
14

On the prediction of the stochastic behavior
of time series by use of Neural Networks­
performance analysis and results

M. D; Eberspaecher
University of Stuttgart, Institute of Communications Switching and Data
Technics
Seidenstrasse 36, 70174 Stuttgart, Germany, Phone: +49 711 1212482,
Fax: +49 711 1212477, E-mail: eberspaecher@ind.uni-stuttgart.de

Abstract
In time series theory, the prediction of future values is a widely discussed subject. There are
manyfold methods to derive models from data. One of the main objectives is to obtain the
model parameters. Some proposals use self adapting techniques like Neural Networks to esti­
mate the model parameters. Most of these approaches predict one future value of a time series.
Some simulation tasks require models for traffic sources that are closely related to time series
prediction though there exist different requirements. One of them is that a simulated traffic
source should show the same stochastic behavior as a reference source. In this paper a proce­
dure is presented that automatically adapts to a given reference source in the sense described
above.

Keywords
Time series, prediction, Neural Networks, source modelling

1 INTRODUCTION

General
The analysis of time series is an extensively developed area of mathematics. There are many
approaches to model dynamic systems. They can be classified as follows: linear, linear sto­
chastic, nonlinear and nonlinear stochastic dynamic systems. Nonlinear systems may show
chaotic behavior, depending on system parameters. There is a sliding transition from systems
with a random disturbance to systems with probabilistic transitions between states. In addition
seasonal effects and trends may be observed.

Depending on the underlying system an appropriate model has to be found. ARMA and
ARIMA models (Auto-Regressive-Moving-Average and Auto-Regressive-Integrated-Moving­
Average, respectively) represent simple methods to model linear and linear stochastic systems
in a suitable way. ARlMA models often are used when trends have to be considered. For other

S. Fdida et al. (eds.), Data Communications and their Performance
© Springer Science+Business Media Dordrecht 1996

212 Part Five Source Modelling

sequences, more sophisticated methods are required (Janacek, 1993, Harvey, 1993, Hamilton,
1994).

Nonlinear models are necessary to adequately model nonlinear and nonlinear stochastic sys­
tems. Here chaotic behavior of time series might occur and has to be identified since chaotic
series must be treated differently than stochastic time series, see Scargle (1992).

However, many problems need their own specific solutions (Brillinger, 1992, Weigend,
1993). Most of these approaches share the following characteristics: firstly, as much informa­
tion as possible about the characteristics of the underlying data is collected and, secondly, a
model that covers the essential features is deduced.

Most procedures that deal with forecasting future values predict one (the next) value based
on a set of N past values. The selection of N is not trivial since it determines the prediction
quality and depends on the observed dynamic system. Some remarks how to determine useful
values of N can be found in Scargle (1992).

All methods mentioned above share one disadvantage: they are inflexible in terms of chang­
ing stochastic behavior of the underlying data. These changes have to be taken into account by
the model and increase its complexity very much.

Time series models that are able to deal with changing parameters should be based on an
architecture that is inherently able to automatically adapt to these changes. This architecture
could be based on a Neural Network. Until today there are not many approaches that use a
Neural Network (NN) architecture. Their advantage primarily consists in their ability to learn a
given behavior without the exact knowledge of the underlying system and without difficult
analysis needed for modelling. One disadvantage is that no detailed and understandable model
of the underlying system is built.

These models are most often used for prediction: Chakraborty (1992) presents a neural net­
work to multivariate time series analysis, Deppisch (1994), Lowe (1994) and Hudson (1994)
use neural network algorithms to predict chaotic time series. Mozer (1993) presents a general
taxonomy of neural net architectures for processing time-varying patterns. In Tang (1994) a
neural net approach is compared to the Box-Jenkins methodology. Wan (1993) presents a
somewhat different method that uses a neural net with internal delay lines, i. c. a neural net
with inherent memory.

Source modelling is an area where the generation of future values is frequently used.

Source modelling
In source modelling the generation of deterministic new values from given data such as fore­
casting exchange rates is often of no particular interest. In contrast to that, a random data
sequence is generated by a stochastic model. Every new value is randomly chosen from a
given distribution depending on the state of the model. State changes are most often defined by
a state transition probability function that may be nonlinear and depend on past states. Source
modelling is frequently used for traffic generation in the simulation of communication net­
works, in the simulation of manufacturing plants or in measurement technology. Since this
paper concentrates on communications all the examples will relate to this area.

Multiple traffic sources built from the same model must be statistically independent from
each other. A simple reproduction of measured data from a file (play back) is not sufficient. A
shifted play back from a file where one traffic sequence starts at one point and another traffic
sequence starts at another point of the file is not sufficient, too, because of the strong correla­
tions (especially when the file is short or when many sources are needed). Even in the case of
very long files problems might occur in large simulations. This leads to the conclusion that
reproduction from files is inflexible.

Like in conventional time series analysis ARMA models can be used for source modelling
but they don't fit very well because of nonlinearities in almost all systems. There are some
approaches employing Neural Networks that avoid this problem but most of them don't fulfill
all reqUirements for source modelling.

Stochastic time series production with neural networks 213

lime eries lime erie

Figure 1 Principle of source model. Figure 2 Extended principle of source model.

In Tarraf (1993, 1994) NNs are used for modelling an ATM cell stream (Asynchronous
Transfer Mode) without adding a random component. This kind of modelling is sufficiently
exact, but not very useful for simulation.

How can traffic models be obtained? This is a simple task when only distributions are of
interest and no correlations. Distributions might stem from measurement. The task can become
very difficult when correlations must be taken into account. In this case an ARMA process
might be profitably used, but how to obtain the model parameters? Another problem is that
ARMA models are normally driven by white noise with the consequence that negative values
are possible in any case, even if they are not allowed. Gruenenfelder (1991) shows an example
for source modelling using an ARMA model. Here the parameters are partly estimated from
the measured data and partly calculated via the frequency domain.

Most of the cited approaches (Gruenenfelder (1991) is an exception) lead to a deterministic
behavior of the model in the way that they calculate a new value based on some observations,
without adding any noise. Neural Network based models that adapt to a given time series dur­
ing a learning phase therefore do not learn the stochastic behavior but the conditional expecta­
tion of future values.

In the following parts of this paper a new method is presented that adapts a source model to
many different random processes or time series. It uses Neural Networks to automatically learn
the stochastic behavior of the underlying data and therefore avoids some of the problems of
other models. The adaptation process is fully automated and only a few topological model
parameters have to be estimated from the data.

Automatic source identification
The advantage of automatic source identification is a gain in productivity and saving of money
since computational power is much cheaper than man power today. The disadvantage is the
reduced possibility of interpretation of the generated source model. Only very few topological
parameters have to be estimated from the data. All random processes that are weakly stationary
and that have some seasonal effects can be modelled.

The objective of the identification procedure is to model the distribution and autocorrelation
of a time series as good as possible. Some simple tools for evaluation are presented later in this
paper, see section 3.

Figure I shows one principle of this approach. Suppose that the content of the box named
"source model" is already adapted to the data. The scalar value xk is the output value of the

modelled traffic source. N time delayed output values form the input vector i k

(I)

214 Part Five Source Modelling

The elements of ik form the embedding space coordinates with dimension N. To determine a
suitable value of N a simple approach is used. The sample autocorrelation function of the
observed time series is calculated and evaluated. In the case of periodic signals N is chosen to
be greater than the period length. In the case of vanishing autocorrelation N is chosen to be

equal the lag where the absolute value of the autocorrelation falls below 1.96/ JT, where Tis
the sample size (see Figure 8,a). It is assumed that autocorrelation values less than this value
are based on white noise, see Harvey (1993).

The shift register forms a memory of the past. This is the only memory of the model. The
vector ik is fed into the "source model," the output of which is the newly generated value. This
output is fed back to the shift register, delayed by one step. So the number generating loop is
closed.

Figure 2 provides a more detailed view. The source model is now divided into two parts, the
distribution prediction (DP) and the random number generation (RNG). The RNG simply
draws a new number according to the distribution density at its input. The general inverse­
transform method is used as RNG algorithm, see Law (1991). For every input vector the DP
block computes (predicts) the distribution of the following output value.

This model can be described by some equations. The internal state of the DP is a function of
the input vector ik :

(2)

The density function at the output can be expressed as a function of the internal state and
therefore depends on the input vector ik , too:

(3)

The output value of the model, xk ' is chosen according to the density Gk .

In Section 2 the components of the distribution prediction including the learning process are
described. In section 3 some measures for performance evaluation are introduced and in sec­
tion 4 some examples of time series that are learned and predicted by applying the new source
model are presented.

2 DISTRIBUTION PREDICTION

At first the scenario shown in Figure 3 is examined. N values of a time series preceding the cur­
rent value xk are fed to a black box named "distribution prediction." Inside this box the predic-

tion ofthe distribution of the actual value is computed. For each vector ik at the input there is a
distinct distribution at the output.

Before continuing the theoretical model description the correspondence between distribution
and correlation has to be clarified. The occurrences of vectors ik obey an N-dimensional distri-

bution g in the embedding space ':)\N. From g the autocorrelation of the series x k can be
derived, see Papoulis (1984). Therefore it is sufficient for the model to learn a good approxi­
mation of g to model the autocorrelation of the underlying time series.

The actual value x k and the input vector ik are now treated as one (N+ I)-dimensional vector

x k = (xk, ik) with an (N+ I)-dimensional distribution function

F(Xk,Xk_ P ..• 'Xk _ N) = P{Xk:O;xk, ... ,Xk_N:O;Xk_ N}

and density function

(4)

Stochastic time series production with neural networks 215

lime series

Xl __ _____ .J

Figure 3 Principle of distribution prediction.

aN
{(Xk, Xk _ I ' ... , Xk _ N) = a a F (Xk, ... , Xk _ N) . (5)

X k .. • Xk _ N

Without loss of generality k is now set to 0 for simplicity. Then the density function becomes

f(xo, x _I' .. . , x_N) . (6)

For distribution prediction the conditional distribution of Xo for distinct values of the input

vector i k is needed. This is done by local approximations of parts of this distribution. For the
local approximation the N-dimensional embedding space that belongs to the input vector is
quantized into M discrete vectors

Pi = l x~p ". ' X~N), i = 1, .. . ,M. (7)

This task is carried out by a vector quantizer (VQ).

Each vector Pi points to the center of a region Ii of 9iN . In these regions the density function

of xo' (6), is approximated by the function [; (xo) . The union of all regions Ii fwms the N­

dimensional space 9iN •

The approximation in region I; is defined by the mean value of density (6) in this region:

(8)

where

(9)

Ii

This leads to the following error inside region Ii (the error measure is the squared difference

betweenf(...) andfi(" ' »:

Ei = f[J .. · fl(xo,tl' .. . ,tN)dtl ... dtN]dxo-VOI(l)' jt(Xo)dXo - ~ -,
(10)

216 Part Five Source Modelling

lime cries time series

"1 DAIII

veClor "1 DAII2
qunmizer

(VQ)

"1 DAIIM

ill

Figure 4 Learning ofDP. Figure 5 Prediction with VQ and DA's.

To compute the total error that results from quantization some features of the vector quan­
tizer need to be known. This VQ adapts to the xk in a way that all regions (are equally prob­
able for the given time series. The algorithm used is partly taken from literature and is
described in detail in Appendix A. The resulting total error is:

M

(II)

EG decreases for an increasing number M of regions.

The approximated density fi (xo) is obtained from the given time series, too. A new Neural
Network algorithm was investigated that is able to form a distribution when a sequence of data
is offered to it. This algorithm is presented in the next subsection.

Figures 4 and 5 show the relationship between vector quantizer and distribution approxima­
tion (DA). Whenever an input vector falls into a region of the VQ, the corresponding DA is
chosen for learning or prediction. In other words, the VQ is responsible to detect all correla­
tions, the DA's are responsible for representing distributions.

Figure 4 shows the learning case. The actual value xk is needed here as input for the actual
DA to adapt the distribution. In the case of prediction (Figure 5), when learning is completed,
one DA is chosen by the VQ for prediction of xk •

Distribution adaptation
Figure 6 shows how the distribution adaptation module works. A time series that obeys to a
distinct distribution is given. Minimum and maximum values are not known a priori. The algo­
rithm inside the black box shall form an approximation of the distribution of the given data.
The values of the time series are fed to the input of the adaptation module. The density func­
tion at the output is represented by a piecewise constant function, see Figure 7.

Usually, a distribution is measured by dividing the whole interesting region into small
regions of equal width. The local density inside these regions is calculated from the frequency.
The approach presented here has two advantages compared to normal distribution measure­
ment: firstly, there is no a priori knowledge needed concerning the minimum and maximum
values of the time series, the algorithm adapts automatically to them. Secondly, the regions are
not of equal width and are adapted in order to obtain an optimal split. To achieve a high
approximation quality the density function is approximated finer where it is high and coarser
where it is low. This is achieved by equal probable regions. The region probability is approxi-

Stochastic time series production with neural networks 217

time series density
dj

---W2 w3 • ••••••• •• .

Figure 6 Principle of distribution adaptation. Figure 7 Example of approximated distribution.

mated by the frequency fi of each region. Figure 7 shows a sample approximation function

with L regions. The values wi denote the width of the regions and d; the densities, respec­

tively. The correspondence between width, density and region probability is t; = d;· w; for i

in 1..L.
The algorithm is implemented as a non supervised Neural Network with L computing ele­

ments. There are no other inputs than the events from the time series for learning. The structure
of the NN and the learning rule are described in more detail in Appendix B. In the recall phase,
which is needed for distribution prediction, the output of the trained NN is used as the approx­
imation of a density function.

3 PERFORMANCE ANALYSIS

To test the performance of derived models against the original data (i) the distribution and cor­
relation diagrams can be qualitatively compared or (ii) some quantitative tests can be applied.

In this section some statistical performance measures are introduced that are used for quanti­
tative tests.

3.1 Distribution test

To test the distribution the Kolmogorow-Smirnow test is used. This test compares the empiri­
cal distribution functions of the underlying time series and the time series generated by the
source model. The hypothesis that the source model models the distribution according to a
given significance level is accepted or rejected based on a measure that involves the maximal
difference between the empirical distribution functions.

In all examples in this paper a significance level of 0.05 is used which leads to a critical value

of JT. 1.923 for acceptance of the hypothesis, where T is the sample size of both time series.
For the used sample size of 10000 the critical value becomes 192.

3.2 Autocorrelation test

To test the autocorrelation a pragmatic approach is used: the mean square error (MSE) between
empirical autocorrelation functions of the underlying time series and the time series generated
by the source model. Here once again a distinction has to be made between periodic systems
and pure stochastic systems since in case of periodic systems the autocorrelation function does
not vanish for higher lags.

Vanishing autocorrelation
The maximal lag for calculating MSE is determined as the lag where the absolute value of the

autocorrelation of the underlying time series falls below 1.96/ JT , where T is the sample size,

218

r(t)
maximum

lag

/ L% _______ J~

Part Five Source Modelling

-original
r(t) - - - model

t

a.) Determination of maximum lag. b.) Original and model
autocorrelation.

Figure 8 Tests for correlation.

a. (exp (-~ . MSE) + y

a+c - - - - - - - - - - - - - - -

period

c.) Exponential approximation.

see Figure 8,a. It is assumed that autocorrelation values less than this value are based on white
noise, see Harvey (1993).

In the examples in this paper a threshold of 0.01 for MSE was used for acceptance of auto­
correlation.

Periodic time series
In case of periodicity of the underlying time series the autocorrelation does not vanish. On the
other hand the autocorrelation function of the generated series decreases approximately expo­
nentially, see Figure 8,b.

That is a feature of the source model. To handle this the MSE is calculated for a number of
periods and an exponential function fitted to the resulting error series according to the function

a (exp (-~ . MSE) + y, (12)

see Figure 8,c, where MSE j is the MSE of period i and a, ~, yare parameters to be fitted. The
only interesting parameter is ~ which is used as criterion.

In the examples in this paper a threshold of 0.1 for ~ was used for acceptance of autocorrela­
tion.

4 SOURCE MODELLING - EXAMPLES

In this section some examples of modelling traffic sources are presented. The comparison
between the original time series (reference) and the modelled time series is done by calculating
the correlogram for both of them as well as the statistical tests described above.

Markov modulated poisson process - MMPP
The first example is a MMPP process (Markov Modulated Poisson Process) with two states.
The MMPP is a frequently used traffic model in telecommunications and represents a source
with two activity states. Figure 9 shows a state-transition diagram. The process switches

I-PI

Figure 9 MMPP with 2 states.

Stochastic time series production with neural networks 219

between the two states with probabilities 1 - PI and 1 - pz, respectively. The expectation of

event values in the states are m l and mz. The parameters for the example are PI = pz = 0.8,

m l = 0.1 andm2 = 15.

For distribution prediction N=5 VQ inputs and M=2 VQ units were used, thus having 2 dis­
tinct distributions approximated. L=IOO segments were used for the approximation of each dis­
tribution. Figure 10 shows the resulting distribution functions of the approximation. Note that
these distribution functions are not the same than those of the two states of the underlying sys­
tem since they include the probabilities of state changes, too.

The correlograms in Figure II differ to a slight extent, because only two distribution approx­
imation units have been used in this example. See Table 1 for results.

c
o
';j 0.8
u
c
~

\1-1 0 . 6
c
o
.~ 0. 4

".l
><
.~ 0 . 2
'0

10 20 30 40

time series values

Figure 10 MMPP: Distribution functions.

50

Reference:

.8 0. 6
Model:

" ' ~ 0 .4 \

~ 0.2 \

C o.8L
§ 0 ~~\=--=--=--~~~~~--~--~--~-~--=--~--~--~--4
" ~
'" -0.2

- 0 .4

lag

Figure 11 MMPP: Correlogram.

10

Second order moving average process - MA(2)

The reference data for this test was produced from Yk = ck + e . ck _ Z with e = 0.2 and C

being white noise with mean 0 and variance 1.
See Table 1 for model parameter and results. In Figure 12 the good correspondence of the

autocorrelations can be seen.

MPEG coded video frames
This example is a real world case. A MPEG coded video sequence from the movie "Star Wars"
is used. The sequence consists of the amount of data per video frame after compression.

Figure 13 shows the sequence generated by the MPEG scheme in principle. The large frames
are so-called I-frames and comprise a whole picture. The medium-sized frames are P-frames,

C
.~

" '" rl

~
><
o
u
o
" "

Reference:
Model:

'" -0 . 2

-0 .4
L---~----~----~----~--~10

lag

Figure 12 MA(2): Correlogram.

I. B. P; frame lYpeS

p P P P

BB BB BB BB BB BB

lime

Figure 13 Sequence of MPEG frames.

220 Part Five Source Modelling

, 'B-frame group

- , , -P-frame group

-' - - - - 'I-frame group

200000 400000

framesize in bit

Figure 14 MPEG: Distribution functions.

o. 8
d .s 0.6
~ :s 0.4
w
~ 0.2
o
u
o
" " " -0.2

-0.4

U U u

Reference: -
Model: ... -

I
00

U U 1..1 U \J \d

10 15 20 25 30

lag

Figure 15 MPEG: Correlation between frames.

the small frames B-frames. The sequence I-B-B-P-B-B-P-B-B- is repeated cyclically and is
defined by the MPEG parameters (more detailed information can be found in Le Gall (1991)).
The size of the 1-, B-, and P-frames is distributed according to the underlying video scenes.
Due to this cyclical behavior the correlogram of MPEG-coded video data has a characteristic
form as shown in Figure 15.

Figure 14 shows the resulting distribution approximations that are learned by the VQ and the
DA's during the adaptation process. It can be seen that there are different groups of distribu­
tions. Each group represents a different frame type (I, B or P) and the occurrence of the differ­
ent distribution types obeys the same rule than the I-B-P-sequence above.

In Figure 15 it can be seen that the model fits the reference quite welL Model parameters and
further results are contained in Table 1.

The long term correlation is poor in this example but it could be further improved by increas­
ing the number N of model inputs.

Table 1 Examples

N M L
distribution test

correlation test
(value should be < 192)

MMPP 5 2 100 185 0.002 (MSE)

MA(2) 3 25 10 189 0.0026 (MSE)

video frames 9 15 10 165 0.04 (periodic)

5 FURTHER DEVELOPMENT

This work is still in a preliminary state and extensions are under development. Future exten­
sions will include:
• Control inputs for source models. This allows hierarchical models for different time scales.

In case of video data a higher model may be responsible to model video scenes whereas a
lower model is responsible to model the frame sizes.

• Multivariate time series.

This should be easily done by extending the input vector with control lines and values from
other time series. During the adaptation procedure the distribution approximation can be
adapted independently for every input stream.

Stochastic time series production with neural networks 221

6 SUMMARY

In this paper a new algorithm is presented that identifies arbitrary time series that may contain
seasonalities. It consists of a vector quantizer that reduces the complexity of the input data and
a special Neural Network type that is able to learn distributions.

The model parameters for both the vector quantizer and the Neural Network are automati­
cally derived by the learning process if an adequate topology is chosen.

A performance analysis is presented and some examples demonstrate the usability of the
method.

7 REFERENCES

Bagchi, A (1993) Optimal Control of Stochastic Systems. Prentice Hall.
Brillinger, D. (1992) New Directions in Time Series Analysis, Part I+ll. Springer.
Chakraborty, K., Mehrotra, K., Mohan, C. K. and Ranka, S. (1992) Forecasting the Behavior

of Multivariate Time Series Using Neural Networks. Neural Networks, vol. 5,961-70.
Deppisch, J., Bauer, H. U. and Geisel, T. (1994) Hierarchical training of neural networks and

prediction of chaotic time series, in Artificial Neural Networks: Forecasting Time Series (ed.
V. R Vemuri, R D. Rogers), IEEE Computer Society Press, 66-71.

Gruenenfelder, R, Cosmas 1. P. and Odinma-Okafor, A (1991) Characterization of Video
Codecs as Autoregressive Moving Average Processes and Related Queueing System Perfor­
mance. IEEE Journal on Selected Areas in Communications, vol. 9, no. 3,284-93.

Hamilton, 1. D. (1994) Time Series Analysis. Princeton University Press.
Harvey, A C. (1993) Time Series Models. Harvester Wheatsheaf.
Hecht-Nielsen, R (1989) Neurocomputing. Addison-Wesley.
Hudson, J. L., Kube, M., Adomaitis, R A, Kevrekidis, I. G., Lapedes, A S. and Farber, R. M.

(1994) Nonlinear Signal Processing and System Identification: Applications to Time Series
from Electrochemical Reactions, in Artificial Neural Networks: Forecasting Time Series (ed.
V. R Vemuri, R D. Rogers), IEEE Computer Society Press, 36-42.

Janacek, G. (1993) Time Series. Ellis Horwood.
Law, A M. and Kelton, W. D. (1991) Simulation Modelling & Analysis. McGraw-Hill.
Le Gall, D. (1991) MPEG: A Video Compression Standard for Multimedia Applications, Com­

munications of the ACM, vol. 34, no. 4,46-58.
Lowe, D. and Webb, A. R. (1994) Time series prediction by adaptive networks: a dynamical

systems perspective, in Artificial Neural Networks: Forecasting Time Series (ed. V. R
Vemuri, R D. Rogers), IEEE Computer Society Press, 12-9.

Mozer, M. C. (1993) Neural Net Architectures for Temporal Sequence Processing, in Time
Series Prediction: Forecasting the Future and Understanding the Past (ed. A S. Weigend),
Addison-Wesley, 243-64.

Papoulis, A (1984) Probability, Random Variables, and Stochastic Processes. McGraw-Hill.
Scargle, 1. D. (1992) Predictive Deconvolution of Chaotic and Random Processes, in New

Directions in Time Series Analysis, Part I (ed. D. Brillinger), Springer, 335-56.
Tang, Z., de Almeida, C. and Fishwick, P. A. (1994) Time series forecasting using neural net­

works vs. Box-Jenkins methodology, in Artificial Neural Networks: Forecasting Time Series
(ed. V. R Vemuri, R D. Rogers), IEEE Computer Society Press, 20-7.

Tarraf, A A, Habib, I. W. and Saadawi, T. N. (1993) Neural Networks for ATM Multimedia
Traffic Prediction. Proceedings of IWANNT '93, 85-91.

Tarraf, A A., Habib, I. W. and Saadawi, T. N. (1994) A Novel Neural Network Traffic
Enforcement Mechanism for ATM Networks. IEEE Journal on Selected Areas in Communi­
cations, vol. 12, no. 6, 1088-96.

Wan, E. A (1993) Time Series Prediction Using a Connectionist Network with internal Delay
Lines, in: Time Series Prediction: Forecasting the Future and Understanding the Past (ed. A.

222 Part Five Source Modelling

S. Weigend), Addison-Wesley, 195-217.
Weigend, A. S. (1993) Time Series Prediction: Forecasting the Future and Understanding the

Past. Addison-Wesley.

APPENDIX A:VECTOR QUANTIZER

The VQ algorithm described here is closely related to the Kohonen learning rule as proposed
in Hecht-Nielsen (1989).

The vector quantizer consists of M units that receive the following input (Euclidean distance
between i = (i" i2, ... , iN) and internal weight vectors Wi = (Wi" W i2 , ... , WiN) , i=l..M)
that belong to the units , see Figure 16:

(13)

A competition takes place between the units . The unit with the lowest value dj - hj is the

winner and its output Z j is set to 1. The outputs of all other units are set to o. The value h j is a

bias term that ensures that the frequency of winning the competition becomes 1/ M for all
units after some learning.

The rule for calculating the bias is

hi = y. (b-!;), i=l..M(y typically 10) (14)

After the competition the weight vector of the winner unit and the fj of all units are modified:

new _ old l. Old)
Wi - Wi +a I-Wi (15)

/lew _ !Jld Rl _!Jld)
Ji - i + t-' Zj j , i=l..M(~ typically 0.0001) (16)

The learning rate a decreases exponentially during the learning process (typically from 0.05
to 0.001) .

APPENDIX B:NEURAL NETWORK ALGORITHM

In this Appendix the learning rule of the new Neural Network algorithm is shortly described.
For the meaning of some variables refer to Figure 7 in Section 2 and to Table 2.

The first step is to determine the segment i the event ek falls into. Next segment frequency

and width are adapted.

i i+1
i-I

i

fixed
\j

fixed

Figure 16 Vector quantizer. Figure 17 Event in segment i.

Stochastic time series production with neural networks 223

Principle
Events have only an effect in one segment and its direct left and right neighbors (segments i, i-
1, i+ 1). Therefore the algorithm has a high locality and can be easily implemented in parallel.

Table 2 Variables for Neural Network algorithm

variable description

Event at time k

Width of segment i

Density of segment i

Frequency of segment i

Number of segments for approximation

Adaptation of segment width and position
The adaptation of segment width consists of the distribution of an "amount of frequency" of
segment i to its neighboring segments. The density of segment i is kept constant as well as the
borders of the neighbors. Adaptation takes place by means of the change of the width of seg­
ments i, i-I, i+ 1 and the change of density of segments i-I and i+ 1. The width of segment i is
reduced to enhance the resolution in areas of higher event frequency. This procedure leads to
nearly the same probability 1/ L of each segment.

The marginal segments (segments 1 and L) have to be treated in a special way. Their outer
borders have to adapt to the minimum and maximum values of the underlying distribution.

The "amount of frequency" mentioned above is governed by a learning parameter A that
decreases exponentially during learning (typically from 0.1 to 0.001).

Adaptation of segment frequency
The adaptation of segment frequency firstly corrects some errors possibly made in the adapta­
tion Qf segment width and secondly provides a fine tuning of the density function. The adapta­
tion of segment frequency is performed for more cycles than the adaptation of segment width.
So even if the first step leads to non-optimal density function this is corrected in the second
step.

The frequency of events in the distinct segments is calculated as exponentially weighted

mean value of all events falling in one segment:

k

f;,k = a· L (l-a/.ti,k_j

with

t. k = (1
I, 0

j=O

if event ek in area i

if event e k not in area i.

Since the ti, k are zero for k negative equation (17) can be rewritten as a recursion:

[i,k = a·ti,k+ (l-a) '!;,k-l

(17)

(18)

(19)

224

0.4

11 0.3 . .,
~
<:

.i!j 0.2

0.1

Part Five Source Modelling

t.ime... s.er.ie..s... vallies

Figure 18 Density approximation of normal distributed time series.

The factor ex determines the contribution of the actual event ti, k to the sum. Like for the
adaptation of the segment width a slightly modified method is necessary to adapt the segment
frequency of boundary segments. The value of ex depends on the number of samples available
for learning, The combined effects of both adaptations can be seen in Figure 17.

Example
An example for the adaptation capabilities of the Neural Network is shown in the sequeL A
normally distributed time series with mean zero and variance I is used as training data. Figure
18 shows the original density function (dots) with 95% confidence intervals (irregularity in
shape stems from non-ideal random number generator and not much adaptation cycles) and the
approximation with L=20 segments (solid line). Note the decreasing width with increasing
density,

Error approximation
The resulting distribution approximation has an approximation error. The error is computed as
the integral over the squared difference of original distribution f and density approximation di.

After some simplification and assuming that all regions have the same probability 1/ L this
leads to

00 L

E = ff(x)dx- i· 'Ldi' (20)
i ~ I

8 BIOGRAPHY

Markus D. Eberspacher was born in 1963 and studied Electrical Engineering at the University
of Stuttgart where he received the DipL-Ing. degree in 1991. Since 1991, he is a member of the
scientific staff at the Institute of Communications Switching and Data Technics, University of
Stuttgart (Prof. Kuhn). His interests include Neural Networks and Fuzzy Control in telecom­
munication networks.

