
G = a I)g10'" 0gK )(c), (11) 

c=o 

where 0 denotes the convolution operator, that is, 

(g10g2)(c) = z= 9l(d)92(C - d). (12) 
d=O 

Since i3k(') is (almost certainly) an increasing function, it should not be difficult to 
obtain the gk'S. The K - 1 convolutions in (??) can be done in a total of O(KC2) 

time. (This complexity depends on the granularity of the units for C.) Calculating the 
numerator in (??) can be done in the same manner by replacing f31( n) by f31( n + 1) for all 
n. The techniques in Section 3.5 of Ross (1995) can accelerate the calculation of the K 
blocking probabilities, Bl"'" BK . 

We conclude this section by mentioning some generalizations and extentions. First, the 
assumption of Poisson arrivals can be relaxed - the same convolution algorithm can be 
used for arrival rates of the form Ak( nk) and, in particular, for finite-population arrivals. 
Second, since derivatives of blocking probabilities can also be represented in terms of 
normalization constants, the above convolution algorithm can also be used to obtain 
these performance measures. Third, our model for separable multiplexing can be used to 
obtain the optimal admission control policy subject to the constraint that the statistical 
multiplexing is separable; see Ross (1995). 

4 NUMERICAL EXAMPLE 

As we mentioned earlier, the capacity functions, f3k(')'S can be obtained with discrete­
event simulation or approximated analytically. We now outline one analytical approach, 
due to Guerin et al (1991). For k = 1, ... , K, assume the following QoS requirement for 
a service-k VC: No more than the fraction 15k of the VC's cells may be lost. 

Digress again and consider a multiplexer supporting n permanent service-k VCs. As­
sume that each VC alternates between On Periods and Off Periods. The VC generates 
cells at the peak rate during an On Period; it generates no cells during an Off Period. 
Let b denote the peak rate (in the same units as C) during an On Period. Assume that 
the lengths of these periods are independent and exponentially distributed. Denote .6. for 
the average On Period (in seconds). Denote u for the utilization of a VC, that is, the 
average On Period divided by the sum of the average On Period and the average Off 
period. Let Q be the capacity of the input buffer and E be the QoS requirement. Guerin 
et al approximate the capacity function as follows: 

( 13) 
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where 

(1) In(c)Ll(u - l)b - Q + J[ln(€)Ll(u - l)b - QJ2 + 4Qln(c)Llu(u - l)b 
13k (n) == n[ 2In(c)Ll(u -1) 1 (14) 

and 

f3i2) ( n) == nbu + bJnu(l - u)J -2In( c) -In(27r). ( 15) 

Clearly this method for estimating f3k(n) is quite simple. Note that b, E, Ll, and U are 
different for different services. 

Our numerical example is for a multiplexer of capacity C == 150 Mbps, integrating three 
delay-insensitive services (K == 3). We set the buffer capacity, Q, equal to 6 Mbits for 
each service. We have used the following parameters for the three services as defined in 
Table 1. 

Table 1 Parameters for Multiplexer with Three Services 

Class Peak Burst Utilization QoS 
k Rate Length Uk Ek 

bk Llk 

IMbps 100msec 0.4 10-5 

2 10Mbps 100msec 0.2 10-4 

3 5Mbps 100msec 0.5 10-6 

We use the above procedure to determine the capacity functions for the three services. 
We have rounded up all the f3k(n)'s to the nearest integer. Figure 2 compares the used 
capacity for service 3 and three allocation schemes: mean rate, peak rate and equivalent 
capacity. We see that curves for mean rate and peak rate are linear because each time a 
new connection arrives the capacity increases by 2.5 Mbit for mean rate and by 5 Mbit for 
peak rate. At the opposite, the f33{n) is not linear. The mean rate function gives always 
the minimal capacity but does not guarantee the QoS. At the opposite, the peak rate 
function is maximal. 
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Figure 2 Capacity for peak rate, mean rate and equivalent capacity allocation schemes 
versus number of VCs (service 3). 
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Figure 3 Equivalent capacity for the three types of services depending on the number 
of VCs. 
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Figure 3 presents the !11e{n)'s for the three services versus n. They logically increases 
with n and depends on their peak rate. 

0.35 .----........ --"""'T---,....--....... ----.-----. 

0.3 

0.25 

0.2 

blocking 
probability O.15 

0.1 

0.05 

12 14 16 
offered load 

18 20 22 

class 1 ~ 
class 2 +-­
class 3 .Q-

Figure 4 Blocking probabilities for the three classes versus offered load. 

Figure 4 presents the blocking probabilities for separable statistical multiplexing ob­
tained from the convolution algorithm. In this and the subsequent figures we set PI = 
P2 = P3 and plot blocking probabilities as a function of Pl' The amount of time required 
by the convolution algorithm for a specific value of PI is less than a second on a SPARe 
2 workstation. 

Figure 4 shows that blocking probabilities depend mainly on the peak rate ble as bl is 
upper to b3 which is upper to b2 . They depend also on mean rate b/cu/c of the service, 
and to a lesser extent on the QoS parameter because probabilities for class 3 are close to 
those of class 2. As expected, service-1 VCs have the lowest blocking probability because 
of their low peak and average cell generation rates. It is interesting to note that although 
class-2 has a lower average rate and a less stringent QoS requirement than class-3, it has 
a higher VC blocking probability. This is due to its high peak rate, which renders its cell 
stream very bursty. We also note that VC blocking probabilities greatly vary from service 
to service. 

Figures 5 to 7 compare the performance of separable statistical multiplexing to peak­
rate multiplexing. There is one figure for each service. The curves for peak rates are 
obtained by setting !1/c{n) = b/cn for all services. 

As expected, these figures show that the blocking probabilities for separable statistical 
multiplexing is less than that for peak-rate multiplexing. What may be surprising is 
how dramatic this difference in performance can be. For example, with Pl = 12, the 
blocking probabilities for all three services with separable multiplexing is less than 1% ; 
this blocking probability is roughly 4%, 33%, and 19% for the three services with peak-rate 
multiplexing. The curves for statistical multiplexing with statistical multiplexing across 
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Figure 5 Blocking probabilities versus offered load for service-l VCs. 
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Figure 6 Blocking probabilities versus offered load for service-2 VCs. 
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Figure 7 Blocking probabilities versus offered load for service-3 VCs. 

classes would lie somewhere below the curves for separable statistical multiplexing. We 
conjecture that they would be not far below. 

5 CONCLUSION 

We have developed an efficient convolution algorithm to estimate VC blocking proba­
bilities for separable statistical multiplexing. The numerical results show that separable 
statistical multiplexing can give substantial gains in performance over peak-rate multi­
plexing. 

There are several related problems that merit attention. (1) A detailed study comparing 
the blocking probabilities for separable statistical multiplexing with "maximal multiplex­
ing", that is, multiplexing across and within services. Estimating blocking with maximal 
multiplexing would require discrete-event simulation at the cell. (2) For separable sta­
tistical multiplexing, a cell-layer simulation should verify that the QoS requirements are 
indeed met with the weighted round-robin scheduling disciplines. (3) A theory for sepa­
rable statistical multiplexing for networks should be developed (see Ross, 1995). 
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